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Can Self-Sustaining Currents Be Induced In A
System Of Mesoscopic Rings?

J. Łuczka∗, J. Dajka∗, M. Mierzejewski∗ and P. Hänggi†

∗Institute of Physics, University of Silesia, 40-007 Katowice, Poland
†Institute of Physics, University of Augsburg, Germany

Abstract. Mesoscopic systems exhibit both quantum and classical features. A purely quantum
and topological phenomenon is the occurrence of a persistent current. We analyze a collection
of coaxial, mesoscopic rings which are coupled via mutual inductances. At temperatures T > 0,
thermal fluctuations are taken into account. The system is described in terms of a set of Langevin
equations. The unsolved problem is to find steady states in the limit of infinitely many rings (i.e. in
the thermodynamic limit). The first problem is to evaluate the effective coupling constants which
are determined by elements of the inverse matrix of mutual inductances. The second problem is to
apply the mean-field type approximation: can it be justified? If yes, then the resulting steady states
are determined by a nonlinear Fokker-Planck equation from which it follows that self-sustaining
currents can be induced by interactions among rings. If no, then it is an open and much more
difficult problem to identify the corresponding effective state equation.
Keywords: mesoscopic systems, persistent current, phase transition
PACS: 64.60.Cn, 05.10.Gg, 73.23.-b

DESCRIPTION OF MODEL

In mesoscopic systems [1] of ring, toroidal or cylindrical symmetry persistent currents
can occur [2] as a result of the phase coherence among electrons, the so-called coherent
electrons. Experiments [3] have confirmed the existence of such persistent currents. In
the ground state, at temperature T = 0, the only electrons present in the system are
coherent ones, possessing a non-dissipative flow. At non-zero temperature, T > 0, some
of those electrons become "normal" and their behavior is dissipative. This induces a
decrease of the amplitude of the persistent current.
We consider a system of N identical, coaxially composed mesoscopic metal rings

(toroids) which are coupled via the mutual inductances. The rings are separated with a
distance r between their centers. Magnetic fluxes and currents in the rings are coupled
according to the formula [4]

φi =
N∑
k=1

MikIk+φext , (1)

where φi and Ii are flux and current in the i-th ring, respectively. The flux φext is induced
by an external uniform magnetic field B. The coupling coefficients Mik = Mki (forming
the matrix M ) denote the mutual inductances for i 6= k and identical self-inductances
L = Mii for i= k.
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The current in the k-th ring equals a sum

Ik = Inork + Icohk (2)

of the Ohmic (dissipative) current Inork plus the persistent current Icohk . The Ohmic current
contribution Inork = Inor(φk) is determined by Ohm’s law and Lenz’s rule, i.e.,

Inor(φk) = −1
R
d
dt
φk+

√

2kBT
R

Γ k(t) , (3)

where R denotes the resistance of a single ring [5], kB is the Boltzmann constant
and Γ k(t) describes the thermal, Johnson-Nyquist fluctuations of the Ohmic current.
This thermal noise is modelled by a set of independent Gaussian white noises of zero
average, i.e., 〈Γ k(t)〉 = 0 and δ-correlated correlations 〈Γ k(t)Γ i(s)〉 = δkiδ(t− s). The
noise intensity D0 =

√

2kBT/R is chosen in accordance with the classical fluctuation-
dissipation theorem [6].
The coherent current can be either of paramagnetic nature for an even number Ne of

coherent electrons, or of diamagnetic nature for an odd number of coherent electrons.
The probability of finding a channel (ring) with an odd number of coherent electrons
is denoted by P and the probability of finding a channel with an even number of
coherent electrons is equal to 1−P, respectively. The current of the coherent electrons
Icohk = Icoh(φk,T ) has been determined in Ref. [7], reading

Icoh(φk,T) = I∗ [Pg(φk/φ0,T )+(1−P)g(φk/φ0+1/2,T)] , (4)

where the flux quantum φ0 := h/e is the ratio of the Planck constant h and the electron
charge e. The characteristic current I∗ = heNe/(2l2xme), with Ne being the number of
coherent electrons in a single current channel (ring), lx is the circumference of the ring
and me is the mass of electron. Moreover, [7]

g(x,T ) =
∞∑
n=1
An(T)sin(2nπx) (5)

denotes the current in a channel with an even number of coherent electrons. The ampli-
tudes read

An(T ) =
4T
πT ∗

exp(−nT/T ∗)
1− exp(−2nT/T ∗)

cos(nkF lx) . (6)

The characteristic temperature T ∗ is determined from the relation kBT ∗ = ∆F/2π2,
where ∆F marks the energy gap and kF is the momentum at the Fermi surface.

STOCHASTIC EVOLUTION EQUATIONS

Given eqs. (1)-(4), it follows that the evolution equations for the fluxes assume the form

1
R

N∑
k=1

Mik
dφk
dt

= φext−φi+
N∑
k=1

MikIcoh(φk,T )+

√

2kBT
R

N∑
k=1

MikΓ k(t) (7)
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for i = 1 . . .N. We like to remark that this set of equations possesses an untypical form:
In the language of particles, the left hand side of this equation corresponds to an unusual
coupling of ’velocity’ degrees of freedom dφk/dt. This note is essential because the
known literature results for particle or spin systems with a position-position interaction
cannot be directly applied to the set (7).
Let us recall that the interaction among the coaxially composed rings is characterized

by the mutual inductances Mik = f (rik), where rik is the distance between the i-th and
the k-th ring and [8]

f (r) =
8πR
b(r)

[(

1− b
2(r)
2

)

K(b(r))−E(b(r))
]

. (8)

The function b2(r) = 4R2/[4R2+r2] and R is the radius of the ring. The functions K(z)=
and E(z) are the complete elliptic integrals [4]. For short distances between the rings
Mik ∝− lnrik, while Mik ∝ r−3

ik for large distances rik.
The system (7) can be reformulated in terms of an effective ’position-position’ in-

teraction. Indeed, multiplying this system of equations by the elements
(

M−1)
ni of

the inverse matrix M−1 and next summing up over i one obtains the following set of
Langevin equations

1
R
dφn
dt

=
N∑
i=1

(M−1)ni [φext−φi]+ Icoh(φn,T )+

√

2kBT
R

Γ n(t) . (9)

Its dimensionless form reads [9]

dxn
ds

= −V ′(xn,T )−
N∑

i(6=n)
λnixi+√

2D Γ̃ n(s) . (10)

The dimensionless flux is xn = φn/φ0 and the dimensionless time reads s= t/τ0, whereτ0 = L /R is the relaxation time of the averaged Ohmic current. The prime denotes the
derivative with respect to the first argument of the generalized potential V (xn,T ), i.e.
here with respect to xn. The generalized potential itself is given by

V (xn,T ) =
1
2
anx2n−bnxn− I0

∫ xn
f (y,T)dy . (11)

The coupling constants are λni = L (M−1)ni, and the parameter an = L (M−1)nn
corresponds to the n-th diagonal element of the inverse matrix M−1. The re-scaled,
externally induced fluxes read bn = γnφext/φ0, where γn = L ∑Ni=1(M

−1)ni. The re-
scaled characteristic current is given by I0 = L I∗/φ0 and

f (y,T ) = Pg(y,T)+(1−P)g(y+1/2,T) . (12)

The zero-mean re-scaled noise reads Γ̃ n(s) =
√τ0 Γ n(τ0s) with the correlations

〈Γ̃ n(s1)Γ̃m(s2)〉 = δnmδ(s1−s2). Its intensity is D= kBT/2ε0, where ε0 =φ2
0 /2L [10].
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The generalized potential (11) can either be multistable, specifically assume a sym-
metric monostable or also a symmetric bistable shape. The dynamics is thus equivalent
to a dynamic model of a collection of one-dimensional anharmonic oscillators moving
in a multistable on-site potential that are coupled among each other with bi-linear inter-
actions.

STEADY-STATE EQUATION

From the corresponding Fokker-Planck equation for the joint probability density
p({xn},s) of the N-ring system described by (10) one can derive, – after integration over
all variables except xk, – the nonlinear steady-state equation for the one-dimensional
stationary probability density ps(xk), which has the form [9]

∂
∂xk

[

V ′(xk,T )+
N∑
i 6=k

λ ik〈xi|xk〉
]

ps(xk)+D
∂2
∂x2k ps(xk) = 0, (13)

where 〈xi|xk〉=
∫

xips(xi|xk)dxi is a stationary, conditional mean value of xi with respect
to the conditional probability density ps(xi|xk). This equation is formally exact, however
it is clearly not closed: it contains the unknown quantity 〈xi|xk〉which can be determined
only via an approximation scheme. The most popular mean-field approximation can
be formulated as follows. Rewrite the conditional mean value as 〈xi|xk〉 = 〈xi〉+ cik,
wherein cik accounts for correlations between i-th and k-th ring. In the thermodynamic
limit, when N→∞, the system becomes statistically homogeneous so that the stationary
average 〈xk〉 = 〈x〉 no longer depends on the index k. If in this limit we shall neglect
the correlations, i.e. if we put cik = 0 then (13) renders a closed but non-linear equation.
The crucial problem is whether this constitutes an approximation or whether in fact
it presents an exact, limiting result. Let us recall that the coupling constants λ ik are
expressed by elements of the inverse matrix

(

M−1)
ik. In the thermodynamic limit,

it is an infinite-dimensional matrix. How does its elements behave with respect to the
dependence on the distance rik between the rings? Presently, we are not able to answer
to this question. As a consequence we lack a rigorous proof that cik→ 0 as N→∞. If the
mean-field approximation can indeed be applied, then the stationary probability density
for x= xk would satisfy the non-linear Fokker-Planck equation

d
dx

[V ′(x,T )−λ µ ]ps(x)+D
d2

dx2
ps(x) = 0, (14)

where
µ ≡ 〈x〉 =

∫ ∞
−∞x ps(x)dx (15)

is the order parameter of the system and λ = −∑i 6=kL (M−1)ik denotes an effective
coupling constant. In this sum, the index k is fixed and i ∈ (−∞,∞). However, for the
system composed of infinitely many rings, the result does not depend on k. The next
problem involves the sign of λ . If λ > 0, then we can expect a "ferromagnetic" state of
the system, characterized by the parallel alignment of the magnetic moments induced by
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the currents flowing in the neighboring rings. The flux state is characterized by the non-
vanishing mean flux µ = 〈x〉 6= 0. If an external magnetic field is applied, then trivially
µ 6= 0. The non-trivial case emerges when the external flux φext is zero but µ 6= 0. Then,
via Eq. (1), currents may flow without any external magnetic field and are solely induced
by the interaction among the various rings. This phenomenon is what we call term self-
sustaining currents. Can this situation be realized experimentally?

INTERACTION MATRICES

In Eq. (7), the coupling among the (N+1)-rings is described by the matrix

M =





















L f (r) f (2r) f (3r) . . . . . . f (Nr)
f (r) L f (r) f (2r) . . . . . . f ((N−1)r)
f (2r) f (r) L f (r) . . . . . . f ((N−2)r)
...

f (Nr/2) . . . f (r) L f (r) . . . f (Nr/2)
...

f (Nr) . . . . . . f (3r) f (2r) f (r) L





















(16)

where the function f (r) is defined in Eq. (8). In Eq. (9), the ’position-position’ interac-
tion is determined by the inverse matrix M−1. As mentioned above, we are interested in
the thermodynamic limit N→∞. Then the inverse matrix M−1 is infinite-dimensional.
In this limit, each ring has infinitely many symmetric neighbors from above and from
below. The crucial quantities are the elements

(

M−1)
ik of the inverse matrix and their

dependence on the distance rik between rings.
Mean-field theory has played a seminal role for understanding the behavior of com-

plex and cooperative systems, in particular phase transitions. A number of rigorous re-
sults have been obtained answering the question: under what conditions is a mean-field
procedure yielding a qualitatively correct prediction. Much is known for lattice mod-
els and spin systems [11, 12, 13]. There exists a widespread opinion that, for example,
there are (at finite temperatures) no phase transitions occurring in one-dimensional (1D)
systems possessing short range interactions. Van Hove’s result [14], and the extension
by Ruelle [15], as well as the collection of well-known, exactly solvable models (Ising
or Potts models) seem to support this view. However, there are examples of 1D mod-
els with short range interactions, and very important – in presence of on-site potentials
– that indeed do exhibit a true thermodynamic phase transition [11, 16]. Our reduced
description of the real 3D system of coupled mesoscopic rings is based on the classical
Langevin stochastic equations (10), which equivalently describes a 1D system of anhar-
monic, multistable oscillators. For the case of a global interaction, such systems can un-
dergo a well-defined phase transition [17]. The interaction in (10) is not global but local
and we do not know of any rigorous results for systems of the type studied in this paper.
So, it is left a open question whether we have a phase transition in a one-dimensional
system of coupled mesoscopic rings.
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