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Can Self-Sustaining Currents Be Induced In A
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Abstract. Mesoscopic systems exhibit both quantum and classical features. A purely quantum
and topological phenomenon is the occurrence of a persistent current. We analyze a collection
of coaxial, mesoscopic rings which are coupled via mutual inductances. At temperatures T > 0,
thermal fluctuations are taken into account. The system is described in terms of a set of Langevin
equations. The unsolved problem is to find steady states in the limit of infinitely many rings (i.e. in
the thermodynamic limit). The first problem is to evaluate the effective coupling constants which
are determined by elements of the inverse matrix of mutual inductances. The second problem is to
apply the mean-field type approximation: can it be justified? If yes, then the resulting steady states
are determined by a nonlinear Fokker-Planck equation from which it follows that self-sustaining
currents can be induced by interactions among rings. If no, then it is an open and much more
difficult problem to identify the corresponding effective state equation.
Keywords: mesoscopic systems, persistent current, phase transition
PACS: 64.60.Cn, 05.10.Gg, 73.23.-b

DESCRIPTION OF MODEL

In mesoscopic systems [1] of ring, toroidal or cylindrical symmetry persistent currents
can occur [2] as a result of the phase coherence among electrons, the so-called coherent
electrons. Experiments [3] have confirmed the existence of such persistent currents. In
the ground state, at temperature T = 0, the only electrons present in the system are
coherent ones, possessing a non-dissipative flow. At non-zero temperature, T > 0, some
of those electrons become "normal" and their behavior is dissipative. This induces a
decrease of the amplitude of the persistent current.
We consider a system of N identical, coaxially composed mesoscopic metal rings

(toroids) which are coupled via the mutual inductances. The rings are separated with a
distance r between their centers. Magnetic fluxes and currents in the rings are coupled
according to the formula [4]

φi =
N∑
k=1

MikIk+φext , (1)

where φi and Ii are flux and current in the i-th ring, respectively. The flux φext is induced
by an external uniform magnetic field B. The coupling coefficients Mik = Mki (forming
the matrix M ) denote the mutual inductances for i 6= k and identical self-inductances
L = Mii for i= k.
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The current in the k-th ring equals a sum

Ik = Inork + Icohk (2)

of the Ohmic (dissipative) current Inork plus the persistent current Icohk . The Ohmic current
contribution Inork = Inor(φk) is determined by Ohm’s law and Lenz’s rule, i.e.,

Inor(φk) = −1



for i = 1 . . .N. We like to remark that this set of equations possesses an untypical form:
In the language of particles, the left hand side of this equation corresponds to an unusual
coupling of ’velocity’ degrees of freedom dφk/dt. This note is essential because the
known literature results for particle or spin systems with a position-position interaction
cannot be directly applied to the set (7).
Let us recall that the interaction among the coaxially composed rings is characterized

by the mutual inductances Mik = f (rik), where rik is the distance between the i-th and
the k-th ring and [8]

f (r) =
8πR



The generalized potential (11) can either be multistable, specifically assume a sym-
metric monostable or also a symmetric bistable shape. The dynamics is thus equivalent
to a dynamic model of a collection of one-dimensional anharmonic oscillators moving
in a multistable on-site potential that are coupled among each other with bi-linear inter-
actions.

STEADY-STATE EQUATION

From the corresponding Fokker-Planck equation for the joint probability density
p({xn},s) of the N-ring system described by (10) one can derive, – after integration over
all variables except xk, – the nonlinear steady-state equation for the one-dimensional
stationary probability density ps(xk), which has the form [9]

∂



the currents flowing in the neighboring rings. The flux state is characterized by the non-
vanishing mean flux µ = 〈x〉 6= 0. If an external magnetic field is applied, then trivially
µ 6= 0. The non-trivial case emerges when the external flux φext is zero but µ 6= 0. Then,
via Eq. (1), currents may flow without any external magnetic field and are solely induced
by the interaction among the various rings. This phenomenon is what we call term self-
sustaining currents. Can this situation be realized experimentally?

INTERACTION MATRICES

In Eq. (7), the coupling among the (N+1)-rings is described by the matrix

M =





















L f (r) f (2r) f (3r) . . . . . . f (Nr)
f (r) L f (r) f (2r) . . . . . . f ((N−1)r)
f (2r) f (r) L f (r) . . . . . . f ((N−2)r)
...

f (Nr/2) . . . f (r) L f (r) . . . f (Nr/2)
...

f (Nr) . . . . . . f (3r) f (2r) f (r) L





















(16)

where the function f (r) is defined in Eq. (8). In Eq. (9), the ’position-position’ interac-
tion is determined by the inverse matrix M−1. As mentioned above, we are interested in
the thermodynamic limit N→∞. Then the inverse matrix M−1 is infinite-dimensional.
In this limit, each ring has infinitely many symmetric neighbors from above and from
below. The crucial quantities are the elements

(

M−1)
ik of the inverse matrix and their

dependence on the distance rik between rings.
Mean-field theory has played a seminal role for understanding the behavior of com-

plex and cooperative systems, in particular phase transitions. A number of rigorous re-
sults have been obtained answering the question: under what conditions is a mean-field
procedure yielding a qualitatively correct prediction. Much is known for lattice mod-
els and spin systems [11, 12, 13]. There exists a widespread opinion that, for example,
there are (at finite temperatures) no phase transitions occurring in one-dimensional (1D)
systems possessing short range interactions. Van Hove’s result [14], and the extension
by Ruelle [15], as well as the collection of well-known, exactly solvable models (Ising
or Potts models) seem to support this view. However, there are examples of 1D mod-
els with short range interactions, and very important – in presence of on-site potentials
– that indeed do exhibit a true thermodynamic phase transition [11, 16]. Our reduced
description of the real 3D system of coupled mesoscopic rings is based on the classical
Langevin stochastic equations (10), which equivalently describes a 1D system of anhar-
monic, multistable oscillators. For the case of a global interaction, such systems can un-
dergo a well-defined phase transition [17]. The interaction in (10) is not global but local
and we do not know of any rigorous results for systems of the type studied in this paper.
So, it is left a open question whether we have a phase transition in a one-dimensional
system of coupled mesoscopic rings.
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