
                                                                                                                                       
                                                                                                                                                                       
                   

841

1.  INTRODUCTION

Studying dynamic processes and transport phenom-
ena in disordered systems is one of the most important
problems of  the  modern physics  of  condensed matter
[1, 2]. For example, the collective dynamics of particles
on spatial scales of the order of several interatomic dis-
tances in liquids has currently aroused particular inter-
est  [3].  This  is  related  in  part  to  the  improvement  of
experimental  technique  intended  for  inelastic  neutron
scattering,  to  the  appearance  of  the  third-generation
sources of synchrotron radiation, and to the development
of the technique of inelastic X-ray scattering (where the
response is  strictly coherent and the dynamic structure
factor S(k, ω) is directly measured) [3, 4].

Numerous experimental studies have found that the
frequency  spectra  of  the  dynamic  structure  factors  of
liquid metals have a three-peak shape even outside the
hydrodynamic (microscopic) spatial region, where one
elastic (ω = 0) and two inelastic (ωc ≠ 0) peaks exist,
just  as  in  the  hydrodynamic  Rayleigh–Mandelshtam–
Brillouin  triplet.  The  latter  two  peaks  indicate  the
appearance of collective excitations. As the wavevector
k increases,  the  high-frequency  collective  excitation
frequency ωc(k) increases, reaches its maximum at km/2
(where km is the position of the main maximum in the
static structure factor S(k)), and then decreases. When
the so-called de Genes narrowing zone is approached,
the high-frequency peaks disappear.

The  presence  of  high-frequency  collective  excita-
tions  in  liquid  aluminum  at  finite  wavevectors  has
experimentally been revealed only recently [3, 5]. This
result is supported (mostly qualitatively) by molecular
dynamics simulation using various models for interpar-
ticle  interaction  potentials.  The  microstructure  and
dynamics  of  liquid  aluminum  near  the  melting  point
were  first  studied  by  molecular  dynamics  simulation
in [6], where the local Ashcroft pseudopotential [7] and
two nonlocal pseudopotentials were used. Although the
static characteristics calculated with all three potentials
are in good agreement with experimental data, the sim-
ulated  dynamic  structure  factor  spectra  differ  from
experimental data. The static characteristics and micro-
scopic dynamics of liquid aluminum have recently been
studied  by  ab  initio  molecular  dynamics  simulation
using the orbital-free (OF-AIMD) [8] and Kohn–Sham
(KS-AIMD)  [9]  methods.  In  particular,  the  dynamic
structure  factor S(k, ω)  was  calculated  and  compared
with  experimental  data  on  inelastic  X-ray  scattering
[5].  Although  the  calculation  results  also  exhibit  a
three-peak shape of S(k, ω), the heights and positions of
the side peaks differ significantly from the experimen-
tal values.

Several  theoretical  approaches  were  proposed  to
explain the triplet structure of S(k, ω) in liquid alumi-
num at finite wavevectors: for example, a semiempiri-
cal  modified  hydrodynamic  model  [6,  10]  or  an
approach  based  on  a  generalized  Langevin  equation
and the viscoelastic model of [5]. These theories repro-
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duce  certain  specific  features  of  experimental S(k, ω)
spectra.  Nevertheless,  they  have  the  following  disad-
vantages: the time dependences of relaxation processes
are  approximated  using  simplified  model  functions,
and they introduce various fitting parameters.

In this work, we describe microscopic dynamics in
liquid aluminum with another theoretical approach; it is
based on the Zwanzig–Mori  formalism and ideas con-
cerning reduced description of relaxation processes [11].
It should be noted that a similar approach has been suc-
cessfully  applied  earlier  to  describe  the  microscopic
dynamics  of  particles  in  liquid  alkali  metals  [12–15].
We  also  performed  molecular  dynamics  simulations
using  the  “glue”  interparticle  potential  proposed
in  [16,  17].  The  frequency  spectra  of  the  scattering
intensity  in  liquid  aluminum  calculated  by  the  two
methods were compared with experimental data.

2.  THEORETICAL FORMALISM

The intensity of inelastic X-ray scattering I(k, ω) in
the system under study is connected with the dynamic
structure factor S(k, ω) by the relation [3, 4, 18]

(1)

where β = 1/kBT; kB and T are the Boltzmann constant
and the system temperature, respectively; R(k, ω) is the
experimental  resolution  function;  and  the  dynamic
structure factor S(k, ω) contains detailed information on
the collective properties of the system. As was shown in
famous  work  [19],  the S(k, ω)  spectrum is  connected
with the autocorrelation function of local-density fluc-
tuations

(2)

through its Laplace transform

by the relation

(3)

Here,
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is the static structure factor of the liquid,

(4)

where V is the system volume, g(r) is the radial pair dis-
tribution function, and the angle brackets 〈…〉 indicate
ensemble  averaging.  Thus,  to  determine  the  dynamic
structure factor and the scattering intensity, we have to
know the time behavior of the autocorrelator of local-
density fluctuations φ(k, t) or its frequency spectrum.

We now consider an isotropic system consisting of
N particles of mass m. The initial dynamic variable is
taken to be the local-density fluctuations of the number
of particles

(5)

whose  time  evolution  is  specified  by  the  equation  of
motion

(6)

where  is the Liouville operator,

(7)

and Fj is the total force acting on the jth particle.
Using  the  Gram–Schmidt  orthogonalization,  we

then obtain an infinite set of orthogonal dynamic vari-
ables

(8)

they are connected by the recurrent relations

(9)

where δj, l is the Kronecker delta and

(10)

is  the  frequency relaxation parameter  of  the  jth  order
having the dimensions of frequency squared.
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By analogy with Eq. (2), we define the time autocor-
relation functions of the dynamic variables Aj(k) as fol-
lows:

(11)

they have the properties

(12)

(13)

(14)

Property (12) follows directly from definition (11); the
limit  in  Eq.  (14)  is  valid  for  ergodic  processes  and
results  from  the  principle  of  long-term  correlation
weakening;  and  Eq.  (13)  can  easily  be  derived  from
well-known  Schwartz’s  inequality  [20].  It  should  be
noted that,  if  M0(k, t)  =  φ(k, t)  specifies  local-density
autocorrelations, then the M1(k, t) function corresponds
to  the  time  autocorrelation  function  of  longitudinal
momentum component fluctuations, M2(k, t) is directly
related  to  the  time autocorrelation  function of  energy
fluctuations, and so on. In other words, at k  0, the
values of  M0(k, t), M1(k, t),  and M2(k, t)  can be com-
pared  with  the  time  autocorrelation  functions  corre-
sponding to three retained hydrodynamic variables.

We  now  determine  the  normalized  frequency
moments of the dynamic structure factor:

(15)

It should be noted that only even moments (p = 2, 4, …)
take finite values and that odd moments become zero.
Taking  into  account  the  second  equality  in  the  last
equation, we can represent the short-term behavior of
the φ(k, t) function in the form of the Taylor series

(16)
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By making allowance for the relation

(17)

which holds true at a fixed k, we can obtain the follow-
ing useful expressions relating the frequency moments

ω(2j)(k)  to  the  frequency  parameters  (k)  from
Eqs. (9) and (10):

(18)

From definition (10), we can readily derive expressions

for the frequency parameters (k). For example, for

the first three parameters (k),  (k), and (k), we
have

(19)

(20)

(21)

where �(k)  is  a  combination  of  integral  expressions
containing  the  interparticle  interaction  potential  u(r)
and the three-particle distribution function g3(r, r'). A
complete  expression  for  �(k)  is  given  in  [21].  Note
that,  as  order  j increases,  the  expressions  for  the  fre-
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quency  relaxation  parameters  (k)  become  much
more complex and begin to contain the equilibrium dis-
tribution functions of a group of j particles.

The authors of [22, 23] used the technique of projec-
tion  operators  and  showed  that  the  φ(k, t), M1(k, t),
M2(k, t), … functions are connected by a chain of the
integro-differential equations

(22)

With the Laplace transform, chain (22) can be written
as the recurrent relation

(23)

or the continued fraction

(24)
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The same result was obtained by the method of recur-
rent relations [18], which differs from the technique of
projection  operators.  Note  that,  in  both  methods,
Eq. (22) and, correspondingly, fraction (24) can exactly
be derived from equation of motion (6).

Thus, the problem of finding φ(k, t) (or (k, z)) can
be reduced to the calculation of a certain time correla-
tion function of the jth order Mj(k, t), which eventually
corresponds to the disconnection of the infinite chain of
kinetic  integro-differential  equations  (22)  (i.e.,  to  the
break of fraction (24)). Another possible way is to cal-

culate  the  frequency  parameters  (k)  appearing  in
fraction  (24).  The  chain  of  Eqs.  (22)  can  be  discon-
nected by the following methods:

(i)  the  transition  to  the  Markovian  limit  of  Van
Hove  at  a  certain  jth  relaxation  level,  which  is  per-
formed by introducing the so-called slow time τ = λ2t
(λ  0) [24];

(ii) the method of model memory functions, where
the Mj(k, t) function of the jth order is approximated by
a certain simplified model  function,  such as  an expo-
nential  function, a Gaussian function, or a hyperbolic
secant or by their linear combination [25–29];

(iii)  the  mode-coupling  approach  [30],  where  the
second-order  memory  function  M2(k, t)  is  approxi-
mated  by  a  polynomial  of  the  initial  time  correlation
function φ(k, t).

However, all these methods are approximate. More-
over, they contain a large number of fitting parameters
having no clear physical meaning. In addition, it is dif-
ficult  to  directly  determine  the  frequency  parameters

(k) from Eqs. (19)–(21), since one has to calculate
integral  expressions  containing  distribution  functions
of many particles.

In this work, we propose another method to deter-

mine  (k, z). As is seen from Eqs. (18), the frequency

parameters  (k)  can  be  derived  from the  frequency
moments ω(j)(k), which, in turn, can be obtained from
experimental data on scattering. For example, using the
data on the X-ray scattering intensity I(k, ω) in liquid
aluminum at T  = 973 K, we deconvolved Eq. (1) and
found  the  frequency  spectra  of  the  dynamic  structure
factor S(k, ω)  of  the  system  under  study  at  various
wavevectors k, at which the frequency moments ω(j)(k)
were determined by Eqs. (15) and, then, the frequency

parameters  (k) were determined. The calculated val-
ues  of  the  first  six  frequency  parameters  are  given  in
Table  1.  It  is  obvious  that  the  frequency  parameters
(just  as  the  frequency moments)  are  very  sensitive  to
the shape of the dynamic structure factor S(k, ω), whose
experimental  values  contain  certain  errors.  Moreover,
as order j increases, the errors of the frequency param-

eters  (k)  also  increase.  However,  in  the  course  of

φ̃

Ω j
2

Ω j
2

φ̃
Ω j

2

Ω j
2

Ω j
2

Table  1.   Frequency  relaxation  parameters   (×1026 s–2)
obtained from experimental data on inelastic X-ray scatter-
ing [5]

k, nm–1

4.2 5.432 7.808 26.061 127.08 106.38 102.74

5.4 6.904 11.108 35.045 125.02 106.22 102.69

7.8 11.692 19.621 40.493 124.17 105.98 102.61

9.0 12.445 22.407 43.009 123.86 105.85 102.58

Ω j
2

Ω1
2 k( ) Ω2

2 k( ) Ω3
2 k( ) Ω4

2 k( ) Ω5
2 k( ) Ω6

2 k( )
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calculations, we found that the ratios of the neighboring
frequency parameters,

are less sensitive to the from of S(k, ω). The values of
ξj + 1, j(k) at the same wavevectors are given in Table 2.

As is seen from Tables 1 and 2, the first frequency

parameters  (k) (j = 1, 2, 3, 4) increase with subscript
j for all wavevectors, i.e., ξj + 1, j(k) > 1 at j = 1, 2, 3, 4,
whereas the frequency parameters of the fifth and sixth

orders  (k) and (k) are somewhat underestimated

as compared to (k). However, their ratios ξ5, 4(k) and
ξ5, 6(k)  are  close  to  unity.  Therefore,  we  may  assume
that

(25)

In other words, beginning from (k), the high-order
frequency parameters virtually coincide.

From a physical viewpoint, this assumption means
the following. Since the quantities reciprocal to the fre-

quency parameters, i.e., 1/ (k), characterize the qua-
dratic time scales of the relaxation processes related to
the fluxes of the Aj – 1(k) variables [2, 31], condition (25)
allows us to pass from the infinite set of dynamic vari-
ables (9) to the finite set

(26)

that is, it allows us to decrease the number of variables
required for the description of the collective dynamics
of particles [11]. As was shown above, the autocorrela-
tion functions of the variables from set (26) are related
to the autocorrelators of the longitudinal components of
the hydrodynamic variables and their fluxes.

With condition (25), we can also disconnect chain (22).
To this end, we rewrite fraction (24) by making allow-
ance for Eq. (25):

(27)

As is known from the theory of continued fractions [32],
a fraction of type (27) corresponds to the function (in

ξ j 1+ j, k( ) Ω j 1+
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the variable z)

(28)

By applying the inverse Laplace transform to Eq. (28),
we obtain

(29)

where J1 is the first-order Bessel function. Substituting

Eq. (28) into fraction (24), we obtain (k, z) and, mak-
ing allowance for Eq. (3), find the following expression
for the dynamic structure factor:

(30)

3.  COMPUTER DYNAMICS SIMULATION
AND ITS  DETAILS

Atomic dynamics can also be studied with computer
simulation. We investigated the thermodynamic state of
liquid  aluminum  having  a  numerical  density  n =
0.052763 Å–3 (mass density ρµ = 2.36 g/cm3) and a tem-
perature T =  1000  K  (melting  temperature Tm =
933.47 K). We consider a system of N = 4000 particles
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Table  2.   Ratios  of  the  neighboring  frequency  relaxation

parameters ξj + 1, j(k) = , where j = 1, 2, 3, 4,
and 5

k, nm–1 ξ2, 1 ξ3, 2 ξ4, 3 ξ5, 4 ξ6, 5

4.2 1.4373 3.3377 4.8763 0.8371 0.9658

5.4 1.6087 3.1549 3.5674 0.8496 0.9668

7.8 1.6782 2.0638 3.0665 0.8535 0.9682

9.0 1.8005 1.9194 2.8799 0.8546 0.9691

Ω j 1+
2 k( )/Ω j

2 k( )
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in  a  cubic cell  (L  =  42.32 Å) with periodic  boundary
conditions. Particles interact through the so-called glue
potential [16, 17]

(31)

which contains a short-range pair potential ψ(r), a mul-
tiparticle  glue function U( ),  and a   function.  The
latter is defined as

(32)

where ρ(r)  is  the  atomic  density.  The  ψ(r), ρ(r),  and
U( ) functions are shown in Fig. 1. To reduce the cal-

E Epair Eglue+ ψ rij( )
i j<
∑ U ρi( ),

i

∑+= =

ρ ρi

ρi ρ rij( ),
j

∑=

ρ

culation time, we neglected particle interaction at a dis-
tance r ≥ rc , where rc = 5.558 Å is the cutoff radius.

The  initial  conditions  were  taken  to  be  a  particle
configuration corresponding to the face-centered cubic
lattice of crystalline aluminum with a lattice parameter
a = 4.23 Å. To integrate the equation of motion, we used
the  Verlet  algorithm  with  time  step  ∆t  =  10–14  s  [33].
15000 time steps were executed to bring the system to
an equilibrium state, and 100000 time steps were exe-
cuted  to  average  the  time  correlation  functions.  The
average  equilibrium  characteristics  and  time  correla-
tion  functions  were  obtained  by  averaging  over  the
number of particles and time.

4.  COMPARISON WITH EXPERIMENT
AND DISCUSSION OF  THE RESULTS

Figure  2  shows  the  simulated  radial  distribution
function g(r) of liquid aluminum at T = 1000 K and the
static  structure  factor  S(k)  found  from  Eq.  (4).  Both

65432
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Fig. 1. (a) ψ(r), (b) ρ(r), and (c) U( ) functions determin-
ing the interparticle interaction potential [16, 17] for liquid
aluminum.
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Fig. 2. (a) Radial distribution function g(r) and (b) the static
structure  factor  S(k)  for  liquid  aluminum:  (solid  line)
molecular dynamics simulation at T = 1000 K and a mass
density ρµ = 2.36 g/cm3 and (symbols) experimental data on
X-ray scattering at T = 943 K [34, 35].
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functions  are  compared  with  experimental  data  on
X-ray  scattering  [34,  35].  The  simulation  results  are
seen  to  reliably  characterize  the  fine  structure  of  the
system under study and to exactly reproduce the exper-
imental data. Therefore, it is interesting to test the cho-
sen  potential  model  to  describe  the  nonequilibrium
characteristics of the system. To this end, we used the
simulation  results  to  calculate  the  dynamic  structure
factor directly from definition (3) with autocorrelator (2)
and the local density specified by Eq. (5). For compar-
ison with the experimental data, we took into account
the condition of detailed balance and the experimental
resolution  according  to  Eq.  (1).  The  I(k, ω)  results
obtained are shown in Figs. 3a–3d. The glue-potential
simulation  results  are  seen  to  correctly  reproduce  the

high-frequency  portions  of  the  experimental  X-ray
scattering  spectra  at  all  wavevectors  k:  they  correctly
predict the positions, heights, and decrease of the side
peaks.  However,  the  simulated  height  of  the  central
peak (at ω = 0) is slightly overestimated. This discrep-
ancy can be caused by the fact that the time interval in
the computer experiment is limited (finite).

The X-ray scattering intensity I(k, ω) in liquid alumi-
num  was  also  calculated  using  theoretical  model  (30)
developed  for  the  dynamic  structure  factor.  The  fre-

quency  parameters  (k),  (k),  (k),  and  (k)
used for the calculations are given in Table 1, and the
values of  the static  structure factor  S(k)  are borrowed
from [34, 35]. The calculated and experimental results
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Fig. 3. Frequency spectra of the scattering intensity I(k, ω) in liquid aluminum at T = 1000 K at various wavevectors k: (a–d) solid
line illustrates the molecular dynamics simulation and (e–h) solid line illustrates the results of theoretical model (30) for the corre-
sponding wavevectors k. The experimental data on inelastic X-ray scattering [5] are shown by symbols.
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are compared in Figs. 3e–3h. The calculated scattering
intensity I(k, ω)  spectra are seen to coincide with the
experimental data of [5].

Figure  4  shows  the  dispersions  of  the  high-fre-
quency I(k, ω) peak determined from the experimental
data, by the glue-potential simulation, and by the theo-
retical model developed. The theoretical values of ωc(k)
are  seen  to  precisely  reproduce  the  experimental
results, whereas the simulation results are higher than
the  experimental  values  at  wavevectors  k ≥  9  nm–1.
Moreover,  all  (experimental,  simulation, and theoreti-
cal) results indicate the presence of the so-called posi-
tive  dispersion  effect  [2]  in  the  microscopic  region
under study: the values of ωc(k) exceed the values pre-
dicted by the usual hydrodynamic theory with a linear
dispersion [36] and a sound velocity cs = 4750 m/s [3,
Table 1; 37].

As follows from an analysis  of  Eq.  (30),  the posi-
tions of ωc(k)  and the widths of the side peaks in the
spectra  of  the  dynamic  structure  factor  S(k, ω)  (and,
correspondingly, the I(k, ω) intensities) are determined
by the solutions of the bicubic polynomial in frequency
ω  in the denominator of  Eq.  (30).  The coefficients  of
this polynomial are specified by the first four frequency

parameters  (k) (j = 1, 2, 3, 4), whose values depend
on the corresponding equilibrium j-particle equilibrium
distributions.  An  important  conclusion  follows  from
these results: the high-frequency collective excitations
that are observed on microscopic spatial scales in liquid
aluminum as the side I(k, ω) peaks are mainly caused
by two-, three-, and four-particle interactions.

Ω j
2

5.  CONCLUSIONS

We theoretically described the collective dynamics
of particles that occurs on microscopic spatial scales in
liquid  aluminum  near  the  melting  temperature  and
showed that the idea of reduced description can be actu-
alized using the experimentally observed equalization
of the time scales of relaxation processes. In the case of
liquid aluminum, this equalization of the time scales of
high-order dynamic variables was detected by analyz-
ing the latest experimental data on inelastic X-ray scat-
tering.  This  equalization can be explained by the fact
that, on spatial scales comparable with the interatomic
distances, the role of fast relaxation processes (~10–14 s)
becomes substantial and that the hydrodynamic variables
cease to be slow as compared to other variables [2].

Screening  effects  also  significantly  affect  ionic
motion  in  liquid  aluminum.  Therefore,  in  the  case  of
liquid  aluminum,  it  is  rather  difficult  to  choose  an
appropriate  model  for  an  interparticle  interaction
potential,  in  contrast  to  liquid  alkali  metals  (where
ionic  motion  is  accurately  determined  by  pairwise
screened ion–ion interactions). In this work, we showed
that the glue potential used earlier for studying cluster
formation  [16,  17]  can  successfully  be  employed  to
describe both the structural properties of liquid alumi-
num and the collective dynamics of particles in it.

We also revealed that the high-frequency collective
dynamics of this system is directly related to three- and
four-particle interactions along with two-particle inter-
actions. Our analysis indicates that the correlations of a
large number of particles on these spatial scales turn out
to be actually insignificant.
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