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Chapter 1

Introduction

More than a hundred years ago Drude put forth a theory of metallic conduction [1,2].

In his theory electrons are treated as a gas of particles which are assumed to move along

classical trajectories until they collide with one another or with the ions. The collisions

abruptly alter the velocity of the electrons as it is illustrated in Fig. 1.1. Since that

time a number of details in Drude’s theory have been improved. In Drude’s time for

example it seemed to be reasonable to assume that the electronic velocity distribution

was given in equilibrium by the Maxwell-Boltzmann distribution. About a quarter of a

century later Sommerfeld replaced the Maxwell-Boltzmann distribution by the Fermi-

Dirac distribution. A further important step was the description of collisions beyond

the relaxation time approximation, which finally lead to the Boltzmann equation for

the dynamics of the distribution function. In many cases the transport theory based on

the Boltzmann equation successfully describes the electrical conductivity of metals. On

the other hand the Boltzmann theory still assumes that electrons move along classical

trajectories, and quantum mechanical interference effects are neglected. The latter

become important at a high concentration of defects or in very small systems. Therefore

in the limits of strong disorder or small system size the Boltzmann equation fails and

the transport becomes non-classical.

Figure 1.1: The classical picture for charge transport in metals: Electrons move through the
metal along classical trajectories. From time to time they scatter and transfer momentum to
the lattice.
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Figure 1.2: The quantum mechanical picture for electron transport: An incoming electron
wave is transmitted or reflected.

Starting from the quantum mechanical description of electrons in metals, one ob-

tains a complementary point of view for charge transport: Consider for example a

constriction as shown in Fig. 1.2. An incoming electron wave is transmitted or re-

flected at the constriction with amplitudes t and r. The current is then proportional to

the transmission probability, i.e. the modulus squared of the amplitude. For simplicity

we restrict ourselves to zero temperature and a one-dimensional conducting channel for

the moment. Assuming two different chemical potentials in the left and right reservoir,

µL = µR + eV , the current through the constriction is given by

I = 2e

∫ µL

µR

dεN (ε)v(ε)|t|2; (1.1)

the factor two is due to the electron spin. The product of the density of states N (ε)

times the velocity v(ε) does not depend on energy and is equal to N v = 1/2π~. As a

result the conductance of the constriction is determined as

G = 2
e2

h
|t|2, (1.2)

with h/e2 ≈ 25.8 kΩ.

The connection between scattering amplitudes and the conductance was first pro-

posed by Landauer [3]. Generalizations of the conductance formula (1.2), including for

example many transport channels and more than two leads, have been discussed by

several authors [4–9]. The Landauer approach to the conductance has been success-

fully applied to describe transport through structures, where the quantum mechanical

coherence of the electron wave functions is maintained over the full system. A fascinat-

ing example is the transport through quantum point contacts, which has been studied

both in semiconductors [10, 11] and through contacts consisting of single atoms [12].

We will mainly focus on the transport in metallic systems, where the classical

approach to the conductivity is still a good starting point, but quantum effects give rise

to corrections to the Drude conductivity. There are various types of such corrections.

As the most widely known example we consider here weak localization; for reviews on

this subject see [13–17]. The weak localization correction to the conductivity arises as

a result of the quantum interference of electron waves in disordered systems. To get
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Lϕ =

√

Dτϕ

Figure 1.3: A self-intersecting path as it is relevant for the weak localization correction to
the conductivity. The dashed wavy line represents an inelastic scattering event which is
responsible for phase breaking; τϕ is the phase coherence time.

from point A to point B electrons move along classical paths. In order to obtain the

total probability for a transfer from point A to B, in classical physics, one has to sum

the probabilities for a particle to move along all possible paths. In quantum mechanics

one has to sum amplitudes and take the modulus squared at the end. The relevant

paths for weak localization are those with self-intersections and with the velocities

of the incoming and outgoing paths in opposite directions as shown in Fig. 1.3. An

electron can travel around the path clockwise or anti-clockwise. The two paths can be

assigned an amplitude Ψ1 and Ψ2. The probability is then proportional to

|Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + 2Re(Ψ∗
1Ψ2). (1.3)

The first two terms on the right hand side correspond to the classical probabilities.

The third term, the interference term, only appears in quantum mechanics. For the

special type of paths considered, the interference term is always positive, i.e. due to

interference the probability of the process is enhanced. Neglection of the interfer-

ence corresponds to a classical description of the electrons (Drude-Sommerfeld theory,

Boltzmann equation).

This article summarizes and discusses the author’s contributions to the theoretical

description of transport in mesoscopic conductors. To distinguish the general references

from the own publications which are attached to this article, the latter are cited as

[A1], [A2], and so on. The central questions addressed are the following:

• In which way is the transport modified by electron-electron interactions?

• What happens in the presence of a large voltage, when linear response theory

fails?
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Both questions are relevant for the interpretation of experiments: Shortly after the

discovery of weak localization, it was found that similar effects in the conductivity

are caused by the electron-electron interaction [18–21]. Furthermore electron-electron

interactions are also relevant for weak localization itself, since they provide a mechanism

for phase breaking. However, while it is clear that inelastic scattering contributes to

dephasing, the exact way this happens is by far less obvious as is evident from the

recent debates in the literature [22–25]. Also, the importance of studying nonlinear

transport is apparent: Many transport experiments on mesoscopic samples are carried

out at low temperatures. Under these conditions inelastic scattering events which drive

the electron system towards local equilibrium freeze out. Therefore non-equilibrium

conditions can be realized even at rather low voltages.

Outline

The article is arranged as follows: In chapter 2 we introduce the Green’s function

technique in the non-equilibrium (Keldysh) formulation, which is the main theoretical

tool throughout this article. The chapter is rather formal and may be skipped by a

reader who is not interested in technical details. Nevertheless we included the material

as the general background on which the results presented in the subsequent chapters

have been obtained. Following the literature we will demonstrate how a Boltzmann-like

theory and the Drude conductivity are found within the Green’s function formalism.

In chapter 3 transport beyond the Drude-Boltzmann theory will be considered.

By extending the formalism of chapter 2 contributions to the current density due to

“maximally crossed diagrams” and due to the Coulomb interaction will be calculated.

The results for the Coulomb interaction have been originally published in [A1–A3].

Chapter 4 will be devoted to some applications. The general expression for the cur-

rent density of chapter 3 will be evaluated explicitly for different experimental setups.

We will consider the nonlinear conductivity in films and wires [A1–A3]. Furthermore we

will investigate the question of whether the phase coherence time τϕ, which is a central

quantity for weak localization, is also relevant for the Coulomb interaction corrections

to the conductivity [A1].

In chapter 5 a rather different type of electron-electron interaction will be consid-

ered, namely electrons interacting via dynamical impurities. We will present results

obtained for persistent currents in rings [A4–A6] and discuss the relevance of dynamical

defects for low temperature dephasing [A5–A7].

The main focus of the article is on systems with diffusive electron motion. Inter-

esting physics is, however, also found in other circumstances. In the last chapter of

this article we will approach the vast field of transport through quantum dots. In par-

ticular we will investigate transport through a strongly interacting dot, where Kondo

physics is relevant. After summarizing the established results for a quantum dot which

is connected to two normal conducting leads, we will discuss the presently available
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results for a quantum dot which is connected to a normal and to a superconducting

lead [A8,A9].

The relevant publications, [A1-A9], are attached to the article.



Chapter 2

The classical theory of transport

The traditional transport theory in metals is based on the Boltzmann equation. The

central object is the distribution function f(k, r, t), where f(k, r, t)drdk/(2π)3 is the

number of electrons (per spin direction) at time t in the phase space volume drdk.

Charge and current density are given by

ρ(r, t) = (−2e)

∫

dk

(2π)3
f(k, r, t), (2.1)

j(r, t) = (−2e)

∫

dk

(2π)3

~k

m
f(k, r, t). (2.2)

In thermal equilibrium the distribution function reduces to the Fermi function. The

Boltzmann equation determines the dynamics of the distribution function, and reads

∂tf + v · ∇rf +
1

~
F · ∇kf = I[f ]. (2.3)

The left hand side of the equation contains information on the energy spectrum, ~v =

∇kε(k), and external forces F, whereas the collision term on the right hand side contains

the scattering processes. For impurity scattering the collision term is given by

I[f ] = −
∫

dk′

(2π)3
Wk,k′[f(k) − f(k′)]. (2.4)

In this section we will recall how a Boltzmann-like kinetic equation is found within

the Green’s function formalism. To this end we introduce the non-equilibrium Green’s

function technique, as originally formulated by Keldysh [26]. Our notation will mainly

follow [27]. We will first give general definitions, and we will then introduce the quasi-

classical Green’s function. In the presence of impurities a Boltzmann-like kinetic equa-

tion and the Drude conductivity are recovered within the Born approximation for the

self-energy. To obtain quantum corrections to the conductivity, which will be discussed

in chapters 3 and 4, more evolved approximations for the self-energy are necessary.

From now on we set ~ = kB = 1, except in final results, where for clarity we put the

constants.
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Figure 2.1: Graphical representation of the Green’s function; we mark GK with a shaded
box. The shaded box can be understood as the Keldysh component of the self-energy, see
Eq. (2.12).

In the Keldysh formalism the Green’s functions have the matrix structure

Ĝ =

(

GR GK

0 GA

)

, (2.5)

with

GR(x1, x2) = −iΘ(t1 − t2)
(

〈Ψ(x1)Ψ
†(x2)+Ψ†(x2)Ψ(x1)〉

)

(2.6)

GA(x1, x2) = +iΘ(t2 − t1)
(

〈Ψ(x1)Ψ
†(x2)+Ψ†(x2)Ψ(x1)〉

)

(2.7)

GK(x1, x2) = −i
(

〈Ψ(x1)Ψ
†(x2)−Ψ†(x2)Ψ(x1)〉

)

, (2.8)

where Ψ and Ψ† are the usual fermion operators and xi = (xi, ti). The brackets 〈. . . 〉
denote an average over a statistical operator, Trρ(. . . ). The Dyson equation reads

(Ĝ−1
0 − Σ̂)Ĝ = δ(x1 − x2), (2.9)

where the Green’s functions Ĝ0, Ĝ, and the self-energy Σ̂ are considered as matrices

in space, time, and the Keldysh index. Ĝ0 is diagonal in the Keldysh index, the space

and time dependence is given by

Ĝ−1
0 (x1, x2) =

[

i∂t1 −
1

2m
(−i∇x1

+ eA(x1))
2 − eφ(x1) + µ

]

δ(x1 − x2). (2.10)

Disorder and interactions are contained in the self-energy. In the Keldysh space the

self-energy has the same triangular matrix structure as the Green’s function,

Σ̂ =

(

ΣR ΣK

0 ΣA

)

. (2.11)

This relation allows expression of the Keldysh component of the Green’s function as

GK = GRΣKGA. (2.12)

For a graphical representation see Fig. 2.1.
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For the moment let us consider non-interacting electrons in thermal equilibrium.

The retarded and advanced Green’s functions can then be expressed in terms of the

eigenfunctions Ψλ and eigenenergies ελ of the single-particle Hamilton operator,

GR(A)
ε (x1,x2) =

∑

λ

Ψλ(x1)Ψ
∗
λ(x2)

ε − ελ ± i0
. (2.13)

In particular these components of the Green’s function do not depend on the sta-

tistical operator. On the other hand the Keldysh component of the Green’s func-

tion crucially depends on the occupation of the states. In thermal equilibrium the

Keldysh component is expressed in terms of the retarded and advanced components by

GK
ε = [1− 2f(ε)](GR

ε −GA
ε ), where f(ε) is the Fermi function. Generally, the equation

of motion for GK constitutes the quantum-kinetic equation. Approximations to this

equation lead to the Boltzmann equation, Boltzmann-like equations, and generaliza-

tions.

As a first step towards the Boltzmann equation we define center-of-mass and relative

variables

x = 1
2
(x1 + x2), r = x1 − x2

T = 1
2
(t1 + t2), t = t1 − t2

(2.14)

There are various strategies how to proceed, see for example [27]. We introduce the

ξ-integrated (quasi-classical) Green’s function

ĝt1t2(p̂,x) =
i

π

∫

dξdre−ip·rĜ
(

x +
r

2
, t1;x − r

2
, t2

)

(2.15)

= ĝ(p̂, t;x, T ), (2.16)

where ξ = p2/2m − µ, and p̂ is a unit vector along the momentum. In the entire

article we will keep the notation of small ĝ for the ξ-integrated Green’s functions, and

capital Ĝ for the original Green’s functions. When approximating the density of states

as an energy independent constant, the ξ-integration is related to an integration over

the momentum p according to
∫

dp

(2π)3
→ N0

∫

dξ

∫

dp̂

4π
. (2.17)

We now give some relations that are specific for impurity scattering. We treat impurity

scattering within the self-consistent Born approximation. Assuming a Gaussian, δ-

correlated impurity potential one observes that the impurity self-energy is related to

the s-wave part of the quasi-classical Green’s function,

Σ̂imp
tt′ (x) = − i

2τ

∫

dp̂

4π
ĝtt′(p̂,x). (2.18)

Notice that here one has to determine three components of the self-energy. The retarded

and advanced self-energy have a simple structure, Σ
imp,R(A)
tt′ = ∓(i/2τ )δ(t − t′), so the
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retarded and advanced Green’s functions are

GR(A)(p, ε) =
1

ε − ξ ± i/2τ
. (2.19)

We already mentioned that the equation of motion for the Keldysh component of the

Green’s function constitutes the kinetic equation. For simplicity we neglect external

fields for the time being. Near the Fermi energy (ε, ω � εF ) and for small momenta

(q � pF ) one finds from Eqs. (2.12) and (2.15)

gK(p̂, ε;q, ω) =
i

π

∫

dξGR (ε + ω/2,p + q/2)

×ΣK(ε;q, ω)GA (ε − ω/2,p − q/2) (2.20)

≈ i

τ

1

ω + i/τ − vF p̂ · q

∫

dp̂

4π
gK(p̂, ε;q, ω). (2.21)

In real time the kinetic equation reads

[∂T + vF p̂ · ∇x] g
K(p̂, ε;x, T ) = −1

τ

[

gK(p̂, ε;x, T ) −
∫

dp̂

4π
gK(p̂, ε,x, T )

]

, (2.22)

which reminds us strongly of the Boltzmann equation. We will come back to this

point at the end of the chapter. Notice that this equation is solved by any function

gK(p̂, ε;x, T ) which is independent of direction p̂, position x, and time T . This reflects

the fact that any distribution function is allowed for non-interacting electrons. In the

rest of this article, the diffusive limit is considered, where energies and momenta are

restricted even more, namely ωτ, qvF τ � 1. By expanding (2.21) for small energy and

momentum and taking the angular average, one finds the diffusive equation

(

∂T − D∇2
x

)

∫

dp̂

4π
gK(p̂, ε;x, T ) = 0, (2.23)

where the diffusion constant is D = v2
F τ/3.

The charge density and current density are generally related to the Keldysh com-

ponent of the Green’s function,

ρ(x, t) = ieGK(x, t;x, t) (2.24)

j(x, t) =
e

2m
[∇x−∇x′ +2ieA(x, t)]GK(x, t;x′, t)|x′=x. (2.25)

In terms of the quasi-classical Green’s functions, the charge density and current density

are [27]

ρ(x, t) = 2eN0

(

π

2

∫

dp̂

4π
gK

tt (p̂,x) − eφ(x, t)

)

(2.26)

j(x, t) = eπN0

∫

dp̂

4π
vF p̂gK

tt (p̂,x). (2.27)
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A more explicit expression for the current density is obtained in the diffusive limit

and using the Born approximation for the self-energy. With the self-energy (2.18) the

current density is

j(x, t) = −eπDN0∇x

∫

dp̂

4π
gK

tt (p̂,x) = −D∇xρ(x, t) + 2e2DN0E(x, t). (2.28)

Finally, we make the connection with the Boltzmann equation, as suggested in [28].

In the presence of a scalar field φ the kinetic equation becomes

[∂T + vF p̂ · ∇x − e(∂T φ)∂ε] g
K(p̂, ε;x, T ) =

−1

τ

[

gK(p̂, ε;x, T ) −
∫

dp̂

4π
gK(p̂, ε,x, T )

]

. (2.29)

Defining the distribution function as

f(p,x, t) =
1

2

[

1 − gK(p̂, ε;x, T )|ε=ξ−eφ

]

, (2.30)

and ignoring the explicit dependence of gK on p̂ so that the derivatives of f are

∇pf = −1

2
∇pξ∂εg

K (2.31)

∇xf = −1

2
[∇xg

K − e(∇xφ)∂εg
K] (2.32)

∂T f = −1

2
[∂T gK − e(∂T φ)∂εg

K], (2.33)

one recovers from the kinetic equation (2.29) the Boltzmann equation (2.3) with the

external force given by F = e∇xφ.



Chapter 3

The Coulomb interaction in

diffusive conductors – general

formalism

Quantum effects give rise to deviations from the classical expression of the electrical

conductivity of a metal: The conductivity depends on the sample specific realization

of the impurity potential, and even after averaging the conductivity over all possible

realizations of the impurity potential corrections to the conductivity remain. The

quantum corrections to the average conductivity in a metal with diffusive electron

motion are weak localization, and the interaction contributions to the conductivity.

The latter are often classified as the particle-particle (Cooper) channel, which is related

to exchange of superconducting fluctuations, and the particle-hole channel, which is

related to the exchange of charge fluctuations (spin singlet channel) or spin fluctuations

(spin triplet channel). In this article we concentrate on the average conductivity, and in

particular on the Coulomb interaction in the particle-hole channel. We will neglect the

Cooper channel. This is justified in non-superconducting metals, since in this situation

the relevant interaction parameter scales downwards under the renormalization group.

For completeness we will also discuss briefly weak localization. In this chapter we will

give the general expressions for the contribution to the current density due to weak

localization and due to the electron-electron interaction. The following chapter 4 will

contain specific applications.

3.1 Weak localization

In a weakly disordered metal, quantum interferences lead at low temperature to devia-

tions from the Drude-Boltzmann theory of transport. Gorkov et al. [29] and Abrahams

et al. [30] showed that the summation of maximally crossed diagrams gives rise to

divergences in the conductivity for arbitrarily weak disorder in dimensions less than

two. This so-called weak localization correction to the conductivity is due to electrons
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diffusing along closed paths, where quantum interference causes an enhanced backscat-

tering probability, as discussed in the introduction of this article. The weak localization

contribution to the current density is given by

δjWL(t) = −e2Dτ
4

π

∫ ∞

τ

dηC
t−η/2
η,−η (x,x)E(t − η), (3.1)

where D is the diffusion constant, τ the elastic scattering time and C t
η,−η(x,x) is the

cooperon at two coinciding points in space. In the presence of a vector potential, the

cooperon is given by the solution of the differential equation
{

2
∂

∂η
− D(∇x + ieAC)2

}

Ct
η,η′(x,x′)

=
1

τ
δ(x − x′)δ(η − η′). (3.2)

with AC = A(x, t+η/2)+A(x, t−η/2). We recall now the results for the conductivity.

In the absence of external fields the cooperon at two coinciding points in space is given

by

Ct
η,−η(x,x) =

1

2τ

(

1

4πDη

)d/2

e−η/τϕ , (3.3)

where d is the spatial dimension and a phenomenological dephasing time τϕ has been

introduced; microscopically dephasing arises from inelastic scattering. Inserting the

above into Eq. (3.1), one arrives at

δσWL =















− e2

π �
√

Dτϕ (d = 1)

− e2

2π2 � ln(τϕ/τ) (d = 2)

e2

2π2 �

√

1/Dτϕ + const (d = 3).

(3.4)

The connection to the Green’s function formalism is the following: In chapter 2 we

demonstrated that by approximating the impurity self-energy by ΣBorn the Boltzmann

equation for the distribution function and the Drude conductivity are recovered. The

weak localization correction is found when considering also the maximally crossed di-

agrams,

Σ̂ = Σ̂Born + Σ̂mc, (3.5)

with

Σ̂Born = (3.6)

++Σ̂mc = + (3.7)

The self-energy has to be determined self-consistently. The starting point for the

evaluation of the current density is Eq. (2.25), where we replace GK by the product
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Figure 3.1: Relevant graphs for the current density jmc.

GRΣKGA. The contributions of the crossed diagrams to the retarded and the advanced

self-energy are small and are therefore neglected [31]. The contribution to ΣK
mc from the

diagram with m impurity lines contains the sum of the product over (2m− 1) Green’s

functions,
∑2m−2

n=0 (GR)nGK(GA)2m−2−n, i.e. integrals involving all combinations of the

Green’s function from GKGA . . . GA to GR . . . GRGK. The momentum integrals reduce

to integrals over pairs of Green’s functions of the form

ηRR =
1

2πN0τ

∫

dk

(2π)3
GR(k)GR(−k + q), (3.8)

and the analogously defined integrals ηAA and ηRA. For small q the integrals ηRR

and ηAA are of the order 1/(εF τ), whereas the integrals ηRA are of order one. Terms

involving ηRR or ηAA will thus be neglected. Following this rule the graphs contributing

to jmc are shown in Fig. 3.1. After some algebra the current density is found as

jmc(x, t) = 2eDτ

∫ ∞

τ

dηC
t−η/2
η,−η (x,x)∇x

∫

dp̂

4π
gK

t−η,t−η(p̂,x). (3.9)

The cooperon arises from a summation over integrals of the type ηRA. The total weak

localization correction to the current density is

δjWL = δjBorn + jmc, (3.10)

where δjBorn takes care of weak localization corrections to the distribution function [32],

gK → gK + δgK, so that

δjBorn = −eπDN0∇x

∫

dp̂

4π
δgK

tt (p,x). (3.11)

In equation (3.10) the sum of both terms is needed in order to ensure charge conser-

vation. Recall also the general relation between the charge density and gK, Eq. (2.26).

In the special case where the electric field and the charge density are homogeneous in

space, the weak localization correction to the current density, as given in Eq. (3.1), is

recovered.
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3.2 Interaction correction to diffusive transport

Shortly after the discovery of weak localization it was found [19–21] that similar effects

in the conductivity can also be caused by the electron-electron interaction in weakly

disordered electron systems. The interaction correction to the conductivity in the

particle-hole singlet channel, for example, is given by [A1]

δσEEI = −4e2D

πd

∫ ∞

τ

dη

(

πTη

sinh(πTη)

)2 (

1

4πDη

)d/2

(3.12)

which leads to

δσEEI ≈















−4.91 e2

π2 �

√

~D/kBT (d = 1)

− e2

2π2 � ln(~/kBTτ) (d = 2)

1.83 e2

6π2 �

√

kBT/~D + const. (d = 3)

. (3.13)

Inclusion of the triplet channels does not change the functional form of the temperature

dependence of the correction to the conductivity, but modifies the prefactor, which

then depends on the strength of the electron-electron interaction in the spin triplet

channel [33, 34].

Whereas a simple and convincing physical interpretation of weak localization ex-

ists, we are not aware of as simple an interpretation of the interaction effect. However,

attempts have been made [35, 36], and we present the main ideas. First, one observes

that impurities perturb the charge distribution in the metal, n → n + δn; for a single

impurity, for example, there is a density oscillation around the impurity, the Friedel

oscillations, even at large distance, δn(r) ∼ sin(2kFr)/r3. In the case of many impu-

rities an inhomogeneous electron density forms, which depends on the distribution of

the impurity positions. In the presence of interactions the charge inhomogeneity acts

as an additional scattering potential, which in Hartree approximation is given by

VH(r) =

∫

V (r − r′)δn(r′)dr′. (3.14)

It is clear that this additional scattering potential may affect the elastic mean free

path. The way this happens, however, is by far less obvious. In the following we give

an argument [35] which shows that the interaction contribution to the conductivity

is due to quantum interference. Consider two classical paths an electron can travel

to get from point A to point B. Let path one and two be identical up to an extra

closed loop in path two, so that there is a phase difference between the two amplitudes,

Ψ2 = exp(iϕloop)Ψ1. The sign of the interference term Re(Ψ∗
1Ψ2) is positive or negative,

depending on the phase ϕloop, and therefore processes of this type give a negligible small

contribution to the total probability for traveling from A to B. This becomes different

in the presence of electron-electron interactions. To first order in the Hartree potential

VH we may write the interference term as Re(Ψ∗
1Ψ2VH). Now notice that the charge
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t t + η

t1 − η

t1

Figure 3.2: Graphical representation of processes leading to the interaction correction to the
conductivity. A virtual particle is created at (x1, t1 − η), propagates and is absorbed at time
t1 at the same point in space. A conduction electron propagates in the same direction along
the same closed path.

inhomogeneity δn(r) and therefore VH(r) is related to (virtual) electrons or holes which

propagate along closed paths, since

δn(r) =
i

π

∫

dεf(ε)
[

GR
ε (r, r) − GA

ε (r, r)
]

. (3.15)

In the case where a virtual hole goes around the same closed loop as the path num-

ber two the phase factor exp(iϕloop) cancels, and Ψ1 and Ψ2 interfere coherently. A

graphical representation of relevant processes is shown in Fig. 3.2, which is obtained

by translating Feynman graphs including the electron-electron interaction [34].

The current density

The electron-electron interaction enters the kinetic equation and modifies the distri-

bution function. We will not consider the kinetic equation in presence of disorder and

interaction, and only refer to the relevant literature [18, 27, 37, 38].

In [A3] we have derived a general expression for the current density in the presence

of disorder and interaction. The result obtained there generalizes (3.12) allowing us to

describe non-equilibrium effects and spatially inhomogeneous situations. The starting

point of the derivation is the self-energy [18, 27]

Σ̂ = Σ̂Born + Σ̂V , (3.16)

where Σ̂Born is the previously defined impurity self-energy and Σ̂V arises from the

interaction,

ΣV,ij(x, x′) = i
∑

i′j′kk′

∫

dx2dx3dx4dx5Γ
k
ii′(x5; x, x3)

× V kk′

(x5, x4)Gi′j′(x3, x2)Γ̃
k′

j′j(x4; x2, x
′). (3.17)
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+Σ̂ =
; = +

Figure 3.3: The self-energy containing both disorder and interaction; the interaction vertex
is dressed with impurity lines.

Here i, j, . . . denote the components in Keldysh space of the self-energy Σ, Green’s

function G, interaction V , and vertices Γ and Γ̃. Notice that in the Keldysh triangular

representation the “absorption” and “emission” vertices have to be distinguished [27].

The “absorption” vertex Γ is given by

Γk
ij(x; x1, x2) = γk

ij +
1

2πN0τ

∑

i′j′

∫

dx′
1dx′

2Gii′(x1, x
′
1)

× Γk
i′j′(x; x′

1, x
′
2)Gj′j(x

′
2, x2). (3.18)

An analogous equation holds for the “emission” vertex Γ̃, which is of the same structure,

except that the bare vertex γ is replaced by γ̃. The bare vertices γ, γ̃ are local in space

and time. The structure in Keldysh space is γ1
ij = γ̃2

ij = δij/
√

2 and γ2
ij = γ̃1

ij = σx
ij/

√
2.

A diagrammatic representation of both the self-energy and vertex equations is shown

in Fig. 3.3. The self-energy ΣV as considered here only consists of an exchange term.

The inclusion of the Hartree term, as represented in Fig. 3.2, is straightforward, and

corresponds to the inclusion of the spin-triplet channels. Although the structure of the

self-energy in Fig. 3.3 seems to be harmless at first glance, the diagrams can become

rather complex in explicit calculations, see for example the calculation of the density

response function in [34].

After some algebra the contribution of the Coulomb interaction to the current

density δjEEI = δjBorn + δjV is found as

δjBorn(x, t) = −eπDN0∇x

∫

dp̂

4π
δgK

tt (p,x) (3.19)

δjV (x, t) = e4πDN0τ
2

∫

dηdx1dx2

×Re
[

Ft−η,t(x)Dη
t−η/2,t1−η/2(x,x1)Ft1,t1−η(x1)

×V R
t1 ,t2

(x1,x2)(−i∇x)D0
t2,t−η(x2,x)

]

. (3.20)

In this equation Ftt′(x) is the distribution function, which is related to the s-wave part

of the quasi-classical Green’s function according to

gK
s;tt′(x) =

∫

dp̂

4π
gK

tt′(p̂,x) =

∫

dt1
[

gR
s;tt1(x)Ft1t′(x) − Ftt1(x)gA

s;t1t′(x)
]

, (3.21)

and Dη
tt′(x,x′) is the diffuson, given by the solution of the differential equation
{

∂

∂t
− D(∇x + ieAD)2 − ieφD

}

Dη
tt′(x,x′) =

1

τ
δ(x − x′)δ(t − t′), (3.22)
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with AD = A(x, t + η/2) − A(x, t − η/2), and φD = φ(x, t + η/2) − φ(x, t − η/2).

The expression for the current density (3.20) has been derived in [A3]. It generalizes

earlier results, which are valid in the absence the external vector potential [39] or for

the electron system near local equilibrium [A1,A2]. In [A1] the main focus was on the

dephasing problem. In [A2] the spin-triplet channels and Fermi liquid renormalizations

were included, which make the theory applicable even in strongly interacting Fermi

liquids. In [A3] the formalism was made gauge invariant and has been extended to

situations far from equilibrium. The diagrammatic calculations have been confirmed

by another technique [A3], namely the Keldysh version [40–42] of the nonlinear sigma

model [33]. Notice that the expression of the current density is valid for an arbitrary

form of the distribution function and the diffuson. This allows the examination of the

current in different experimental and geometrical setups.



Chapter 4

The Coulomb interaction in

diffusive conductors – applications

The equation for the current density is still rather complex. In [A1-A3] the formalism

has been applied to several questions, and we will now briefly summarize some of the

results. Starting with a remark on gauge invariance, we continue by outlining how

to recover the well known interaction correction to the linear conductivity within the

present formalism. New results on the nonlinear conductivity and on phase breaking

will be discussed in the following sections. This chapter closes with an outlook on

possible future applications.

4.1 Gauge invariance

We begin by we demonstrating explicitly the gauge invariance of the expression for the

current density. At first one notices that δjBorn = −D∇δρ is gauge invariant. For δjV
an explicit check is necessary. Given the gauge transformation

A → A + ∇χ (4.1)

φ → φ − ∂tχ (4.2)

the distribution function and the diffuson transform according to

Ftt′(x) → Ftt′(x) exp{−ie[χ(x, t) − χ(x, t′)]} (4.3)

Dη
tt′(x,x′) → Dη

tt′(x,x′)

× exp{−ie[χ(x, t +
η

2
) − χ(x, t − η

2
)]}

× exp{ie[χ(x′, t′ +
η

2
) − χ(x′, t′ − η

2
)]}. (4.4)

By applying the above transformation to δjV as given in Eq. (3.20), one can easily verify

that the function χ(x, t) drops, so that the expression is manifestly gauge invariant.



4.2 Linear response 21

4.2 Linear response

Since the expression for δjEEI is rather complex it is worthwhile checking the linear con-

ductivity. We work in a vector gauge, A = −tE, φ = 0, and assume that the electron

distribution function has the equilibrium form, F (ε,x) = tanh(ε/2T ). Equivalently, in

the time domain this means that Ftt′(x) = −iT/ sinh[πT (t − t′)]. For a system which

is homogeneous in space (after averaging over the disorder), also the charge density is

homogeneous, and therefore δjBorn is zero.

In order to calculate δjV we have to know the screened Coulomb interaction and

the diffuson. The dynamically screened Coulomb interaction as a function of frequency

and momentum is

V R(q, ω) =
4πe2

q2 + 8πe2N0
Dq2

−iω+Dq2

≈ 1

2N0

−iω + Dq2

Dq2
. (4.5)

The expression in the middle of this equation is valid in three dimensions. On the right

hand side we assumed good screening, i.e. the screening vector κ, with κ2 = 8πe2N0, is

set to infinity. The perfectly screened Coulomb interaction in one and two dimensions

is identical to the one in three dimensions as given on the right hand side in Eq. (4.5).

Now we calculate the two diffusons Dη
tt′(q) entering the current density. It is important

to note that they appear with different time arguments η. In the second of the two

diffusons in δjV the time η is zero with the consequence that the diffuson does not

depend on the vector potential A, and is thus given by

D0(q, ω) =
1

τ

1

−iω + Dq2
. (4.6)

The convolution of the interaction with the second of the two diffusons appearing in

the formula for the current gives then
∫

dt2V
R
t1,t2

(q)D0
t2,t−η(q) =

1

2N0τ

1

Dq2
δ(t1 − t + η) (4.7)

and the expression for the current density becomes

δjV (t) = −2eτ

π

∑

q

∫ ∞

τ

dη
q

q2

(

πT

sinh(πTη)

)2

Dη
t−η/2,t−3η/2(q). (4.8)

The electric field enters via the remaining diffuson, which is given by

Dη
t−η/2,t−3η/2(q) =

1

τ
exp[−D(q − eEη)2η] (4.9)

=
1

τ
e−Dq2η

(

1 + 2Deq · Eη2 + . . .
)

. (4.10)

After performing the momentum integration one arrives at equation (3.12) for the

correction to the conductivity.
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Figure 4.1: Resistivity as a function of voltage for a thin AuPd film, taken from [43]. The
resistance R0 = 11.3 MΩ corresponds to R � ≈ 4500 Ω.

4.3 Nonlinear conductivity in films

In 1979 Dolan and Osheroff [43] observed a logarithmic variation of the resistivity of

thin metallic films as a function of the applied voltage; experimental data is shown

in Fig. 4.1. In order to explain the experiment Anderson et al. [44] argued that the

logarithm as a function of voltage is directly related to the logarithm as a function

of temperature (from weak localization in two dimensions) since the dissipated power

heats the electron gas: In the case of a strong electric field, the electron temperature is

of the order of the voltage drop on the relevant inelastic scattering length, the electron-

phonon length, i.e. T ∼ eELe−ph, with Le−ph =
√

Dτe−ph. When Le−ph is proportional

to a power of the temperature, Le−ph ∼ T−p, electric field and temperature are related

as T 1+p ∼ E so that a logarithmic temperature dependence of the linear resistivity

causes the logarithmic voltage dependence.

Shortly after the first experiments, it was discussed whether heating is the only

origin of the nonlinear conductivity or if an electric field – in analogy to a magnetic

field – can directly destroy weak localization via dephasing [45,46]. The correct answer

to the second quesion is “no” [47,48], as one can easily verify by calculating the phase

shifts of a pair of time reversed paths. In the presence of a vector potential an electron

which propagates along a path x1(t) or x2(t) accumulates an extra phase

ϕ1,2 =
e

~

∫ η

0

dt′ẋ1,2 · A. (4.11)

For a pair of closed time reversed paths, x2(t) = x1(η − t), and a static electric field,

A(t) = −Et, the difference of the two phases vanishes, i.e. there is no “dephasing”

from a static electric field.
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However, in a later examination of the current-voltage characteristics of gold films,

Bergmann et al. [49] noted that the experimental data is not completely compatible

with a pure heating model. As a possible explanation of the experimental findings they

suggested that the Coulomb interaction contribution to the resistivity shows non-ohmic

behavior with

δREEI/R
2 = − e2

4π2~
ln

[

(kBT )2 + α~D(eE)2
/

kBT ], (4.12)

where α is a factor of the order one.

Indeed in formulating the phase shift argument for the interaction contribution, a

sensitivity to a static electric field cannot be excluded [A1]: The interaction correction

to the conductivity is related to the propagation of a particle and a hole along closed

paths. Hence one may think of this as a particle starting for example at t = 0 and

arriving at t = η. This particle is interacting with a hole which is traversing the same

closed path. Since the point of interaction x(t1) can be anywhere along the path, the

particle and hole traverse the loop at different times, compare Fig. 3.2. In the absence

of a vector potential the phases of particle and hole cancel, whereas in the presence of

a vector potential the accumulated phase difference is

δϕ =
e

~

∫ t1

t1−η

dt′ẋ1 ·A − e

~

∫ η

0

dt′ẋ2 · A. (4.13)

The relevant paths obey the relations x1(t) = x2(t) for 0 < t < t1 and x1(t−η) = x2(t)

for t1 < t < η, which allows us to write the phase as

δϕ =
e

~

∫ 0

t1−η

dt′ẋ1 · [A(t′) − A(t′ + η)]. (4.14)

For the particular case of a static electric field described by A = −Et, the above given

phase shift becomes δϕ = e
� η(x2−x1) ·E. This suggests that the interaction correction

should be sensitive to a static electric field, leading to a nonlinear conductivity. The

quantitative calculation in fact gives [A1]

δREEI/R
2 ≈ − e2

π2~

(

ln kBT + 1.62
~D(eE)2

(πkBT )3

)

, (4.15)

verifying the non-ohmic behavior of the resistivity with the characteristic electric field

scale as it has been suggested in [49]. In order to obtain Eq. (4.15), a thermal distribu-

tion function with electron temperature T has been assumed. Equation (4.15) is then

obtained from the current formula (3.20) under the condition ~D(eE)2 � (πkBT )3.

Note that the functional form (4.12) of the non-ohmic resistivity cannot be confirmed

theoretically. In [A1,A2] various situations have been examined, including strong elec-

tric fields, time dependent fields, one to three dimensions, and magnetic field effects.
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4.4 Nonlinear conductivity in wires

For a thin wire of length L the analog of Eq. (4.15) is [A2]

δREEI/R
2 ≈ e2

π2~

LT

L

(

4.91 − 0.21
~D(eV/L)

(kBT )3

)

, (4.16)

where LT =
√

~D/kBT is the thermal diffusion length, and V = EL is the applied volt-

age. Again, the result has been obtained under the assumption of a thermal distribution

function with a constant temperature T . This is reasonable for macroscopic samples, it

fails, however, in samples which are shorter than the electron-phonon scattering length.

In short samples it is therefore necessary to study the Coulomb interaction correction

to the conductivity far from equilibrium [39, 50][A3].

For an evaluation of the current-voltage characteristics the diffuson and the distri-

bution function in the wire are required. The diffuson is found by solving the differ-

ential equation (3.22) with the conditions that the derivative normal to an insulating

boundary vanishes

(n · ∇)D(x,x′)
∣

∣

x∈ i.b.
= 0 (4.17)

and the diffuson itself vanishes at a metallic boundary,

D(x,x′)
∣

∣

x∈m.b.
= 0. (4.18)

The latter condition corresponds to the assumption that an electron arriving at the

metallic boundary escapes into the leads with zero probability to come back into the

wire. Furthermore it is assumed that the left and right leads of the wire are in thermal

equilibrium,

F (ε,x)
∣

∣

x∈ l.l.,r.l.
= tanh

(

ε ± eV/2

2T

)

, (4.19)

and the voltage difference is V . The distribution function inside the wire is found by

solving the kinetic equation. It is found that the distribution function depends on the

various relaxation mechanisms governing the collision integral [23, 51–54]:

a) When L � Le−ph, the distribution function acquires the equilibrium form with a

local chemical potential and temperature,

F (ε, x) = tanh

(

ε + eV (L − 2x)/2L

2T (x, V )

)

, (4.20)

where x = 0 . . . L is the distance from the left lead. The local temperature

T (x) may be determined from an energy balance argument, assuming that the

dissipated power equals the gradient of the heat flow. In the limit considered

here the heat flow is dominated by the phonons. If the “hot” phonons escape
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ballistically into the substrate, the temperature in the bulk of the wire does not

depend on the position x but is voltage dependent, T = T (V ). Neglecting the

region near the leads, where the temperature rises from Tlead to T (V ), Eq. (4.16)

is recovered for the voltage dependent resistivity.

b) When Le−ph � L � Lin one still expects a distribution function near local equi-

librium, due to inelastic electron-electron scattering. The local temperature is

determined from the relation σE2 = −∇[κ∇T (x)], where κ is the thermal con-

ductivity. Using the Wiedemann-Franz law, κ = π2

3
Tσ(kB/e)2, the temperature

profile in the wire is determined as

T 2(x) = T 2
lead +

3

π2

(

eV

L

)2

x(L − x). (4.21)

c) When Lin � L the distribution function is a linear superposition of the distribu-

tion function of the leads,

F (ε, x) = [(L − x)F (ε, 0) + xF (ε, L)] /L. (4.22)

It is found that in both limits b) and c) the current can be written as [A3]

δIEEI(V, T ) =
e2

~

LT

L
f (eV/kBT ) V, (4.23)

where the function f depends on the distribution function and on the length of the wire;

T is the temperature in the leads. Numerical results are shown in Fig. 4.2. Notice that

f(eV/kBT ) is proportional to δIEEI/V , so that f(eV/kBT ) also represents the voltage

dependent conductance in units of (e2/~)(LT /L). For low voltage and large system

size L � LT the standard result δI/V ≈ −0.5(e2/~)(LT /L) is approached. For shorter

systems the correction to the current remains smaller, since electrons escape quickly

from the wire into the leads. The full lines show the voltage dependent conductance for

case c); the long dashed line corresponds to case b). The short dashed line (L/LT = 5)

is obtained within a simple approximation: Instead of evaluating the full expression for

δjEEI we take the linear conductivity as a function of temperature, and average over

the temperature profile,

δσheating =
1

L

∫ L

0

dx δσ(T (x)). (4.24)

Important results are the following: In both cases b) and c) the conductance scales

with voltage over temperature. In case b) (hot electrons) the main effect is simple

heating, i.e. the non-ohmic effects are hard to be observed. Far from equilibrium, on the

other hand, the current-voltage characteristics is quantitatively different from the hot

electron regime. The temperature dependence of the Coulomb interaction contribution
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Figure 4.2: Interaction correction to the conductance I/V for a mesoscopic wire as a function
of voltage [A3]. I/V is plotted in units of (e2/~)LT /L. The full line corresponds to the non-
equilibrium distribution function (4.22). The line with long dashes corresponds to the local
equilibrium distribution function (4.20) with the x-dependent temperature. The line with
short dashes (L/LT = 5) is the nonlinear conductivity due to the heating contribution only,
Eq. (4.24).
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Figure 4.3: Temperature dependence of the Coulomb interaction correction to the conduc-
tance of a mesoscopic wire in arbitrary units. The full line corresponds to the double-step
distribution function, the dashed line corresponds to hot electrons with temperature profile,
as explained in the text. T is the electron temperature in the leads.
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to the conductance is shown in Fig. 4.3 in a double logarithmic plot. The curves

shown are obtained from the same numerical data for f(eV/kBT ) as shown in Fig. 4.2

(L/LT = 200). At high temperature the Coulomb correction to the conductance follows

1/
√

T , which is seen as a linear behavior in the double logarithmic plot. When the

temperature in the leads becomes less than the voltage, the conductance saturates. In

the absence of inelastic scattering, c), this low temperature saturation appears at a

higher temperature than in b).

What about the experimental situation? The distribution function in mesoscopic

wires was measured by Pothier et al. [55]. For short wires and low temperature (L ≈ 1.5

µm, T ≈ 25 mK), the double step like distribution function was observed. Unfortu-

nately, as far as we know, there is no detailed investigation of the temperature and

voltage dependence of the conductivity in this experiment. Weber et al. [56] mea-

sured the current-voltage characteristics of nanobridges which were attached to large

reservoirs. They observed a scaling of the voltage with the temperature, which agrees

qualitatively with our prediction. However, for a quantitative explanation of the ex-

periment it might be important to take into account scattering of the electrons at the

interface between the leads and the bridge [56], or charging effects [57].

4.5 Electron dephasing

The dephasing time τϕ is a central object in weak localization. A comprehensive review

on recent experimental studies is given in [58]. The dephasing time sets the scale over

which an electron propagates without loosing phase coherence, and determines the

amplitude of the weak localization correction to the conductivity. The amplitude of the

interaction correction to the conductivity, on the other hand, is set by the thermal time

τT = ~/kBT , see Eq. (3.13). In most cases the dephasing time is much longer than the

thermal time. In some experiments, however, an extraordinarily strong phase breaking

has been reported: Recently a low temperature saturation of τϕ in gold wires [59, 60]

has attracted much attention [22–24, 61–65]. Furthermore in a number of cuprates,

the dephasing rate decreases only slowly with decreasing temperature [66–68]. For

example in Bi2Sr2CuO6, [66], the dephasing rate varies as 1/τϕ ∼ T 1/3, with τϕ much

shorter than τT . In this case phase breaking may become relevant also in the interaction

contribution to the conductivity.

Unfortunately, in the experiments cited above, the microscopic mechanism which

is responsible for the strong phase breaking is unknown. Nevertheless we believe it

is important to answer the following questions: (i) Is phase breaking also relevant in

the interaction contribution to the conductivity? (ii) If yes, is the phase breaking rate

which is relevant in the particle-hole channel (Coulomb interaction) the same as in the

particle-particle channel (weak localization)? While Castellani et al. [69] came to the

conclusion that the answer is “yes” for both questions, Raimondi et al. [A1] reexam-

ined the problem, studying dephasing due to internal electric field fluctuations. They
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confirmed the suggestion that dephasing is possible also in the particle-hole channel,

but found different dephasing times for the particle-hole and particle-particle chan-

nels. Raimondi et al. [A1] started from the expression for the interaction contribution

to the current density, δjV , and then averaged over internal electric field fluctuations

using a path integral formalism for the diffuson. In the following we will give a semi-

quantitative summary of their analysis [A1].

In thermal equilibrium the internal electric field fluctuations are given by

e2〈EiEj〉q,ω = qiqj 2T

ω
ImV R(q, ω), (4.25)

where V R(q, ω) is the retarded Coulomb interaction and low frequencies (ω � T ) have

been assumed. The phase shift of an electron which is propagating along a path x1,2(t)

is ϕ1,2 = e
∫

dt ẋ1,2(t
′) ·A(t′). Both for weak localization and the interaction effect the

phase difference δϕ for a pair of classical paths is relevant. Averaging the phase factor

exp(iδϕ) over the electric field fluctuations, using the relation

〈exp(iδϕ)〉 = exp

(

−1

2
〈(δϕ)2〉

)

= exp(−S), (4.26)

one finds

Sp.p. =
1

2

∫ η

−η

dt1

∫ η

−η

dt2

∫ T

−T

dω

2π

∑

q

2T

ω

[

−ImV R(q, ω)
]

× exp {iq · [x1(t1) − x1(t2)]}
[

cos

(

ω
t1 − t2

2

)

− cos

(

ω
t1 + t2

2

)]

(4.27)

in the case of weak localization, and

Sp.h. =

∫ η

0

dt1

∫ η

0

dt2

∫ T

−T

dω

2π

∑

q

2T

ω

[

−ImV R(q, ω)
]

× exp {iq · [x1(t1) − x1(t2)]} e−iω(t1−t2) [1 − cos(ωη)] (4.28)

in the case of the interaction effect; both in Sp.p. and in Sp.h. the velocities ẋ(t1,2) were

removed by a partial integration, and the relation between the two relevant paths x1(t)

and x2(t) were exploited. The expressions for Sp.p. and Sp.h. appear similar, but clearly

the time dependent factors in the second line differ, which can lead to quite different

dephasing times in the particle-particle and particle-hole channels. In two dimensions,

for example, the final results are

Sp.p. ≈
Tη

4πDN0
ln(Tη);

1

τϕ
≈ T

4πDN0
ln(4πDN0) (4.29)

and

Sp.h. ≈
Tη

4πDN0

ln(Dκ2Tη2);
1

τϕ

≈ T

4πDN0

ln[Dκ2(4πDN0)
2/T ], (4.30)
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where κ is the inverse screening length. The dephasing time is here determined from

the condition S(η = τϕ) = 1. In the particle-particle channel the standard result

of Altshuler, Aronov and Khmelnitskii [70–72] is found. The dephasing time in the

particle-hole channel is different from the one in the particle-particle channel, and is

identical to the inelastic scattering rate in the two-particle propagators (diffuson or

cooperon), as first calculated by Fukuyama and Abrahams [73, 74].

The low frequency electric field fluctuations which we consider here, cannot ex-

plain the strong phase breaking observed in [59, 66]. However we expect similar re-

sults for other phase breaking mechanisms: We expect that a mechanism leading to

strong dephasing in the particle-particle channel will also cause strong dephasing in the

particle-hole channel. In particular when τϕ becomes comparable to or shorter than

the thermal time τT the relevant time scale which sets the amplitude of the Coulomb

interaction contribution to the conductivity will be τϕ instead of τT . This is consistent

with the experiments: In the gold wires of [59] the dephasing rate saturated below

T ∼ 1 K to values of the order ~/τϕ ∼ 1-10 mK. In the samples with the strongest

phase breaking a saturation of the interaction correction to the conductivity has been

observed below T ∼ 100 mK [60]. In Bi2Sr2CuO6, a compound with a single CuO2

plane per unit cell, the in-plane zero field resistivity increases as ln T below ∼18 K,

consistent with quantum interference effects in two dimensions. The shape of the or-

bital magnetoresistance is well fitted by the weak localization expression [66], but with

an unconventionally large dephasing rate which varies as T 1/3. The spin component

of the magnetoresistance varies at low fields as [R(B) − R(0)]/R(0) ∼ (B/Bs)
2. From

the standard theory for the Coulomb interaction [15, 75] one would expect a magnetic

field scale which is linear in the temperature, Bs ∼ 1/τT . Experimentally the magnetic

field scale varies as T 0.4, which is close to the temperature variation of the dephasing

rate. This suggests that the origin of the spin component of the magnetoresistance

might indeed be the Coulomb interaction contribution to the conductance, but in the

presence of an up to now not identified phase breaking mechanism.

4.6 Summary and outlook

In this chapter we discussed the contribution of the Coulomb interaction to the current

density in a disordered conductor, with emphasis on applications of the formalism

developed in chapter 3. A gauge invariant expression for the Coulomb correction to

the current density has been given. In the linear response limit the previously known

results are reproduced. The real-time formalism allows a well controlled calculation of

the dephasing time. Results beyond linear response have been given.

Clearly, however, there is still room for further investigations. For example it would

be interesting to study time dependent phenomena. Response to time dependent fields

with frequencies in the microwave regime has been studied in some detail for weak

localization, both theoretically [13, 76, 77] and experimentally [78, 79]. In these exper-
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iments the influence of a microwave field on the DC-conductivity of thin films was

investigated. In the experimental studies not only weak localization but also the inter-

action effect is present, however there are only few theoretical studies of the interaction

correction in the presence of high frequency fields. Altshuler et al. [13] calculated the

high-frequency (linear) conductivity. A first attempt to calculate the DC-conductivity

in the presence of a microwave was made in [A1]. There the microwave field was in-

cluded in the theory via the diffusion propagators. The distribution function, on the

other hand, was considered stationary. Going beyond this analysis, the distribution

function could be determined by explicitly solving the kinetic equation in the presence

of the microwave field. The distribution function obtained in this way should then

be used in the expression for the current density, Eq. (3.20), in order to calculate the

interaction contribution to the conductivity in the presence of the microwave field.

Even for a stationary distribution function further investigations are important, for

example, in the case of transport through ultrasmall systems. Here, in contrast, we con-

centrated on systems with diffusive electron motion for systems which are larger than

the thermal diffusion length LT =
√

~D/kBT . The reason for this latter restriction is

that a simple interface between the mesoscopic conductor and the leads was assumed:

The boundary condition (4.18) describes an ideal interface, i.e. the conductance of the

leads is infinitely large so that an electron which arrives at the interface escapes into

the leads and never comes back. For a realistic description of small conductors a more

realistic treatment of the interface is necessary. Assume for example that there is a

finite conductance of the interface which can be described by a tunneling Hamiltonian.

It is well known that the Coulomb interaction plays an important role in the transport

through tunnel junctions in a disordered system, since the density of states is reduced

near the Fermi energy [19,20,33,34,40,80–82]. This leads to a suppression of the tun-

nel conductance and to a nonlinear current voltage characteristics at low bias. On the

other hand Coulomb blocking of tunneling may also be due to charging effects [83–87].

These two classes of phenomena were described on the same footing for the first time

by Nazarov [88, 89] and later by various authors [81, 90–95]. In structures where the

total conductance is neither fully determined by the interfaces, nor by the diffusive

motion of the electrons, it is necessary to treat the Coulomb blocking of tunneling and

Coulomb corrections to diffusive transport on the same footing. This might be relevant

for the experiment of Weber et al. [56], where transport through a metallic nanobridge

connected to two large reservoirs has been studied.

Last but not least in very clean or very small samples the electron motion is ballistic,

not diffusive. A theory for the Coulomb correction to transport in ballistic systems

has recently been put forward by Zala et al. [38] in order to describe transport at

intermediate temperatures, where the thermal time τT is comparable to the (elastic)

scattering time τ . At present, however, the theory has not yet been applied to finite

size systems.



Chapter 5

Dynamical defects in metals

Impurities in a metal are often considered as static defects. In this case the impuri-

ties contribute only to elastic but not to inelastic scattering. This is different in the

presence of dynamical defects. Possible realizations of dynamical defects are magnetic

impurities or defects which can tunnel between two or several positions. The interaction

of conduction electrons with dynamical defects has been suggested to be relevant for

certain experiments in mesoscopic physics, such as the zero-bias anomalies observed

in nanoconstrictions [96–99], persistent currents in rings [A4–A6], energy relaxation

rate in wires [55, 100–102], and low temperature dephasing [62, 104–107][A7]. In this

chapter we summarize results on the subjects where the present author was involved.

5.1 Persistent currents in rings

The magnetic response of a small metallic ring varies periodically as a function of the

enclosed magnetic flux φ. Lévy et al. [108] measured the nonlinear magnetic response

of an ensemble of 107 mesoscopic copper rings. The measured signal varied periodically

with the period of half a flux quantum φ0/2 = h/2e, corresponding to a current I ≈
Ih/2e sin(4πφ/φ0) circulating in each ring. For temperatures in the mK regime the

amplitude was |Iexp
h/2e| ≈ 0.3 nA per ring, which is of the order of one elementary charge

divided by the time electrons need to diffuse around a ring, |I exp
h/2e| ≈ 0.6 e/τd. For

reviews on the subject see [109].

Calculations which neglect electron-electron interactions underestimate the exper-

imentally observed current by about two orders of magnitude. The Coulomb inter-

action enhances the average current considerably above the value for non-interacting

electrons [110], with the result ICoul
h/2e ∼ µ∗e/τd, where µ∗ is a dimensionless parame-

ter which characterizes the strength of the interaction in the Cooper channel; for a

metal which does not become superconducting even at the lowest temperatures, µ∗ is

expected to be positive, and much smaller than one. The theory of Ambegaokar and

Eckern [110] describes well certain aspects of the experiments: the periodicity of I(φ)

is predicted correctly, the amplitude Ih/2e is of the order e/τd, and also the temperature
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Figure 5.1: Theoretical prediction for the persistent current in the presence of magnetic
impurities and Coulomb interaction [A6]. Here the Coulomb interaction parameter has been
estimated as µ∗ = 0.06.

dependence is reasonable. Nevertheless the agreement is not satisfactory: Although the

current is of the right order of magnitude, the theoretical prediction is still numerically

smaller than the observed value.

In [A4-A6] it has been pointed out that in the presence of dynamical impurities,

the persistent current may have a sizeable contribution through what can be called an

“effective impurity mediated interaction”. For example, in the case of magnetic im-

purities which are weakly coupled to the conduction electrons (coupling constant J),

this effective interaction is proportional to the impurity susceptibility and the density

of impurities, V eff ∼ nJ2χ. Figure 5.1 shows the theoretically predicted tempera-

ture dependence of the persistent current in the presence of both magnetic impurities

and Coulomb interaction. When the spin-flip scattering time τs is comparable to the

diffusion time τd the low temperature persistent current is enhanced.

Similar results have been obtained in [A4] for magnetic impurities which are strongly

interacting with the conduction electrons, i.e. below the Kondo temperature, and in

[A5] for conduction electrons interacting via two-level systems. Unfortunately, a sys-

tematic experimental study of the persistent current in the presence of magnetic im-

purities does not yet exist.

Recently is has been suggested by Mohanty [111] and Kravtsov and Altshuler [112]

that the “large” experimentally observed persistent current might be related to an-

other problem in mesoscopic physics, the unexpectedly large electron dephasing rate.

To substantiate this point of view they calculated the dephasing time and the persis-

tent current in the presence of non-equilibrium electric field fluctuations. They found

that a random electric field with short temporal correlations induces a DC current in
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that the electrons are still in good contact with the thermal
bath. Finally, we have placed some of our samples in a
second dilution refrigerator with higher levels of shielding
of the external electromagnetic environment at the sample
site and find exactly the same tfsTd.

We have also studied the effects of magnetic impurities
on tfsTd by ion implanting Fe, the dominant magnetic
impurity in Au, after measuring the full tfsT d in the
clean sample. In Fig. 3, we compare the temperature
dependence of tf for one sample before and after
implantation of ,2.8 ppm of Fe. The effect of adding
magnetic impurities is to lower the magnitude of the phase
coherence time, but not to cause saturation in tfsTd. The
low temperature data is clearly temperature dependent
in agreement with previous experiments [12,13]. In
addition, the saturation of tf found in experiments on
semiconductor wires [8,9] cannot be due to magnetic
impurities since these structures are thought not to contain
any of these impurities. The inset of Fig. 3 shows the low
temperature behavior of DrsT d for the implanted sample
after subtracting the EE contribution Dree determined
from the clean sample before implantation. The straight
line is the expected behavior Dr , log T for an AuFe
Kondo system [14], containing 4.8 ppm of Fe [15].

For the reasons given above, we are confident that the
saturation in tf observed for all our clean Au samples
represents a fundamental quantum mechanical effect. We
believe that the origin of the observed saturation in tf

is that the zero-point fluctuations of the phase coherent
electrons are playing an important role in the dephasing
process. It is predicted that at low temperatures the
mean square voltage in an electrical resistor will be
finite at T ­ 0 due to the zero-point fluctuations of the
electrons [1]. We propose that zero-point fluctuations of

FIG. 3. Temperature dependence of tf before (diamonds) and
after (boxes) Fe implantation. The solid line is a fit to Eq. (1)
with phonons. The inset shows the logsT d dependence of Dr
due to magnetic impurities with a theoretical fit.

the intrinsic electromagnetic environment [16] seen by the
phase coherent electrons should cause intrinsic dephasing
and lead to a finite temperature saturation of tf. We
have discovered that, at low temperatures, one very simple
form fits the temperature dependence of tfsTd for all our
Au samples,

tf ­ t0 tanh

∑

h̄ap2D

kBTLT L
0
f

∏

­ t0 tanh

"

ap2

s

h̄

t0kBT

#

,

(1)

where D ­ yFleyd, t0 is the measured saturation value,
and L

0
f ­

p

Dt0. Equation (1) could have been antici-
pated once the connection to the fluctuation-dissipation
theorem [16] has been made because the inverse of the
average Einstein energy of the phase coherent electrons is
kEl21

­ tfyh ­ st0yhd tanhshy2kBTtfd and according
to electron-electron theories involving large energy trans-
fer, tf ­ tee ~ LT [5]. a is a constant which only varies
from 0.6 to 1.1 for all our samples. At higher tempera-
tures where phonons become important for dephasing, the
total phase coherence time is the inverse of t21

f 1 t21
ep .

The solid lines drawn through all our Au tfsTd data dis-
played in Figs. 1–3 are excellent fits to Eq. (1) including
phonons.

If Eq. (1) truly describes the temperature dependence
of the phase coherence time for our samples, it should
apply to all 1D and 2D mesoscopic systems fabricated
from metals and semiconductors. Figure 4 displays some
representative examples of the previously observed satu-
ration behavior of tf in a variety of 1D and 2D systems
where the saturation temperature varies from 20 mK to
10 K. For 2D Au [10] and AuPd [7] experiments, Eq. (1)
fits the reported phase coherence time extremely well with
the constant a reduced only by a factor of p due to the

FIG. 4. Temperature dependence of tf in a 2D-Au, 1D-Si,
1D-GaAs, and 2D-AuPd experiments. The solid lines are our
fits using Eq. (1).
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Figure 5.2: On the left hand side, the phase coherence time for the silver (circles), copper
(squares), and gold (triangles) samples, taken from [64]. The right figure shows the phase
coherence time in a gold wire before and after iron implantation, [59]. In the inset the log T
behavior of the resistivity due to magnetic impurities is seen.

mesoscopic rings of order of

Ih/2e ∼
e

τϕ
exp(−L/Lϕ), (5.1)

where τϕ and Lϕ are the phase coherence time and length due to the same random

electric field. So far, in all experiments on persistent currents the circumference L of

the rings was of the order Lϕ. In this case Ih/2e is of the order e/τd as the experimen-

tally observed current. Qualitatively the same observation has been made for other

mechanisms [A4,A5]. If phase breaking is dominated by magnetic impurities or by two-

level systems, and τϕ ∼ τd, then the persistent current due to the impurity mediated

electron-electron interaction is of the order e/τd, as shown in Fig. 5.1 for the case of

magnetic impurities.

A brief review of the existing experimental and theoretical results on this subject

can be found in [A6].

5.2 Electron dephasing

At low temperature all inelastic scattering processes are expected to freeze out and

accordingly the inelastic scattering time and the dephasing time are expected to di-

verge when the temperature decreases to zero. Contrary to this expectation, in many

experiments τϕ saturates in the low temperature limit. Traditionally the low tempera-

ture saturation has been attributed to magnetic impurities or heating which both are

difficult to exclude experimentally. Some data from Gougam et al. [64] and Mohanty et

al. [59] are shown in Fig. 5.2. Gougam et al. found a low temperature saturation in gold

and copper samples, but not in silver. At first they considered it unlikely that magnetic
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impurities could be the reason for the saturation of the dephasing time. Meanwhile,

however, this explanation is considered to be very likely, since in the samples with

strong phase breaking, a logarithmic temperature dependence of the resistance due to

the Kondo effect has been observed. Also the measured energy relaxation rate can

consistently be explained with the assumption of magnetic impurities [55,100–102]. In

a later experiment on very pure gold samples, Pierre et al. [103] found a temperature

dependent τϕ down to the lowest measured temperatures. Experimental data from

Mohanty et al. [59] for one particular gold wire before and after iron implantation are

shown on the right hand side in Fig. 5.2. Here the situation is different from the one

discussed above. Before iron implantation the dephasing rate saturated at low temper-

ature. In some samples also the resistance saturated [60], only after iron implantation

a log T behavior due to the Kondo effect was seen. Due to the absence of the log T

behavior before iron implantation we believe that magnetic impurities cannot explain

the low temperature saturation of τϕ in these samples. Non-equilibrium effects are

difficult to be excluded as the reason for the low temperature saturation of τϕ. For

example, when increasing the voltage a saturation of the dephasing rate was seen by

Ovadyahu [107] even though the resistance continued to increase with decreasing tem-

perature. Mohanty et al. [59] stressed that they observed a saturation of τϕ even after

excluding these possibilities. The experiment triggered off a large amount of theoretical

and experimental activity, as documented in a recent review [58].

The possibility of dephasing by dynamical defects with a rate proportional to the

temperature was mentioned in [113]. In [A7] and [62] it has been pointed out that a

temperature independent rate is also possible, which could then explain the observed

low temperature saturation of τϕ. For a model of a dynamical defect consider, for

example, a two-level system with asymmetry ∆ and tunneling matrix element ∆0. The

inelastic two-level system electron cross section is then proportional to

σin ∼ ∆2
0

∆2 + ∆2
0

(5.2)

as long as the temperature is larger than
√

∆2 + ∆2
0. In the presence of many two-

level systems the total inelastic scattering rate and its temperature dependence are

a function of the distribution of the parameters ∆ and ∆0, P (∆, ∆0). With the

standard assumption [114] of a flat distribution for both ∆ and the logarithm of ∆0,

i.e. P (∆, ∆0) ∼ 1/∆0, the inelastic scattering rate remains temperature independent

as long as kBT > ∆max
0 , and goes to zero for lower temperature.

The question is then whether the number of dynamical defects in the materials is

large enough to explain the dephasing. The answer depends on the specific material.

Aleiner et al. [115] concluded that the saturation of τϕ in the gold wires of Mohanty

et al. [59] would require a two-level system density of states which exceeds its typical

value for metallic glasses by one to two orders of magnitude. Similar results were

obtained by Ahn and Mohanty [104] who estimated the two-level systems required to
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explain τϕ in open quantum dots [116,117]. Aleshin el al. [105] observed a temperature

independent τϕ in heavily doped polyacetylene. They emphasized that for the polymer

materials the possibility for formation of multistable defects is favorable due to presence

of “free volume”. In particular the measured value of τϕ is consistent with a reasonable

defect concentration. Also in In2O3−x films [107] and in heavily doped Si samples [106]

dephasing is believed to be dominated by dynamical defects, although in these latter

examples τϕ is temperature dependent with 1/τϕ ∼ T .

Since a large number of dynamical defects is required in order to be relevant for

phase breaking, the same defects also modify other physical quantities. According to

Aleiner et al. [115] substantial effects are expected in the specific heat and ultrasound

attenuation. Implications on persistent currents in rings were analyzed in [A5].

Imry et al. [A7] related phase breaking to conductance noise. This theory applies

to materials where the noise is dominated by a mechanism which is closely related

to the so-called universal conductance fluctuations, and which was first described by

Feng, Lee and Stone [118]. In particular, it was predicted in [A7] that when dephasing

is dominated by defect motion, then the conductance noise from a phase coherent

volume is near the maximum possible value, i.e. 〈(δG)2〉 ∼ (e2/h)2, and the noise is

“saturated”. This prediction is consistent with the observations made in [106].

Zawadowski et al. [62] suggested a somewhat different mechanism for dephasing

by two-level systems. For two-level systems with sufficiently small intervalley barriers

“Kondo physics” is important. The low temperature physics is that of a two-channel

Kondo model and exhibits non Fermi liquid behavior. In the non Fermi liquid regime,

the single-to-many particle scattering rate remains finite as the temperature decreases

to zero, see [62] for details. Zawadowski et al. argued that the single-to-many parti-

cle scattering causes dephasing, and therefore they expect a finite dephasing rate as

the temperature drops to zero. So far this argument has not been checked in an ex-

plicit calculation of τϕ, but the clarification of the question whether zero temperature

dephasing is possible in non Fermi liquids certainly is an urgent issue.



Chapter 6

Transport through a quantum dot

A quantum dot is a small device where the electrons are confined in all three spatial

dimensions. Typical dimensions range from nanometers to a few microns. Due to the

confinement the energy levels in the dot are quantized. A voltage applied to one of the

gate electrodes controls the number of electrons that are confined on the dot. In recent

years transport through quantum dots, and in particular the Coulomb blockade and

the Kondo effect, have attracted much attention [119–127]: Adding a charge Q to the

dot costs a charging energy Q2/2C, where C is the capacitance. The Coulomb blockade

occurs when the Fermi energy of the leads falls in the gap between the ground state

energies of the dot with N and N+1 electrons. If an odd number of electrons is trapped

in the dot, the total spin is necessarily non-zero. The localized spin which is coupled

to the electrons in the leads mimics a magnetic impurity in the metal, see Fig. 6.1.

As a consequence a Kondo resonance forms at low temperature, and transport will

occur due to resonance tunneling. The quantum dot which is coupled to two normal

conducting leads has been studied in much detail.

In the following we summarize results on the linear conductance. Then we switch

to the quantum dot which is coupled to a normal and a superconducting lead. In order
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Figure 6.1: Schematic energy diagram of a quantum dot which is coupled to two leads with
different chemical potential. The position of the level in the dot can be controlled by a gate
voltage. The charging energy is U = e2/C.
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to obtain transport through such a device, pairs of electrons have to traverse the dot

which then form a Cooper pair in the superconducting lead. Thus we may ask, does the

Kondo resonance lead to resonant tunneling also in this case? Or does strong Coulomb

repulsion always win and block transport? We will summarize the available theoretical

results [128–132][A8,A9] .

The conductance of the dot which is coupled to two normal conducting leads shows

a universal scaling, i.e. the temperature dependence can be fitted to a function with

only the Kondo temperature as a free parameter. Denoting the tunnel rates through

the two barriers by ΓL and ΓR the total conductance of the quantum dot is [127]

GNN =
2e2

h

4ΓLΓR

(ΓL + ΓR)2
f(T/TK). (6.1)

For example, at low temperature the universal function is f(T/TK) = 1 − π2T 2/T 2
K,

hence the conductance of a symmetric quantum dot (ΓL = ΓR) always reaches the value

G = 2e2/h in the low temperature limit. The function f has been determined in the full

temperature range with the help of the numerical renormalization group in [133] and

the Bethe-Ansatz in [134] and agrees well with what is found in experiments [135,136].

What will happen if the quantum dot is coupled to a normal and a superconducting

lead? Beenakker [128] addressed this problem neglecting the Coulomb interaction, and

found the zero temperature conductance to be given by

GNS =
4e2

h

(

2ΓNΓS

4ε2
res + Γ2

N + Γ2
S

)2

, (6.2)

where εres is the energy of the resonant level, and ΓN , ΓS are the tunnel rates through

the two tunnel barriers. The conductance on resonance, εres = 0, is maximal when

ΓN = ΓS, and is then equal to 4e2/h, twice the conductance for resonant tunneling

with two normal leads.

In the presence of a strong Coulomb repulsion the situation is not as clear. So

far, neither the temperature dependence of the conductance nor the zero temperature

conductance as a function of the parameters ΓN , ΓS, εres are known exactly. In [129] it

was shown that the current through the dot can be expressed in terms of the retarded

and advanced Green’s functions of the dot. For T � ∆ the conductance reads

GNS =
e2

h
i

∫

dε

(

−∂f

∂ε

)

ΓNTr
{

τ̂zĜ
R[Σ̂R, τ̂z]Ĝ

A
}

, (6.3)

where f(ε) is the Fermi function. The Green’s functions are two by two Nambu matri-

ces. The quasi-particle current is neglected in (6.3); this is manifest in the commutator

[Σ̂R, τ̂z], which selects the anomalous components of the self-energy.

The Green’s functions have been calculated within different approximations. Ne-

glecting the Coulomb interaction on the quantum dot the self-energy is given by

Σ̂R ≈ −1

2

(

iΓN ΓS

ΓS iΓN

)

. (6.4)
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Considering the zero temperature limit, Beenakker’s result, Eq. (6.2), is recovered. In

the presence of Coulomb interaction, double occupancy of the dot becomes unfavorable

and therefore the anomalous Green’s function is suppressed. For strong Coulomb

interactions and within an equation-of-motion approach [129][A9] the anomalous self-

energy is fully suppressed at the Fermi energy, and grows linearly with the distance

from the Fermi energy, ΣR
12 ≈ εΓS/π∆. As a consequence the conductance of the dot

is small and vanishes when the temperature decreases to zero.

However, it is known that the equation-of-motion approach is reliable only above

the Kondo temperature. The slave-boson mean field approximation, applied to the

problem in [A8], is believed to capture qualitatively the correct physical behavior in

the opposite limit, when TK � ∆ � T . The Green’s function in this regime is given

by

ĜR = b2
0

[

ε − ε̃resτz + i
1

2
Γ̃N +

1

2
Γ̃Sτx

]−1

, (6.5)

where b0 is a mean field parameter which is controlled by the occupancy nres of the

resonant level, b2
0 + nres = 1. The zero temperature conductance is of the form (6.2),

with effective parameters Γ̃N,S = b2
0ΓN,S, and ε̃res ≈ 0. From this analysis one concludes

that the Kondo effect enhances the conductance, and GNS = 4e2/h for the symmetric

quantum dot.

Clerk et al. [131] studied the situation ∆ > TK within a modified version of the

non-crossing-approximation. They did not find an enhancement of the zero bias con-

ductance. A possible reason for this is that in [131] only the symmetric situation

ΓN = ΓS has been studied. It has been suggested in [A8] and confirmed by Cuevas

et al. [132] that the maximum conductance GNS = 4e2/h can also be reached when

∆ > TK, however not in the symmetric case, but in a asymmetrically coupled dot with

fine-tuned tunnel rates ΓN , ΓS.

In summary, despite considerable efforts it is at present not completely clear how

strong Coulomb interaction modifies transport through a quantum dot which is at-

tached to a normal and a superconducting lead. The reason is that quite different

qualitative results – enhanced or suppressed conductance – have been obtained in the

regions where the respective approximations are valid. Results obtained with a numer-

ically exact method which works over a large parameter range, such as the numerical

renormalization group or a Monte Carlo simulation, could help to settle the issue. Also,

an experimental realization of such a device would be most helpful.



Chapter 7

Concluding remarks

In this article we discussed transport properties of mesoscopic samples with emphasis

on electron-electron interaction effects. Since the article summarizes the authors con-

tributions to the field and is not intended as a comprehensive review, several aspects

have been omitted above. We take this opportunity to mention some of these aspects

and to speculate about future prospects of the field.

A major part of this article has been devoted the regime of diffusive transport,

where we worked out a theory for electron-electron interaction effects out of equilibrium.

There is a long list of possible extensions: We concentrated on the ensemble average

of the current density, but did not touch the problem of current noise [50, 137] or

sample specific conductance fluctuations [138, 139]. We discussed transport properties

of films and wires, but so far the formalism has not been applied to more complicated

devices. In that case one has to include interfaces in the theoretical description which

can be interfaces between normal metals, superconductors, magnets, etc. We restricted

ourselves to the limit of diffusive electron motion; in small and clean samples, however,

the mean free path can be longer than the systems size, which requires a theory valid

for ballistic electron motion.

In relation to the problem of electron dephasing, we have shown that (i) dephas-

ing affects also the interaction correction to the conductivity, and (ii) a temperature

independent dephasing rate is possible in the presence of a sufficiently large number of

dynamical defects. However there are still many open questions: What is the micro-

scopic nature of the dynamical defects? Do dynamical defects which exhibit non Fermi

liquid physics at low temperature, destroy phase coherence even in the zero tempera-

ture limit? What is the microscopic origin of the dephasing rate which varies as
√

T in

gold films [60], and T 1/3 in Bi2Sr2CuO6 [66]? Why is the dephasing rate, as determined

from the weak localization magnetoresistance, different from the rate determined from

conductance fluctuations measurements [140, 141]?

For quantum dots we restricted our discussion to one question, namely the influence

of a Kondo resonance on the linear conductivity. This is only one aspect in a large field

of phenomena. Quantum effects in the Coulomb blockade have recently been reviewed
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by Aleiner el al. [127]. Moreover the promising attempts [142, 143] to use quantum

dots as devices for quantum computing should be mentioned, too.

To summarize, transport in mesoscopic structures is an active field of research,

with several open questions ranging from fundamental problems of quantum theory to

possible technological application in the future.
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[7] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

[8] H. U. Baranger and A. D. Stone, Phys. Rev. B 40, 8169 (1989).

[9] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 86, 2512 (1992).

[10] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson

L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60,

848 (1988).

[11] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed,

J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones,

J. Phys. C21, L209 (1988).

[12] E. Scheer, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Phys. Rev. Lett. 78,

3535 (1997); E. Scheer, N. Agrait, J. C. Cuevas, A. Levy Yeyati, B. Ludoph,

A. Martin-Rodero, G. R. Bollinger, J. M. van Ruitenbeek, and C. Urbina, Nature

394, 154 (1998).

[13] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered

Systems, edited by M. Pollak and A. L. Efros (North-Holland, Amsterdam, 1985),

p. 1.

[14] G. Bergmann, Phys. Rep. 107, 1 (1984).



BIBLIOGRAPHY 43

[15] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

[16] S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).

[17] D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

[18] B. L. Altshuler, Sov. Phys. JETP 48, 670 (1978).

[19] B. L. Altshuler and A. G. Aronov, Solid State Commun. 36, 115 (1979).

[20] B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980).

[21] H. Fukuyama, J. Phys. Soc. Jpn. 48, 2169 (1980).

[22] D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998); D. S. Golubev

and A. D. Zaikin, Phys. Rev. B 59, 9195 (1999); D. S. Golubev and A. D. Zaikin,

Phys. Rev. B 62, 14061 (2000); D. S. Golubev, A. D. Zaikin, and G. Schön, J. Low

Temp. Phys. 126, 1355 (2002).

[23] B. L. Altshuler, M. E. Gershenson, and I. L. Aleiner, Physica E 3, 58 (1998).

[24] I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Phys. Rev. Lett. 82, 3190

(1999).

[25] I. L. Aleiner, B. L. Altshuler, and M. G. Vavilov, J. Low Temp. Phys. 126, 1377

(2002).

[26] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018

(1964)].

[27] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

[28] R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 (1964).

[29] L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, Pis’ma Zh. Eksp. Teor. Fiz.

30, 248 (1979) [JETP Lett. 30, 228 (1979)].

[30] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,

Phys. Rev. Lett. 42, 673 (1979).

[31] A. A. Abrikosov, L. P. Gorkov, and I. Y. Dzyaloshinskii, Quantum Field Theo-

retical Methods in Statistical Physics, (Pergamon Press, Oxford, 1965).

[32] S. Hershfield and V. Ambegaokar, Phys. Rev. B 34, 2147 (1986).

[33] A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97

(1983)].

[34] C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984).



44 BIBLIOGRAPHY

[35] G. Bergmann, Phys. Rev. B 35, 4205 (1987).

[36] A. M. Rudin, I. L. Aleiner, and L. I. Glazman, Phys. Rev. B 55, 9322 (1997).

[37] G. Strinati, C. Castellani, C. Di Castro, and G. Kotliar, Phys. Rev. B 44, 6078

(1991).

[38] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 201201 (2001);

Phys. Rev. B 64, 214204 (2001); Phys. Rev. B 65, 020201 (2002).

[39] K. E. Nagaev, Phys. Lett. A 189, 134 (1994).

[40] A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).

[41] C. Chamon, A. W. W. Ludwig, and C. Nayak, Phys. Rev. B 60, 2239 (1999).

[42] M. V. Feigelman, A. I. Larkin, and M. A. Skvortsov, Phys. Rev. B 61, 12361

(2000).

[43] G. J. Dolan and D. D. Osheroff, Phys. Rev. Lett. 43, 721 (1979).

[44] P. W. Anderson, E. Abrahams, and T. V. Ramakrishnan, Phys. Rev. Lett. 43,

718 (1979).

[45] T. Tsuzuki, Physica B+C (Amsterdam) 107, 679 (1981).

[46] M. Kaveh, M. J. Uren, R. A. Davies and M. Pepper, J. Phys. C 14, 413 (1981).

[47] B. L. Altshuler and A. G. Aronov, Pis’ma Zh. Eksp. Teor. Fiz. 30, 514 (1979)

[JETP Lett. 30, 482 (1979)].

[48] G. Bergmann, Z. Phys. B 49, 133 (1982).

[49] G. Bergmann, Wei Wei, Yao Zou, and R. M. Mueller, Phys. Rev. B 41, 7386

(1990).

[50] D. B. Gutman and Y. Gefen, Phys. Rev. B 64, 205317 (2001).

[51] K. E. Nagaev, Phys. Lett. A 169, 103 (1992).

[52] K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).

[53] V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).

[54] Y. Naveh, D. V. Averin, and K. K. Likharev, Phys. Rev. B 58, 15371 (1998);

Y. Naveh, in XVIII Rencontres de Moriond: Quantum Physics at Mesoscopic

Scale, edited by D. C. Glattli and M. Sanquer (Editions Frontiérs, France, 1999).
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