
Consistent World Models for Cooperating Robots:
Separating Logical Relationships, Sensor Interpretation and Estimation

Andreas Schierl, Andreas Angerer, Alwin Hoffmann and Wolfgang Reif
Institute for Software and Systems Engineering, University of Augsburg, Augsburg, Germany

{schierl,angerer,hoffmann,reif}@isse.de

Abstract—When working with multiple independent mobile
robots, each has a different knowledge about its environment,
based on its available sensors. This paper proposes an approach
that allows working with these different views by indepen-
dently modeling the common logical relationships between the
elements in the scene and the meaning of device-specific sensor
data. Using these models, for each robot an estimation process
can automatically be derived that combines and processes
the available information to fill in the unknown geometric
relationships between the elements, while reacting to changes
in the logical relationships. The proposed approach facilitates
the consistent coordination of the robots through an application
that works on a common world model, while for execution each
robot uses its available data and estimations. The approach is
demonstrated in a case study of two cooperating mobile robots
that pick up an object and hand it over while passing each
other.

I. INTRODUCTION

Working with multiple, independent mobile robots, each
has a different knowledge about its environment. These
knowledge differences are based on the sensors available
to the individual robots: While for typical industrial robots
the positions of workpieces and tasks are exactly defined
and ensured through fixtures, mobile robots often work in
an environment where this strict structure is not present.
In conjunction with the low precision of mobile robot
locomotion, geometric uncertainty exists to an extent so that
has to be handled. Therefore, sensors are added – either
integrated into the robot, or mounted in the environment –
to resolve the uncertainty based on measurements, and to
consistently update the world model – the representation of
the application’s beliefs about its environment – accordingly.
In popular approaches, the processing of sensor data is
explicitly implemented or configured for the given scenario
to form the robot’s world model.

In contrast, this paper proposes to independently define
the logical model (consisting of the logical relationships)
and the measurement model (defining the meaning of sensor
measurements in a geometric context). Based on these def-
initions and available sensor data, the proposed framework
derives an estimation pipeline for the current situation.
This estimation pipeline is created at run-time and provides
consistent data for different robots that are controlled from
the same application, each working with its available data.

Figure 1. Handing over an object between two moving youBots.

Hence, the main contribution of this paper is a proposed
separation of logical relationships and sensor interpretation
which allows automatic derivation an estimation pipeline. In
doing so, the estimation process no longer has to be con-
figured manually, but emerges from the given relationships
and measurements. Additionally, the estimation pipeline can
automatically adapt to changes in the environment. For
example, when a robot grasps an object, sensor data no
longer defines the position of the object in the environment,
but rather its position in the gripper.

As a further contribution, this approach allows consistent
world models between cooperating mobile robots, where
a common logical model is used, while for each robot
its available sensors are used to derive information about
geometric aspects it knows about. This offers better reusabil-
ity, because common logical models, but also definitions
of sensor interpretations can be used in other contexts,
independent from the exact estimations they yield there.

As a real-world example, the interaction of two mobile
robots is analyzed. One KUKA youBot picks up a baton
placed in a predefined area of the room, and subsequently
takes it to an area where it hands it over to a second youBot.
This handover procedure takes place in motion while the

Paper accepted for 2017 First IEEE International Conference on Robotic Computing (IRC) © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI: 10.1109/IRC.2017.62

Figure 2. Software structure for distributed robots, adopted from [1].

youBots approach and pass each other. For this example, two
youBots with laser scanners are used, along with a Vicon
optical position tracking system. Both youBots are equipped
with Vicon markers, while the baton is detected using the
on-board laser scanners. Fig. 1 shows the two parts of the
application, first picking up the baton and subsequently
handing it over to the second youBot. The software for
this example is implemented in an object-oriented fashion,
representing the robots and baton as objects and correctly
tracking their logical and geometric relationships during the
process, so that the world model remains consistent with the
real-world situation.

The remainder of the paper is structured as follows:
In Sect. II, the overall approach is outlined. Then, the
specification of logical relationships (Sect. III-A) and sensor
meaning (Sect. III-B) is explained. Sect. IV details how
the estimation is performed based on these specifications.
In Sect. V, related approaches in theory as well as in
existing robot frameworks are compared. To conclude the
paper, Sect. VI explains the example implementation and
experimental results and Sect. VII gives a conclusion and
outlook.

II. APPROACH

When considering cooperating robots, the underlying soft-
ware architecture influences how and where data is available.
Fig. 2 (adopted from [1]) shows a way typical software
architectures for distributed cooperating robots can be struc-
tured. Each robotic device is represented and controlled by
a device driver which is defined as the component that com-
municates – usually in a real-time capable way – with the
device through a vendor-specific interface. It has to forward
control inputs to the device and receive feedback from the
device. One or multiple device drivers belong to a system
where all knowledge is shared between the components (no
longer necessarily with real-time guarantees, e. g. ROS nodes
belonging to the same master). Hence, all components within
one system are allowed to access each other’s provided data,
as well as to communicate with and send commands to each
other.

To perform a desired task, an application controls the
involved systems to coordinate the work flow (e. g., two
systems in the example of cooperating, but independent

youBots). Within an application, data is read from and
commands are sent to controlled systems in order to have
the corresponding devices execute the overall task. Each
application performs its task based on its knowledge about
controlled devices, systems and the environment. This in-
cludes geometric information such as positions and ori-
entations of the relevant objects, as well as information
about the structure of (parts of) the environment (e. g.,
topologies, maps), physical data (e. g., mass, friction) or
shape data (e. g., 3D models). The world model data can
be differentiated into dynamic and static knowledge. While
static knowledge (e. g., given maps, shapes or physical data)
is valid and available everywhere, dynamic knowledge (e. g.,
positions or sensor data) may be known in only one system
or be different among different systems. The latter can be
the case for the position estimation of mobile robots.

The environment of a robot consists of various physical
objects, each at its respective position. The contribution of
the presented approach is to propose how to model logical
relationships between these objects, i. e., the topology of the
known environment, as static knowledge in order to infer
dynamic knowledge automatically and in a consistent way.
Inferring a consistent world model is especially important
in the case of multiple systems in one application, such as
distributed robots that have to work together to achieve a
task. For example, on-board sensors a robot is equipped with
are only accessible in the system the robot is part of and,
thus, can only be used for commands regarding this system.
The responsibility for static knowledge, as it is the common
part of the world model, lies at the application. Hence, the
application manages topology changes, e. g., if and how a
priori unknown objects are integrated into the topology.

Depending on the amount of structure in the environment,
some geometric positions of objects are constant and can
thus directly be modeled as static knowledge. Other posi-
tions however change over time and, thus, cannot be given
exactly for an application that should be reusable later. Still,
in order to work with them the application has to know about
the existence of these objects and their logical relationships
to further objects. Although these objects do have an exact
position in the physical world, the application initially has
no precise position information, which limits the amount of
interaction that can be performed with these items.

To improve this situation, sensing can be employed to give
the robot a glance of its environment. Based on sensor data,
some positions (and velocities) of objects can be recovered,
contributing to the geometry and, thus, dynamic knowledge
of the application. To facilitate this, the interpretation of sen-
sor measurements in a geometric context has to be defined.
At application run-time, these interpretation definitions and
incoming sensor data can be used to update the unknown
or uncertain parts of the world model, so that it reflects
a consistent interpretation of the received sensor data. In
software, this process is performed through the introduction

Relation

World View

«DynamicKnowledge»

Estimated
Position

«DynamicKnowledge»

Sensor Data

«StaticKnowledge»

Frame

«StaticKnowledge»

Sensor

«StaticKnowledge»

Fixed
Position

«StaticKnowledge»

Placement

«StaticKnowledge»

Static
Connection

«StaticKnowledge»

Observation

«StaticKnowledge»

Dynamic
Connection

«StaticKnowledge»

Logical Relation

Estimator

Geometric
Relation

«create»

«create»

*

*

1..*

1

2

Figure 3. Concept model for describing both the static and dynamic
knowledge of a robotic application using different kinds of Relations
between spatial features of physical objects.

of logical and geometric relations, along with observations
defining the semantics of sensor data and estimations derived
from this information.

Fig. 3 gives an overview of the concepts used to express
this information. A robot’s or to be precise a system’s
knowledge about itself and its surrounding world is called
a World View and consists of a set of Relations. A Relation
correlates spatial features of objects like robots, workpieces
or obstacles in the application. Such spatial features are
modeled as Frames, which represent Cartesian coordinate
systems. One type of Relations are Logical Relations. Those
describe statically known logical correlations among ob-
jects’ Frames. Objects that are connected to each other in
a constant way, like a robot being mounted on a table,
should be represented as Static Connections. Other tight,
but variable connections, like the relation between a robot
joint and its associated links, should be modeled as Dynamic
Connections. For rather loose and changing correlations like
objects being placed somewhere on the ground in the vicinity
of another object, Placements are available.

The second type of Relations, Geometric Relations, form
the geometric model and can describe the geometric position
of an object relative to another, e. g., as a transformation
matrix. Geometric Relations correspond to (sequences of)
Logical Relations. They can either be constant (Fixed Posi-
tion, e. g., for the position where the robot is mounted on
the table), or be calculated from sensor values (Estimated
Position).

However, Estimated Positions and their computation rule
do not have to be defined explicitly, but may emerge auto-
matically during application runtime: The application only
has to define the interpretation of a sensor as Observations.
Because an Observation is a special Relation, it describes
a correlation between two Frames. Based on these Ob-
servations and the Logical Relations, so-called Estimators
automatically derive ways to process sensors in order to
recover geometric information about unknown positions, and
provide them as computation rules for Estimated Positions

Tracking Origin

youBot

Marker

Origin

Start Position

Sensor

Botyou

Positionrt PStar

SensorSe
Baton

Static Connection

Dynamic Connection

Placement

Logical RelationL i l R l ti

Figure 4. Logical model of the youBot environment

computed from Sensor Data.

III. DEFINING THE LOGICAL MODEL AND
SENSOR INTERPRETATION

Basic ingredients of the world model are spatial fea-
tures, called (coordinate) Frames. Each Frame represents a
(named) position in space, including an orientation. However
note that a Frame per se does not know its absolute position
in space – the position is only defined relative to other
Frames through Geometric Relations. Concerning these spa-
tial features, a logical structure exists that is modeled in the
logical model. Additionally, some features are part or target
of sensor measurements which have to be interpreted in their
corresponding context.

A. Defining the Logical Model

Between Frames, Relations can be established. As a basis
of the environment model, Logical Relations describe that
certain Frames are connected to each other, and include
information about the durability of the link. The structure
of Frames and Logical Relations forms an undirected graph,
which allows navigation between different Frames if a se-
quence of Logical Relations exists that forms a path between
the two Frames.

Fig. 4 gives an example of Frames and Logical Relations.
Frames are depicted as named groups of arrows, which give
the position as the intersection between the three arrows.
Logical relations are shown as arrows between the Frames.
The example shows Frames for a Start Position and a Track-
ing Origin which are linked to an Origin frame, along with
a youBot that is linked to its Start Position. Additionally, a
Marker frame representing the position that can be tracked
by the optical tracking system is connected to the youBot, as
well as the Sensor frame where the laserscanner is mounted.
Additionally, a Baton is placed on the ground and thus
connected to the Origin.

In this scenario, the different relationships have a different
meaning, and are thus represented as different types of
relationships. The position of the Tracking Origin relative to
the Origin is fixed and given, and thus represented as a Static
Connection. Similarly, the position of the Marker and Sensor
relative to the youBot is fixed and constant. In contrast, the
Start Position of the youBot in the world (relative to Origin)

Tracking Origin

youBot

Marker

Origin

Start Position

Bot

Positionrt PStar

SensorSe

Tracking Origin

Mark

you

Positionrt Ptar

nsorSe
Baton

ObservationOb ti

Logical RelationL i l R l ti

Figure 5. Excerpt of the World model for a youBot platform tracked using
an optical tracking system.

is not fixed, but the youBot is rather placed into the world.
Thus, this relationship is a Placement, as well as the one to
the Baton. The position of the youBot relative to its Start
Position is controlled by the youBot and is thus modeled
as a Dynamic Connection. Consequently, Static Connection
and Dynamic Connection represent persistent relations that
will exist for the entire run time of an application, while
Placements are transient and can be removed. Placements
and Static Connections are assumed to model a relationship
with constant transformation, while the transformation of
Dynamic Connections varies over time.

When the baton is grasped by the youBot, the Placement
from Origin to Baton is removed, and a new Placement
from the Gripper to the Baton is established. This topology
change that occurs at application run time has an influence
on the geometric relations and is detailed in the following
sections.

B. Defining the Sensor Interpretation

To derive a geometric model elaborating the logical model
defined above, Geometric Relations providing transforma-
tions and velocities have to be added. For relations that
are not given statically, this transformation often has to
be derived from sensor measurements. To achieve this, the
semantics of measured sensor data have to be defined in
the form of Observations that describe that a certain aspect
of the World model is measured by a given sensor, or can
be calculated from given Sensor Data. For the scope of
this paper, we limit ourselves to measurements that provide
the full transformation and velocity between two Frames,
however not limited to Frames that are directly connected
by logical relations. For more complex cases, measurements
could e.g. also define partial information such as the distance
between two Frames or the distance to a given plane (e.g.
for the height of a quadcopter) or give information about
velocities and accelerations only.

Looking into robot environments, different types of sen-
sors and correspondingly observations occur: For logical
relations inside Actuators, most can be measured through
proprioceptive sensors. Then, the sensor semantics can be
defined following the logical structure of the object: In
the case of the youBot base, observations can be defined

Tracking Origin

youBot

Marker

Origin

Start Position

Sensor

Tracking Origin

Mark

Bot

Positionrt P

SensorSe

Positionrt P

nsorSe

Byou

rStarrtarS

Baton

ObservationOb ti

EstimationE ti ti

Logical RelationL i l R l ti

Figure 6. Estimations established for a youBot platform when all sensors
are available

that describe the position of the wheels relative to their
wheel mount frames using sensor data provided by the
wheel encoders. Similarly, the transformation between Start
Position and the youBot is provided through odometry
calculations based on wheel encoders, so the observations
describe transformations that follow a logical relation.

For other logical relations, however, this is not the case:
Assuming the youBot platform is driving on the floor starting
at a position not exactly known, application geometry is
usually modeled as a Placement from the Origin frame to
the youBot Start Position (cf. Fig. 4). Its transformation
however cannot be measured directly, because the Start
Position is an intermediate concept that does not have a
direct representation in the physical world (at least after
the youBot platform has moved). Fig. 5 as an extension
to Fig. 4 gives an overview of this situation. It shows a
youBot platform on the floor that is tracked through an
optical tracking system. In addition to the logical model,
three observations are given (represented as dotted arrows).
As mentioned above, the position of the youBot relative to its
Start Position is given by odometry sensors. Additionally, the
Marker of the youBot is tracked using the tracking system,
so the observation between Tracking Origin and Marker is
given by the tracking system. Furthermore, the Baton is
tracked from the Sensor through the laserscanner (with some
post-processing). The transformations defined by the second
and third observation cannot directly be used to describe
the transformation of a Logical Relation, but first have to be
converted.

Looking at the three observations given here, the first and
third are only applicable on the youBot system, because
they use sensor data that is only available to the youBot.
The second observation however can be used wherever
the tracking system’s data is available, e.g. for a second
cooperating youBot.

IV. DERIVING GEOMETRIC INFORMATION
THROUGH ESTIMATION

To coordinate the interplay between logical relations and
observations and to provide estimations for the uncertainties
present, the concept of Estimators on the system level is
introduced. An Estimator listens to changes in the logical

Tracking Origin

youBot

Marker

Origin

Start Position

Bot

SensorSe

Tracking Origin

Mark

B

Positionrt PStar

Baton

ObservationOb ti

you

Positionrt Ptar

nsorSe
Baton

Unavailable sensor data

EstimationE ti ti

Logical RelationL i l R l ti

Figure 7. Estimations established for a youBot platform from an outside
view if only tracking data is available

relations as well as observations, and augments its World
View with Estimated Positions that reflect one Logical Rela-
tion or shortcut multiple ones. These Estimated Positions
can be seen as estimation pipelines processing the data
provided by sensors as defined in the observations, giving
computation rules for how to calculate the transformation
and velocity if the sensor’s dynamic knowledge is available
in the corresponding system.

Given the example in Fig. 6, the Estimator creates three
Estimated Positions: The first relation goes from the Start
Position to the youBot frame and takes the value from the
odometry sensor as a transformation. The second relation
from Origin to Start Position is a bit more complex: The
transformation can be combined from the transformation
from Origin to Tracking Origin, followed by the trans-
formation provided by the Observation, the transformation
from the Marker to the youBot and the transformation from
youBot to Start Position. For the last part, the transfor-
mation provided by the first estimated Relation has to be
used. Similarly, the third transformation can be computed
using the observed position of the Baton, along with the
estimated position of the youBot. However, when another
robot observes the youBot from outside, the sensor data
for the odometry Observation as well as the laserscanner
measurements are not available. In this case, the Estimator
has to create an Estimated Position directly from the Origin
frame to youBot (cf. Fig. 7).

A. Establishing and Updating the Geometric Model

At application run-time, Estimator implementations work
as listeners that react to changes in the Observations, Logical
and Geometric Relations. The Estimator tries to find cycles
in the graph formed by Logical Relations and Observations,
and uses their information to build new known Estimated
Positions. In cycle search, it tries to minimize the number
of Logical Relations without corresponding Geometric Re-
lations required to form estimations in order to keep the
estimations structurally as close to the logical structure as
possible. The resulting cycle then consists of an Observation,
a (maybe empty) sequence of Geometric Relations, followed
by a sequence of Logical Relations (that will be estimated
and should thus be as short as possible), and a (possibly

ObservationOb ti

EstimationE ti ti

Logical Relation

(a) Adding a Logical Relation

(b) Removing a Logical Relation

Figure 8. Estimation modifications when changing Logical Relations

empty) sequence of Geometric Relations closing the loop.
For a found cycle, the Estimator takes the Observation’s
transformation and velocity and converts it for the Frames
forming the start and end of the Logical Relation sequence,
so that calculation rules describing the overall behavior
(position and velocity) of the Logical Relation sequence are
available. These calculations are then used to define the
Estimated Position, and subsequently evaluated whenever
this aspect of the World model is accessed by the application,
e.g. during motion planning.

When a Logical Relation is added (cf. Fig. 8(a)), an
Estimator checks if any of its known Observations can
be used to form a cycle in the World view including
the new Logical Relation. If so, an Estimated Position is
established based on the Logical Relation and Observation.
For Geometric Relations added, the Estimator checks if the
new Geometric Relation has an effect on any of the existing
estimations. This is the case when the Relation influences the
first or last Logical Relation resolved through the estimation,
causing the Estimated Position to be recreated based on the
new situation. When a Logical Relation is removed (cf.
Fig. 8(b)), the corresponding estimations become invalid
and are removed. Similarly, removing Geometric Relations
can invalidate estimations if they occurred in the cycle
used to build the estimation, so new estimations for the
corresponding logical connections have to be built.

Adding an Observation (cf. Fig. 9(a)) may allow resolving

(a) Adding an Observation

ObservationOb ti

EstimationE ti ti

Logical Relation

(b) Removing an Observation

Figure 9. Estimation modifications when changing Observations

one of the Logical Relations by forming a cycle including the
new Observation and building a corresponding estimation.
If the resulting estimation contains a subset of the Logical
Relations used in another estimation, the latter estimation
is removed and recreated with the option to use the newly
built estimation, bringing the estimations closer to the logical
structure (e. g. in the last step of Fig. 9(a)). When an
Observation is removed that has been used by estimations
(cf. Fig. 9(b)), the corresponding Estimations are removed
and new cycles for the corresponding Logical Relations are
searched.

As an example, a workpiece tracked by a sensor is
considered: The workpiece lying on the floor is connected to
the ground using a Placement. Additionally, an Observation
is given that provides the position of the workpiece relative
to the sensor, and thus allows the calculation of a trans-
formation for the Placement. However, once the workpiece
is grasped, the Placement on the ground is removed and
another Placement to the gripper is added. In this situation,
the same Observation now has to be used to provide another
Estimated Position. This case is automatically handled by
Estimators.

B. Handling Delayed and Infrequent Data

In simple cases, the Estimator can assume that all sensors
used in Observations are precise and provide values all the
time, without any time delay. Then, the estimator can use
the latest position data from all Observations to define its
Estimated Positions.

For Observations referencing Sensor Data that are only
provided sporadically or delayed, a more complex Estimator
is required, however still following the method outlined in
Sect. IV-A. It still assumes that all Observations are pre-
cise, but accepts that some Observations are only provided
infrequently, but with correct time stamps (as seen by the
tracking system when an object is temporarily lost or a
lag in wireless network communication occurs). It further
respects the types of Logical Relations. For Placements and
Static Connections, it assumes that they are actually constant
and only have to be changed to correct measurement errors
(which is true for objects placed on the ground, as well
as for the Start Position of a youBot), while for Dynamic
Connections extrapolating with constant velocity is an ap-
propriate estimation. In this case, Estimated Positions are
created between the same Frames as in the simple case,
however, transformations are taken from a consistent time
snapshot and extrapolated if required. While supporting
more use cases, this estimator has the disadvantage of
increased memory usage and computation time: To calculate
estimations for a consistent time, it has to keep track of
previous values and times of the sensor data, and has to
select a corresponding time to use the data from. Especially
on resource-constrained systems that need an estimator that
runs at a high frequency with hard real-time guarantees,

using a simple estimator instead can thus be a better option
when no greater time delays are to be expected for the sensor
data.

V. RELATED WORK

Looking at control theory, the process of integrating
sensor data into the world model is similar to the concept of
state observers used along with the state-space representation
of a system model: A system model consists of a state
equation describing the behavior of the system under the
influence of the given system inputs, and an output equation
that defines the relationship between system state and the
measured variables. Standard estimation methods such as
the Kalman Filter [2] for linear problems allow processing
system inputs and measurements to recover the state of
the system, tracking the uncertainty of the present state
variables. For non-linear problems (that occur in robotics,
e.g. through rotations that have an non-linear effect on the
robot position when the robot drives forward), extensions
of the Kalman Filter [3] are available such as the Extended
Kalman Filter linearizing the problem around the given state,
or the Unscented Kalman Filter that samples chosen points
in the probability distribution. Furthermore, Particle Filters
[4] allow tackling problems with greater uncertainty, such
as an initial localization of a robot in a known map. These
methods can also form the basis of further Estimators for
use in the proposed approach, introducing the handling of
uncertainty and Gaussian noise.

Looking at ROS, the frame graph is typically managed
through the tf library [5], where a tree of geometric re-
lationships between frames can be established. However,
no semantic information is contained there, apart from
a separation between static and dynamic transformations
(through the /tf static and /tf topics). Estimation and sensor
integration for robot positions is typically performed through
specialized components. According to ROS Enhancement
Proposal 105 [6], mobile platforms should be modeled with
three distinguished frames: The frame map represents the
origin of the robot environment (and a corresponding map),
while odom represents the starting point of the robot and
base denotes the robot itself. The transformation between
map and base does not have to be continuous, but may
not drift over time, while the transformation between odom
and base has to be continuous, but may exhibit unbounded
drift. In the frame tree used in ROS, odom is the parent
frame of base, while map is the parent of odom. This
modeling is similar to the model used in the proposed
approach, with odom representing the Start Position and map
representing a fixed frame (such as the Tracking Origin or
Origin). To handle sensor data, robot pose ekf [7] and later
robot localization as described by Moore et al. [8] provide
different estimation algorithms as ROS Nodes, including an
Extended and Unscented Kalman Filter. These Nodes can
process various sensor data, including global positioning

(a) Situation before handover (b) Situation during handover (c) Situation after handover

ObservationOb ti

Logical RelationL i l iR l ti

(d) Model before handover

ObservationOb ti

Logical RelationL i l iR l ti

(e) Model during handover

ObservationObservationOb ti

Logical RelationL i l iR l ti

(f) Model after handover

Figure 10. Passing the baton – model and reality

systems (GPS), inertial measurement units (IMU) and odom-
etry (ODOM) data, and publish the transformation between
map and odom or the transformation between odom and
base. However, these estimation nodes have to be configured
manually, and cannot be used with topology changes: For an
object first tracked using multiple sensors, and then grasped
by a robot, the parent frame changes, and thus the estimation
node has to be reconfigured.

In OROCOS, sensor data and estimation can e.g. be
handled through the iTaSC framework [9]. There, uncertainty
can be defined for object or feature coordinates, which is
then processed during task execution using standard estima-
tion techniques (as introduced above). However, this world
model and observation uncertainty model is tied to one given
task and is only in effect during task execution. In contrast,
in the proposed framework, the logical model, uncertainties
and observations can be defined globally and independently,
which allows sensor data processing between the execution
of different tasks and the derivation of uncertainty and
measurement models for a given task from the global model.

VI. EXPERIMENTAL RESULTS
The concepts introduced in this paper have been evaluated

in multiple scenarios, one of which uses two cooperating
youBots. On the hardware side, each youBot is equipped
with a bionic soft gripper [10] mounted at the arm, a WiFi
adapter, as well as with retro-reflective markers to provide
position tracking. On the system level, both youBots are
controlled as separate systems without implicit data transfer,
based on a C++ implementation of the Robot Control
Core [11] running the onboard computer under Linux with
Xenomai extensions to achieve real-time control. However,
they are allowed to receive Vicon tracking data through
WiFi (that sometimes exhibits time delays), as well as
tasks from an application. On the application level, a single

application is used, written in Java based on the Robotics
API [12], executed on a standalone computer. However, this
application could as well have been executed on any of the
youBots.

In this application, a common world model is defined,
consisting of the logical model as well as the available
sensors and their observations as detailed in the previous
sections. For picking up the baton, the raw distance readings
of the laser scanner are first filtered, limiting them to
distance readings that are within a radius of 50cm around the
expected pick up position. Then a pole detection algorithm
is used that searches for clusters of a length corresponding
to the expected diameter of the baton. The detected cluster
position is used as Sensor Data for the Observation of the
Baton. Based on the (dynamically estimated) position of
the baton, the pickup process is executed. For passing the
baton, the application commands the youBot platforms to
pass each other, while the gripper is commanded to move
towards the center position between the two youBots. Once
the distance between the youBots is sufficiently small, the
receiving youBot closes its gripper to grasp, followed by
the other youBot releasing the baton. When both youBots
reach a certain distance after passing each other, the arm
motion is stopped, completing the task. These tasks are
specified on the full world model, while for execution for
each system the tasks are translated into a representation
that only uses available data. This way, for each system a
corresponding view is automatically derived at run-time and
used for command execution, using only the sensor data and
estimations available at each youBot.

Fig. 10 shows pictures of an example run1 of the handover
procedure, along with the logical relations and observations
present at the corresponding times. During execution, the

1A video is available at http://video.isse.de/consistentworldmodel

available estimated positions differ between both youBots:
While each youBot knows its start position, it does not know
the start position of the other youBot (cf. Fig. 6 and 7).
Of course, both youBots could have resorted to a model
where the Vicon sensor measurement is used to calculate
the position of the youBot relative to the Origin (cf. Fig. 7).
However, using a more fine-grained model where available
(Fig. 6) provides better performance when the tracking
system fails: Whereas in this case no further information
about motion is available through the Vicon system, the
motion of the youBot relative to its start position can still
be tracked using odometry, assuming that the start position
remains stationary relative to the Origin. This estimation is
better than a simple extrapolation of the previous motion
based on a constant velocity or acceleration scheme (which
has to be applied in the case of Fig. 7), because it takes
into account the measured wheel revolutions, and can thus
handle non-uniform motions.

To show the utility of this approach and the possible re-
use, the same application was used in another system set-
up: There, both youBots were configured to be in a single
(simulation) system. In this case and without modifying the
application or any estimation configuration, at run time only
a single world view was created for the simulation system,
including estimation models for both youBots similar to
Fig. 6. Also in this scenario, the baton could be handed over.
Further application examples using the proposed concepts
are explained in [13].

VII. CONCLUSION

In this paper, we introduced a separation between logical,
geometric and measurement information for robotic world
models. Logical relationships describe correlations of phys-
ical objects via their spatial features which can be reused
in different use cases or even applications. Moreover, such
correlations are often an inherent part of the model of a
robotic device that thus only have to be modeled once. Using
the introduced concepts of Observations as measurement
definition based on spatial features and Estimators to dy-
namically integrate the sensor data as geometric information
at run-time can be seen as a powerful modeling tool for robot
programming, allowing the specification of relationships that
can be used by different estimation techniques. An important
contribution of this paper is that this separation automatically
helps to create consistent world views when dealing with
distributed robot systems or changing environments, because
changes to the logical model are reflected in all World views.

Apart from continuous computations at run-time, the
modeled relationships can additionally be used for offline-
processing, allowing parameter estimation based on recorded
sensor values through non-linear optimization. Possible use
cases here are to determine the exact position of a tracking
marker relative to the robot it is attached to, or the calibrate
a robot by performing certain motions, recording the sensor

data and optimizing the system parameters in a way to
minimize the difference between observations and system
model.

REFERENCES

[1] A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and
W. Reif, “On structure and distribution of software for
mobile manipulators,” in Informatics in Control, Automation
and Robotics; 12th International Conference, ICINCO 2015;
Colmar, France, July 21-23, 2015; Revised Selected Papers,
ser. LNEE, J. Filipe, K. Madani, O. Gusikhin, and J. Sasiadek,
Eds. Springer, 2016, vol. 383, pp. 209–228.

[2] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Fluids Engineering, vol. 82,
no. 1, pp. 35–45, 1960.

[3] S. Julier, J. Uhlmann, and H. Durrant-Whyte, “A new ap-
proach for filtering nonlinear systems,” in Proceedings of the
1995 American Control Conference, vol. 3, Jun 1995, pp.
1628–1632.

[4] B. Arulampalam, Beyond the Kalman Filter: Particle Filters
for Tracking Applications. Artech House, 2004.

[5] T. Foote, “tf: The transform library,” in Proceedings of the
2013 IEEE International Conference on Technologies for
Practical Robot Applications (TePRA 2013), Apr 2013, pp.
1–6.

[6] W. Meeussen. (2010, Oct) Coordinate frames for mobile
platforms. Online, accessed Feb 2016. [Online]. Available:
http://www.ros.org/reps/rep-0105.html

[7] W. Meeussen and D. V. Lu. robot pose ekf.
Online, accessed Feb 2016. [Online]. Available:
http://wiki.ros.org/robot pose ekf

[8] T. Moore and D. Stouch, “A generalized extended kalman
filter implementation for the robot operating system,” in Pro-
ceedings of the 13th International Conference on Intelligent
Autonomous Systems (IAS-13). Springer, Jul 2014.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-
based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty,” The Inter-
national Journal of Robotics Research, vol. 26, no. 5, pp.
433–455, 2007.

[10] BionicTripod with FinGripper – versatile movement and
adaptive grasping. Online, accessed Feb 2016. [Online].
Available: https://www.festo.com/cms/de corp/9779.htm

[11] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and
W. Reif, “Flexible and continuous execution of real-time
critical robotic tasks,” International Journal of Mechatronics
and Automation, vol. 4, no. 1, pp. 27–38, Jan 2014.

[12] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif,
“Robotics API: Object-Oriented Software Development for
Industrial Robots,” Journal of Software Engineering for
Robotics, vol. 4, no. 1, pp. 1–22, 2013.

[13] A. Schierl, “Object-oriented modeling and coordination of
mobile robots,” PhD thesis, Universität Augsburg, 2017.

