
Back-to-back testing of self-organization mechanisms

Benedikt Eberhardinger, Axel Habermaier, Hella Seebach, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Eberhardinger, Benedikt, Axel Habermaier, Hella Seebach, and Wolfgang Reif. 2016.
“Back-to-back testing of self-organization mechanisms.” In Testing Software and Systems:
28th IFIP WG 6.1 International Conference, ICTSS 2016, Graz, Austria, October 17-19, 2016,
proceedings, edited by Franz Wotawa, Mihai Nica, and Natalia Kushik, 18–35. Cham:
Springer. https://doi.org/10.1007/978-3-319-47443-4_2.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-319-47443-4_2
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Back-to-Back Testing of Self-organization
Mechanisms

Benedikt Eberhardinger(B), Axel Habermaier, Hella Seebach,
and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{eberhardinger,habermaier,seebach,reif}@isse.de

Abstract. When developing SO mechanisms, mapping requirements to
actual designs and implementations demands a lot of expertise. Among
other things, it is important to define the right degree of freedom for
the system that allows for self-organization. Back-to-back testing sup-
ports this hard engineering task by an adequate testing method helping
to reveal failures in this design and implementation procedure. Within
this paper we propose a model-based approach for back-to-back test-
ing. The approach is built on top of the S# framework and integrated
into the Visual Studio development environment, enabling the creation
of executable test models with comprehensive tooling support for model
debugging. By applying the concepts to a self-organizing production cell,
we show how it is used to fully automatically reveal faults of a SO mech-
anism.

Keywords: Adaptive systems · Self-organization · Software
engineering · Software testing · Quality assurance · Back-to-back
testing · Model-based testing

1 Introduction

The increasing complexity of current software systems has led to an increase of
autonomy of software components that are resilient, flexible, dependable, versa-
tile, recoverable, customizable, and self-optimizing by adapting to changes that
may occur in their environments [11]. Self-organization (SO) has become a key-
stone in the development of autonomous systems, allowing them to adapt their
behavior and structure in order to fulfill their goals under ever-changing envi-
ronmental conditions. Mechanisms of SO are built on top of the concepts of
classical feedback loops (cf. [9,16]). Therefore, the environment and the compo-
nents are sensed and controlled, using the feedback to adapt the behavior and/or
structure of the components. Different architectural concepts were developed to
engineer SO mechanisms, e.g., the MAPE Cycle [9] or the Observer/Controller
Architecture [16]. As an important part of the development of SO mechanisms,
testing needs to be integrated in order to achieve the required quality level of
the system.

19

This paper presents a thorough approach for supporting the engineering
of SO mechanisms by back-to-back (BtB) testing [19] of feedback loop-based
self-organization mechanisms. In our experiences in developing SO mechanisms,
mapping requirements to actual designs and implementations demands a lot of
expertise. Among other things, it is important to allow the system the right
degree of freedom to enable self-organization. Back-to-back testing supports this
engineering task with an adequate testing method helping to reveal failures in
this design and implementation procedure. In order to supply BtB testing for
SO mechanisms, we are faced by the following challenges:

1. Supplying test oracles that are able to cope with the unbounded decision
space formed by different possible configurations of the systems controlled
by the SO mechanism(s) as well as the huge state space of the mechanisms
themselves.

2. Systematic test case selection is needed since exhaustive testing is not possible
due to the unbounded state space. Additionally, most SO algorithms are based
on heuristics, making their behavior quite non-deterministic and their state
space non-uniform. Thus, common test case selection strategies relying on
structured program behavior cannot be used.

3. Automation of test execution and evaluation is a keystone for the success,
since this is the only way to execute the large test suites.

We address these challenges in a model-based approach for BtB testing where
the test model mainly consists of two parts: (1) the model of the system con-
trolled by the SO mechanism, i.e., the environment model, and (2) the model of
the intended behavior of the SO mechanism, i.e., the test model. The latter is
based on our concept of the corridor of correct behavior (CCB) [7] that describes
the intended behavior of the system as a set of constraints. The concept of the
CCB is used as part of the test oracle by evaluating the constraints on the current
state of the model resp. system [3].

The model of the system to be controlled by the SO mechanism is used
for test case generation as well as for their execution. This is possible due the
S# modeling framework used by our approach: With S#, executable model
instances can be composed together with a high degree of flexibility in order to
test different system configurations. Furthermore, it is possible to integrate the
concrete SO mechanism(s) under test into the execution environment provided
by S# and to map the mechanism’s state back into the model instances for
evaluation within S#. The evaluation is based on checks whether the current
state matches the constraints made in the model of the intended behavior.

Overall, the following main contributions will be presented:

1. A model-based BtB testing concept for SO mechanisms that is fully integrated
into Visual Studio.

2. An approach for systematic test case selection for BtB testing of SO mecha-
nisms.

3. Automated evaluation of test results within our test model which is based on
the concepts of the CCB.

20

The paper is organized as followed: The next section embeds the approach
into our overall testing concept for self-organizing, adaptive systems. After the
introduction of the case study (Sect. 3), Sect. 4 gives an overview of our S#
modeling framework and the BtB testing model. Section 5 describes model of
intended behavior of the SO mechanisms. Section 6 shows how test cases are
generated and executed. Section 7 evaluates the approach. We consider related
work in Sect. 8 and conclude in Sect. 9.

2 The Corridor Enforcing Infrastructure

Our approach for testing self-organizing, adaptive systems (SOAS)—and con-
sequently for testing SO mechanisms—is based on the Corridor Enforcing
Infrastructure (CEI) [3]. The CEI is an architectural pattern for SOAS using
regio-central or decentralized feedback loops to monitor and control single com-
ponents or small groups of components in order to ensure that the system’s goals
are fulfilled at all times. The CEI implements the concepts and fundamentals of
the Restore Invariant Approach (RIA) [7]. RIA defines the Corridor of Correct
Behavior (CCB), which is described by the system’s structural requirements,
formalized as constraints. Concerning a self-organizing production cell scenario
the CCB is formed by the constraints describing valid configurations of the sys-
tem. The conjunction of all these constraints is called the invariant (INV). An
exemplary corridor is shown in Fig. 1: The system’s state is inside the corridor
if INV is satisfied; otherwise, the system’s state leaves the corridor, indicated
by the flash. In that case, the system has to be reorganized in order to return
into the corridor, as shown by the transition with a check mark. A failure occurs
if a transition outside of the corridor is taken, like the one marked by a cross,
although a transition back into the corridor exists.

The CEI implements the RIA either with centralized or decentralized pairs
of monitors and controllers, as proposed by the MAPE cycle [9] or the Observer/
Controller (O/C) architecture [16]. Figure 2 shows a schematic view of one possi-
ble implementation of the CEI based on the O/C architecture where the essential
parts are the system under observation and control (SuOC), i.e., single agents
or groups of agents; the observer (O), i.e., the component monitoring the state
of the SuOC (in- or outside of the CCB) and providing information to the con-
troller; and the controller (C), i.e., the SO algorithms controlling the SuOC.

Fig. 1. Schematic state-based view of the corridor of correct behavior; INV is the
conjunction of all constraints of the system controlled by the CEI [3].

21

O C O C O C

O C

O C O C O C

O C

O

SuOC

C O

SuOC

C O

SuOC

C

O C

Observer

Constraint Monitor

Controller

Self-x-algorithms

O

SuOC

C O

SuOC

C O

SuOC

C

Agent Layer

Interaction Layer

System Layer

R-Detect R-Solution

R-Distribution

Fig. 2. Schematic view of one CEI implementation and its different layers for testing
(agent, interaction, and system layer) [2].

Note that the CEI consists of sets of nested feedback loops controlling the entire
system. Figure 2 further sketches the different layers for testing to cope with the
complexity of the system: agent, interaction, and system layer.

The reorganization by the controller is performed by one or more SO algo-
rithms resulting in a new system configuration. Such a system configuration has
to satisfy the constraints describing a valid organizational structure. The con-
crete choice of the SO algorithms and their constraints has no impact on our
approach. Since the system behaves like a traditional software system inside the
CCB, traditional test approaches can be used to ensure the quality of the SuOC.
The CEI, by contrast, enables self-organizing and adaptive behavior of the sys-
tem and demands new concepts for testing to cope with the challenges described
in Sect. 1.

In order to grasp SO mechanisms for testing, we need techniques to stepwise
examine the CEI and its mechanisms, covering the following responsibilities of
the CEI: correct initiation of a reorganization if and only if a constraint is vio-
lated (monitoring infrastructure, R-Detect); calculation of correct system con-
figurations in case of violations (R-Solution); and correct distribution of these
configurations within single agents or small groups of agents controlled by the
CEI (R-Distribution). In this paper, we focus on revealing SO mechanism fail-
ures which relate to (R-Detect) and (R-Solution), extending our approach of
isolated testing of SO algorithms presented in [2].

3 Case Study: The Self-organizing Production Cell

Future production scenarios demand for much more flexibility [4] than today’s
shop floor design to cope with the trend towards small series production, indi-
vidualized products and the reuse of production stations for different tasks. This
flexibility becomes possible due to the increased automation and data exchange

22

in manufacturing technologies. These future cyber-physical systems will inte-
grate self-organization mechanisms to resolve the tasks of decentralized decision
making, to optimize the systems structure, and to autonomously react to com-
ponent failures at runtime increasing the system’s robustness. We envision self-
organizing production cells, where the production stations are modern robots
equipped with toolboxes and the ability to change their tools whenever neces-
sary (self-awareness). They are connected via mobile platforms (carts) that are
able to carry workpieces and to reach robots in any order. Thus, the production
cell is able to fulfill any task which corresponds to tools (capabilities) available
in the cell. This is possible due to the SO mechanisms that reorganize the carts
and robots in a way that the tools are applied to the workpieces in the correct
order. Finding a correct allocation of tools to robots and according routes to
carts (system configuration) constitutes a constraint satisfaction problem. Any
violation of the calculated configuration (represents a state of the system within
the CCB) at run-time triggers the SO algorithm calculating and distributing a
new system configuration. A tool-supported approach to systematically model
and analyze these kind of systems is shown next.

4 Building the Environment Model of SO Systems

The self-organizing production cell is an instance of the system class of self-
organizing resource-flow systems; a metamodel [18] for this system class based
on CEI is explained by Sect. 4. The case study maps to the metamodel as fol-
lows: The robots and carts are Agents monitored by the Observer/Controller. The
carts transport workpieces, i.e., Resources, between the robots, which have sev-
eral switchable tools, i.e., Capabilities, such as drills and screwdrivers that they
use on the workpieces. A Task requires a workpiece to be processed by a sequence

Fig. 3. A UML class diagram giving a simplified overview of the metamodel for self-
organizing resource-flow systems (according to [18]): Resources are passed along a
set of Agents, each applying certain Capabilities in order to conduct a step towards
the completion of the Resource’s Task. The Observer/Controller—encompassing the SO
mechanism—monitors the Agents and assigns their Roles such that all Resources are
eventually fully processed with the correct order of Capability applications. Such a
resource flow is specified by the Pre- and PostConditions of all Roles within the system,
as well as the inputs and outputs of the Agents that establish their interconnections.

23

System
Configuration

S# InstanceS# InstanceComponent
Fault Model

virtual
commissioning

Observer

Controller

copy

M
ap

pi
ng

Observer
Oracle

Controller
Oracle

Actual Behavior Intended Behavior

TCG Evaluation
ResultsDCCA

Algorithm

System under TestTest PlatformS# Test Model

System Model

Configuration
Description

Fig. 4. Our approach is divided into three parts: the first part consists of the S#
test model as well as corresponding configuration descriptions (cf. Sect. 4). The second
part is the test platform that instantiates a system configuration as the basis for the
test case generation with Dcca; the component fault models represent the test cases
that are evaluated (cf. Sects. 4 and 6) and provide the test oracles for the observer
and controller (cf. Sect. 5). The third part represents the actual behavior of the SO
mechanism which must be mapped to the intended behavior after each execution for
evaluation purposes (cf. Sect. 6).

of tool applications, e.g., by applying the drill, insert, and tighten Capabilities.
Therefore, the robots and carts are responsible for processing incoming work-
pieces in a given sequence of tool applications. The Roles assigned to each robot
and cart indicate which tools they apply on the workpieces or which robots the
resources are transported between, respectively. The Observer/Controller forms
the SO mechanism of the system; it is responsible for reconfiguration in order to
compensate for broken tools, blocked routes, or to incorporate new tools, robots,
or carts, for instance (Figs. 3 and 4).

The case study is modeled using the S# modeling and analysis framework
for safety-critical systems [8]. As its modeling language is based on the C#
programming language, the metamodel shown in Sect. 4 can be directly rep-
resented by a set of C# classes, with two additional classes RobotAgent and
CartAgent derived from Agent encapsulating the production cell-specific parts
of the model. Even though the S# model of the case study is represented by a
C# program, it is still a model and not the actual implementation; for instance,
it completely abstracts from any distribution concerns, executing all modeled
agents locally to simplify modeling and analysis. S# also allows the composition
of a model to be automated: Arbitrary C# code can be executed to instantiate
system components and to connect them together in order to build up the overall
model, thereby providing meta-constructs for model creation. These capabilities
are particularly useful for the creation of different system configurations when
testing the case study; model instantiation with S# is illustrated by Listing 1.

CreateWorkpieces(5, produce(), drill(), insert(), tighten(), polish(), consume());
CreateRobot(produce());
CreateRobot(insert());
CreateRobot(tighten(), polish(), tighten(), drill());
CreateRobot(polish(), consume());
CreateCart(new Route(Robots[0], Robots[1]), new Route(Robots[0], Robots[3]));
CreateCart(new Route(Robots[2], Robots[3]));

Listing 1. Parts of the S# instantiation code for a configuration of the case study
consisting of five workpieces that require the task PDITPC to be carried out on them.
Four robots are created with some minor redundancy in available capabilities. The two
carts connect all four robots via bidirectional routes.

24

S# executes the models as regular C# programs, taking care of potential
non-determinism in the models such that all combinations of non-deterministic
choices are fully analyzed. It is also possible to spawn additional processes during
model checking, enabling the integration of other tools into the models and the
analyses: For the case study, for example, a constraint solver is used to model
the SO algorithm within the Observer/Controller. Whenever a reconfiguration is
required, the S# model encodes the current system configuration for the con-
straint solver, requests a solution from it, and applies the returned solution back
onto itself.

5 The Test Model for the Intended Behavior of the SO
Mechanisms

S# integrates, as shown in Sect. 4, the complete testing framework, including
test cases derivation, test cases execution, as well as test case evaluation and
logging. In order to enable the evaluation of test cases, the overall model needs
to be extended by the test model. The extension encompasses a definition of the
intended behavior of the system under test within the S# model, as shown in
the right part of Sect. 4. Within the BtB testing approach, we propose this one
important step: to co-develop the intended behavior of the system and check it
against the actual behavior. Thus, the co-development of the intended behavior
is used in order to check whether it corresponds to the actual behavior. The
intended behavior is modeled in two parts, consisting of (1) a description of
valid system states, i.e., the INV of the CCB for the SO mechanism, as well
as further constraints concerning the form of the results of the SO algorithms
itself and (2) an evaluation mechanism that is able to state whether there is a
possible configuration for the current system state in order to spot whether the
SO algorithm missed a valid solution.

Valid system states are determined using one of the major advantages of
the CCB for testing SOAS: INV is a way to distinguish between correct and
incorrect actions of SO mechanisms—as described in Sect. 2. A failure occurs if
a violation of the CCB is not detected (R-Detect), the computed solution does
not lead to a system configuration inside the CCB (R-Solution), or a correct
solution is distributed incorrectly (R-Distribution). The approach of this paper
focuses on the first two aspects. As a basis for the evaluation, the constraints that
form the CCB are developed separately—an important step of co-development
in BtB testing—and integrated into the model. Listing 2 shows how parts of the
production cell case study’s CCB constraints are specified in the S# model.

The constraints that form the oracle are divided into two parts, one for the
observer and one for the controller (cf. Sect. 4). The observer part describes
all violations of the CCB that have to be detected by the observer. The con-
straints of the observer oracle are evaluated after the observer decided whether to
reconfigure or not and the oracle judges this decision. Afterward, the controller
might be activated—in case of an activation by the observer—and the result is
evaluated by the controller oracle. Note that for both evaluations, the mapping

25

agent.Constraints = new List<Func<bool>>() {
// I/O Consistency
() => agent.AllocatedRoles.All(role => role.PreCondition.Port == null ||

agent.Inputs.Contains(role.PreCondition.Port)),
() => agent.AllocatedRoles.All(role => role.PostCondition.Port == null ||

agent.Outputs.Contains(role.PostCondition.Port)),
// Capability Consistency
() => agent.AllocatedRoles.All(

role => role.CapabilitiesToApply.All(capability =>
agent.AvailableCapabilites.Contains(capability))),

/* ... */
}

Listing 2. Partial S# model representing a subset of the constraints defined for the
oracle.

between the actual SO mechanism has to be establish with the test system, i.e.,
the results need to be interfaced. For the evaluation of the controller a set of
the constraints needs to be evaluated that is part of the controller oracle. In
most cases there are overlaps between the two constraint sets, however, mostly
the set of the controller oracle is a superset of the constraints of the observer
oracle, however, it also might be vice versa. The additional constraints in the
oracles might be due to the fact that additional requirements are necessary to
fully check the results of the different parts of the SO mechanism. In our case
study, this is the case for the controller oracle. The additional constraint con-
cern the assigned roles for the robots and carts: they must be connected in the
correct order for any task after reorganization so that they are applied the right
way (for instance, drill, then insert, then tighten). This constraint would not be
checked by the observer, since no environmental influence would change the role
definitions; only the tools within the roles are affected, for instance.

The satisfiability check of the oracle focuses on another obligation for the
SO algorithm: if a solution for a new system configuration is feasible on the
current system instance, the SO algorithm must find it in order to find a valid
configuration for the running system. If we do not check that second part of
the solution we would neglect faults resulting from too strict restrictions made
as a design decision in the development. Indeed, in the BtB testing approach,
we aim at revealing such errors. For this purpose, it is necessary to search in
the configuration space for possible configuration(s) of the system that fulfill all
requirements resp. constraints considered in the previous paragraph. We use a
search algorithm that systematically checks every given configuration for valid-
ity; if one is found then a solution is possible and the SO algorithm has to find
it. Algorithm 1, for instance, shows a search algorithm that evaluates whether a
reconfiguration is possible for the case study of the production cell: It starts by
checking whether all capabilities needed for the tasks that should be applied in
the system are available, e.g., if a task requires drilling at least one robot must
be able to drill. If that prerequisite is satisfied, the algorithm checks whether the
robots with the necessary capabilities are connected by carts such that work-
pieces can be transported between them in way that the tasks can be fulfilled.
Such an algorithm, if one exists at all, might be expensive in time and space. But
this is acceptable due to the following facts: the check has to be performed only
occasionally during the testing process as it is only executed when no solution is

26

Algorithm 1. Checks whether a reconfiguration is possible for a given set of
robot and cart agents as well as the tasks to be carried out.
Input: robotAgents, cartAgents, tasks
Output: a Boolean value indicating whether a reconfiguration is possible
1: m ← GetConnectionMatrix(robotAgents) // transitive closure of all connected

robots
2: for all t ∈ tasks do
3: if ¬∀c ∈ t.Capabilities: ∃a ∈robotAgents: c ∈ a.AvailableCapabilities then
4: return false
5: end if
6: A ← {a ∈ robotAgents | t.Capabilities[0] ∈ a.AvailableCapabilities }
7: for i = 0 to |task.Capabilities| −1 do
8: A ← {a ∈ m[a′] | a′ ∈ A ∧ t.Capabilities[i + 1] ∈ a.AvailableCapabilities }
9: if |A| = 0 then

10: return false
11: end if
12: end for
13: end for
14: return true

found by the SO algorithm; when the SO algorithm cannot find a solution, the
configuration space is small in most cases.

6 Generating and Executing Test Cases with S#

A necessary prerequisite for deriving and executing test cases is to instantiate
the model with a concrete configuration, e.g., the numbers and kinds of robots in
the production cell. Within one such configuration the number of different test
cases are determined by the different possible environmental events the system
has to adapt to. Since the number of different configurations is unbounded,
a concrete configuration is chosen for testing. Subsequently, test cases for a
chosen configuration are defined by triggering environmental events that are
modeled as S# component faults, e.g., a tool breaks, a path for carts get blocked,
and so on. All of these events result in reconfigurations, i.e., executions of the
SO mechanism. The huge number of configurations and component faults make
exhaustive testing impossible, thus, we follow a two-part test selection strategy.
d latter adding the concrete observer to a tested SO algorithm.

6.1 Test Case Generation for SO Mechanisms

The test strategy we purpose is based on the ideas of virtual commissioning
and boundary interior testing. On the one hand, we only consider one concrete
configuration and use the concepts of virtual commissioning to check other con-
figurations on demand; on the other hand, the concepts of boundary interior
testing are applied to SO mechanisms to find relevant test cases more quickly.

27

Virtual Commissioning of SOAS Systems for Test Case Reduction. The concept
of virtual commissioning is mainly applied in the field of large manufacturing
systems where a virtual manufacturing system is built in order to simulate indi-
vidual manufacturing processes for optimization and validation purposes [10].
Within this virtual environment, the real controller is executed on the virtual
plant enabling to test, tune, or initialize it for a specific configuration of the
plant. We adopt this concept for the reduction of possible configurations of the
system to be tested. The idea is to base the tests on only one configuration,
namely, the one which should be rolled out afterward. Indeed, there will be
changes at run-time, e.g., new robots are integrated, new tools are added, or
tasks change. Before such a change is rolled out to the running system, the
model instance must first be updated and the tests have to be re-run on the
new instance. Since the change of the current configuration of the system is due
to a human intervention—we assume the system not to extend itself by other
components or similar—it is possible to run this test-first-deploy-after strategy
at run-time. Thus, we select only the configuration for testing that is crucial for
the deployment and have the ability to test new configurations on demand. This
is possible due to the generic S# test model in which it is easy to instantiate
new configurations (cf. Listing 1) and to automatize the testing process.

Boundary Interior Testing for SO Mechanisms. For test case selection within
one configuration of the system we adopt the concepts of boundary interior
testing, where the idea is to select test cases at the boundary of expected behav-
ior changes. The boundaries of SO mechanisms are states of the system where
reconfiguration is rarely possible, i.e., where only few solutions are still possible.
Reconfigurations, as we consider them, are mainly driven by changing environ-
mental conditions that force the system to reorganize itself. In our test model,
we define these changing conditions as component faults of the controlled system
such as a robot being unable to apply its tools in the production cell case study.
The component faults are part of the S# model.

In order to find the component faults that bring the system to its bound-
aries, we use Deductive Cause-Consequence Analysis (Dcca). Dcca is a fully
automated model-based analysis techniques integrated into S#, usually used to
assess the system’s safety by computing all minimal cut sets for a hazard [8].
Minimal cut sets are combinations of component faults that can cause a hazard,
characterizing a cause-consequence relationship between component faults (the
causes) and the hazard (the consequence): a set of component faults is a cut set
for a hazard if and only if there is the possibility that the hazard occurs and
before that, at most the faults in the fault set have occurred. Dcca has expo-
nential complexity as it has to check all combinations of component faults. In
practice, however, the number of required checks usually is significantly lower, as
the cut set property is monotonic with respect to set inclusion. Dcca can also be
used to compute the boundaries of SO mechanisms: the hazard is simply defined
as the inability for further reconfigurations. To compute the boundaries, the
combinations of component faults are checked in order to determine whether
such a set does or does not have the potential to cause that hazard. Dcca

28

DCCA w/ HeuristicsDCCA w/o HeuristicsDepth-First Approach

no component faults

all component faults

Fig. 5. The three boxes represent different test case generation strategies. The x-axises
of the graphic shows different system states for a particular SO mechanism under test
that are formed by the possible different configurations and settings of the system under
control. The boundaries of the SO mechanism relative to the number of component
faults activated is shown by the black line. The idea of boundary interior testing for SO
mechanisms is to stay inside and at the boundaries for testing. The left box represents a
näıve depth-first search whereas the middle box shows the boundary interior approach
with the standard Dcca and the right box it extension by heuristics.

automatically chooses the next set of component faults to be activated, i.e., the
next test case, and executes it. S#’s standard approach for Dcca checks the
fault sets by increasing cardinality, thus the approach also includes test cases for
inner boundary tests. The concepts of boundary interior testing for SO mecha-
nism is exemplified in Sect. 6.1. The left box refers to a näıve approach where
test cases are selected in a depth-first attempt and the boundaries of the SO
mechanisms are not taken into account. That implies that many negative test
cases are executed where less faults are expected to be revealed; in our evaluation
no fault has been detected by these negative tests. The middle box of Sect. 6.1
is representing Dcca for boundary interior testing and covers the interiors and
boundaries. The right box shows an extension that is currently under develop-
ment and evaluation where only the boundaries are considered by conducting
Dcca with different heuristics for selecting sets of component faults. They opti-
mize the search of the boundaries by selecting component fault sets first where
more faults of the same kind are activated and subsumption relations between
component faults are exploited (Fig. 5).

6.2 Test Case Execution with S#

In order to achieve significant results, we advocate to integrate different parts of
the SO mechanism step-wise: first isolate the SO algorithms, which form the con-
troller, and afterward hook up the observer part. That enables to assign possible
failures to the different parts, e.g., if a test suite is re-run after it has passed for
the SO algorithm with a hooked up observer, the failure is most likely due to a
faulty observer. In order to unhook the observer, the controller is triggered after
every execution step, causing the system to continuously reconfigure itself. This
leads also to a reduction of failure overlapping due to a missing activation of the
controller by the observer. Since S# models are fully executable, the generation

29

and selection of test cases, their execution, and their evaluation are automati-
cally performed together. Additionally, it is also possible to manually execute
or re-execute given test cases. The integration of S# into Visual Studio lets the
development and execution of the test model benefit from the whole tool support
of Visual Studio, e.g., the debugger. Thus, it is possible to step through every
test case to monitor and control the execution and the state changes, making
fault localization and test model development much easier.

7 Evaluation

For our evaluation—whose implementation is fully available at http://safetysharp.

isse.de—we addressed the following four research questions:

R1. Is the proposed approach for testing SO mechanisms applicable to real
scenarios?

R2. Is the approach able to reveal failures in SO mechanisms?
R3. Do real faults reflect the ideas proposed and exploited for test case gener-

ation (i.e., occur faults at the boundaries of the SO mechanism?)?
R4. Does the mechanism for reaching these boundaries outperform a näıve app-

roach?

For the evaluation, we co-developed a SO mechanism for the self-organizing
production cell, described in Sect. 3. However, the test cases and constraints are
applicable to the whole system class of self-organizing resource-flow systems and
in particular, the concrete implementation of the SO algorithm can be replaced
by any other implementation. In the case at hand, we used MiniZinc1 as a con-
straint modeling language with FlatZinc as the low-level solver. The system
constraints have therefore been translated into a MiniZinc model that describes
valid configurations for the production cell; the MiniZinc input for a system
configuration is shown in Listing 3. Thus, it is possible to feed the SO algorithm
with a specification of a task, the number of agents (carts and robots), the capa-
bilities, and the routing table. If satisfiable, the SO algorithm returns a solution
that assigns each tool needed for the task to some robot and that routes the
carts between the robots accordingly. This SO algorithm has been plugged into
S# via an interface that provides the specification of the problem to be solved
by the SO algorithm and that parses MiniZinc results. The constraints of the
observer of the SO mechanism—originally developed in Java for our implemen-
tation of the production cell based on the multi-agent system Jadex 2—have been
converted to C# in order to integrate them into the S# model. This completes
the integration of the developed SO mechanism into the S# model and shows
that real scenarios are realizable with our approach (R1).

For evaluation purposes, we analyzed different configurations (cf. Table 1) of
the production cell. The configurations differ in the number of agents (robots

1 http://www.minizinc.org/.
2 http://www.activecomponents.org/.

http://safetysharp.isse.de
http://safetysharp.isse.de
http://www.minizinc.org/
http://www.activecomponents.org/

30

task = [1,2,3,4,5,6]; noAgents = 6;
capabilities = [{1},{3},{4,5,4,2},{5,6},{},{}];
isConnected = [|true,false,false,false,true,false

|false,true,false,false,true,false
|false,false,true,false,false,true
|false,false,false,true,true,true
|true,true,false,true,true,false
|false,false,true,true,false,true|]

Listing 3. The input model for MiniZinc describing a task, the available capabilities of
the robots, as well as the connection matrix based on the carts’ routes, corresponding
to the configuration instantiated by Listing 1.

and carts), the average number of capabilities per robot, the number of tasks,
and the number of routes established by the carts between the robots.

One main achievement of the evaluation is that we were able to reveal the
following faults with the implementation of the SO mechanism; each fault is
annotated with the responsibility of the SO mechanism where the fault was
detected (cf. Sect. 2):

F1. The fault affected route handling: the MiniZinc implementation interpreted
transitive routes as direct ones. Its computed configurations included direct
connections that were not available, e.g. 0 → 2 �= 0 → 1 → 2 (R-Solution).

F2. The fault was that the SO algorithm expected the routes to be unidirec-
tional while they were in fact bidirectional. The failure manifested itself as
overlooked solutions even though at least one existed (R-Solution).

F3. The fault was a wrong implementation of the interface for the SO algorithm.
The interface expected first the capability of a designated agent, but got the
first capability of the task assigned to the designated agent (R-Solution).

F4. The fault was a wrong format for the mapping of the solution from the
SO algorithm to the system model concerning the pre- and postconditions of
a role (R-Distribution). The pre-/postconditions contained the state of the
workpiece in form of the remaining part of the task, e.g., for task [D, I, T]
the precondition contained [D, I, T] and the postcondition [I, T] if D had
been performed. But the mapping should lead to states of the workpiece
representing the part of the task which already had been done, e.g., for task
[D, I, T] the precondition should contain [] and the postcondition [D] if D
had been performed (R-Distribution). This fault was detected even though
the testing approach was initially not focused on R-Distribution.

F5. The fault was a too narrow restriction in the SO algorithm that did not
allow to use intermediate robots that apply no tools since the maximum
length of concatenated roles was restricted. Thus, Listing 3 was mistak-
enly considered to be unsatisfiable instead of returning the following solu-
tion, for instance: agents = [1, 5, 4, 6, 3, 6, 4, 5, 2, 5, 4, 6, 3, 3, 6, 4]; workedOn =
[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 5, 0, 6] (R-Solution).

F6. The fault was a missing constraint with the observer, namely the I/O-
Consistency constraint checked in the oracle of Listing 2. The failures occurred
after activating a component fault that deactivates a cart that is part of the
active task (R-Detection).

31

Table 1. Statistical data concerning the configuration used in the evaluation, the
number of test cases generated and executed, the demanded time. Note that all detected
faults have been removed and the time is used for complete testing of the interior and
boundaries. Note that the runs within our framework are deterministic, i.e., there is
no need to consider mean values or standard derivations.

#capabilities #capabilities time

#robots #carts per Robot per Task #routes #test cases (in min)

4 3 2.75 6 6 131, 000 570

3 2 1.67 5 4 49 0.2

3 2 3.67 5 4 26, 763 69.25

3 2 1.67 5 6 157 0.78

3 2 1.67 8 4 47 0.38

5 2 1.6 5 5 1, 577 6.88

3 4 1.67 5 5 369 1.08

The faults F3, F4, and F6 have been detected in all investigated configura-
tions. Indeed, F1, F2, and F5 mainly depend on the routing structure used in the
configuration, e.g., smaller configurations would not be able to reveal the faults.
F6 mainly depends on changing the active robots or carts of a task, since their
removal might not be detected and the controller is consequently not activated.
All detected faults mainly concern misinterpretation of requirement specifica-
tions. The kind of faults that we detected underpins one of the strengths of our
approach: the ability to reveal faults which are the result of a misinterpretation
of the specification (R2).

To answer R3 and R4, we focused on the performance of test case genera-
tion and execution, investigating the abilities of the boundary interior testing
approach for SO mechanisms. The results concerning the failures revealed, espe-
cially F1, F2, and F5, that the failures are more likely occur on the boundaries
where SO switches between being possible and impossible; e.g., F1 was revealed
when only one possible routing was left to fulfill the task, while F2 was revealed
when no more routing is possible for the task. For R4, we used a test case gener-
ation algorithm using a depth-first search strategy that systematically explores
the input space without respecting the boundaries of SO, unlike our proposed

Table 2. Statistical data comparing boundary-interior testing of SO mechanisms
(Dcca w/o heuristics) with a simple depth-first search. The configuration that is com-
pared is the first one of Table 1.

Metrics Boundary-interior Depth-first

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

#Test Cases 13 15 1 1 1,609 4 10 16 1 1 16,813 5

Time (in s) 3.12 3.91 < 1 < 1 420 0.96 2.25 3.11 < 1 < 1 7583.33 1.13

32

approach. The overall testing times required by the test system to reveal the
failures and the number of test cases used is measured in Table 2.

At a first glance, the results indicate that the proposed approach for test case
generation does not payoff as expected in most cases. That is mainly an effect
of the kinds of faults we detected in the SO mechanisms which are able to be
revealed with quite a lot different combinations of component faults and thus
detected very early on. However, for F5 the potential of the approach especially
for a bit more sophisticated faults is shown. Furthermore, it is even possible to
optimize the concepts based on how the Dcca is used for reaching the bound-
aries. Currently, Dcca is applying a kind of depth-first search towards the states
where no reconfiguration is possible anymore. Within this search, Dcca further
performs optimizations according to the activation of the component faults based
on monotonicity of the cut set property.

8 Related Work

The approach for testing adaptive system could be clustered into run-time and
design-time approaches; both have identified non-determinism and the emergent
behavior as the main challenges for testing adaptive systems.

Run-time approaches for testing take up the paradigm of run-time verifica-
tion [5,12]. They shift testing into run-time to be able to observe and test, e.g.,
the adaptation to new situations. Camara et al. [1] use these concepts to con-
sider fully integrated systems. Their testing approach focuses mainly on testing
the non-functional properties of resilience of the adaptive system. The gained
information is used as feedback for the running system. A similar approach is
taken by Ramirez et al. [15], also focusing on non-functional requirements. The
authors use the sampled data from a simulation to calculate a distance to the
expected values derived from the goal specification of the system. This informa-
tion is subsequently used to adapt the system or its requirements proactively.
The run-time approaches are limited to tests of the fully integrated system and
therefore are faced with problems like error masking which is very likely in such
self-healing systems. In our testing approach, by contrast, we benefit from the
piecemeal integration of the system for testing. Thus, it is possible to avoid error
masking by testing the SO mechanism in an isolated way. Another important
difference to the aforementioned work is that we use these techniques for finding
failures instead of analyzing the current system state for generating feedback for
adaptation. Still, we also use the basic concepts of run-time testing. The CEI
allows us to split the evaluation into the three responsibilities of R-Detection,
R-Solution, and R-Distribution which in turn enables us to evaluate the runs
without the evaluation of complex system states on the system level.

Design-time approaches like [13,20] test the systems in a classical manner
during development. All of these approaches consider some dedicated parts of
the system. Consequently, it is not possible to give evidence about the correct
functionality of the overall system. Zhang et al. [20] compose their tests towards
fully integrated system tests, but they do not consider adaptivity or SO explicitly

33

since they focus on testing the correct execution of plans within multi-agent
systems. Nguyen [13] promotes an approach for a component test suite, but does
not consider interactions between or organization of components as it would be
necessary for SO.

The evaluation of the test results, i.e., the application of a test oracle for adap-
tive behavior is only considered by Fredericks et al. [6] and Nguyen et al. [14].
Both approaches rely on goals reflecting the requirements of the system that are
somewhat loosened in order to reflect the ever-changing environment the compo-
nents have to adapt to: The approaches mitigate the goals with the RELAXed
approach or consider soft goals that do not need to hold at all times. Conse-
quently, the decisions of the test oracle are rather fuzzy. In our approach, the
definition of correct and incorrect behavior is given by the CCB that enables us
to clearly decide whether a failure indeed occured.

Back-to-back testing was initially proposed by Vouk [19] and describes the
concept of the co-development of a test framework and the actual system or
mechanisms based on the same requirements, letting the systems compete with
each other in order to reveal discrepancies and errors. Back-to-back testing is
focused on functional testing of the system with a special attention on the cor-
rect interpretation of the actual requirements and their implementation. The
assumption made is that two different developers resp. development teams will
not make the same mistake twice, i.e., misinterpret or neglect functional require-
ments, and so the discrepancies between the two systems reveal potential devel-
opment errors. In [17], we already showed how BtB testing could be successfully
applied to constraint programming, since our basic ideas of testing adaptive,
self-organizing system is based on constraining the SO algorithms. This paper
extends these concepts from constraint programming to SO mechanisms.

Our approach for BtB testing of SO mechanism is an efficient combination of
model-based techniques using the concepts of BtB testing in order to tackle the
challenges of testing SOAS. To our knowledge, there is no approach extending
both of these techniques to SO mechanism.

9 Conclusion and Outlook

We motivated the need for systematic testing of adaptive, self-organizing systems
and purposed a systematic approach for BtB testing of SO mechanisms. The con-
cept of BtB testing supports the challenging task of engineering SO mechanisms
in a co-development manner and is able to reveal different kinds of faults concern-
ing the functional specification of the system. The evaluation showed the utility
of the approach by revealing different faults within a real development endeavor.
The model-based approach presented is built upon a model of the system and its
intended behavior, with the latter being based on our concepts of the CCB that
enables fully automated evaluation of test runs. The test cases to be executed
are derived on the basis of the system model; the test case selection strategy is
based on ideas of virtual commissioning and boundary interior testing. Test case
generation, execution, evaluation, and logging is fully automated and proved to

34

be able to reveal different failures, as shown in the evaluation. The integration
in the S# modeling framework allows to use our BtB testing concepts within
Visual Studio, enabling model refactoring and debugging, among others.

Future work includes, among other things, the enhancement of heuristics in
test case generation, enhancing the fault diagnostics, and integrating the app-
roach into our overall framework for testing SOAS. The heuristics for test case
generation should allow to reach the boundaries of SO mechanisms more effi-
ciently. A first concept might be to start with bigger initial sets of component
faults, e.g., to activate the component faults for all drills of all robots except
of one. This leads, in a first evaluation, to better converge towards the bound-
aries of SO mechanisms and should reveal failures with less testing effort. Fault
diagnostic is already possible in sense that we are able to track faults back to
a part of the SO mechanism as well as to a set of activated component faults
and a system configuration. However, the non-deterministic behavior of the SO
mechanisms is still a challenge that we are going to address in future research.
At last, the approach needs to be integrated into an overall approach for testing
SOAS to supply a complete framework for testing the class of self-organizing
resource flow systems.

Acknowledgments. This research is sponsored by the research project Testing Self-
Organizing, adaptive Systems (TeSOS) of the German Research Foundation. Addition-
ally, we thank our college Alexander Schiendorfer for his support with MiniZinc.

References

1. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: Proceedings of 7th International Symposium Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62
(2012)

2. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Knapp, A., Reif, W.: An
approach for isolated testing of self-organization algorithms. CoRR abs/1606.02442
(2016). http://arxiv.org/abs/1606.02442

3. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-
organizing, adaptive systems. In: Merayo, M.G., Oca, E.M. (eds.) ICTSS
2014. LNCS, vol. 8763, pp. 180–185. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44857-1 13

4. ElMaraghy, H., Monostori, L.: Variety management in manufacturing cyber-
physical production systems: roots, expectations and r&d challenges. In: Procedia
CIRP, vol. 17, pp. 9–13 (2014)

5. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verifica-
tion of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24690-6 15

6. Fredericks, E.M., Ramirez, A.J., Cheng, B.H.C.: Towards run-time testing of
dynamic adaptive systems. In: Proceedings of 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 169–
174. IEEE (2013)

http://arxiv.org/abs/1606.02442
http://dx.doi.org/10.1007/978-3-662-44857-1_13
http://dx.doi.org/10.1007/978-3-662-44857-1_13
http://dx.doi.org/10.1007/978-3-642-24690-6_15
http://dx.doi.org/10.1007/978-3-642-24690-6_15

35

7. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and
construction paradigm for organic computing systems. In: Proceedings of 2nd IEEE
International Conference Self-Adaptive and Self-Organizing Systems (SASO), pp.
233–242 (2008)

8. Habermaier, A., Eberhardinger, B., Seebach, H., Leupolz, J., Reif, W.: Runtime
model-based safety analysis of self-organizing systems with S#. In: Proceedings
of 9th IEEE International Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), pp. 128–133 (2015)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

10. Lee, C.G., Park, S.C.: Survey on the virtual commissioning of manufacturing sys-
tems. J. Comput. Des. Eng. 1(3), 213–222 (2014)

11. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013)

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

13. Nguyen, C.D.: Testing techniques for software agents. Ph.D. thesis, Uni. di Trento
(2009)

14. Nguyen, C.D., Marchetto, A., Tonella, P.: Automated oracles: an empirical study
on cost and effectiveness. In: Proceedings of Joint Meet European Software Engi-
neering Conference and ACM SIGSOFT Symposium Foundations of Software Engi-
neering (ESEC/FSE), pp. 136–146. ACM (2013)

15. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C., Knoester, D.B.: Automatically explor-
ing how uncertainty impacts behavior of dynamically adaptive systems. In: Pro-
ceedings of 26th IEEE/ACM International Conference Automated Software Engi-
neering (ASE), pp. 568–571. IEEE (2011)

16. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Informatik 2006
(2006)

17. Schiendorfer, A., Eberhardinger, B., Reif, W., André, E.: Back-to-Back testing a
soft constraint model for a smart exhibition space. In: Proceedings of 14th Inter-
national Workshop Constraint Modelling and Reformulation (ModRef) (2015)

18. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: How to Design and Implement
Self-organising Resource-Flow Systems, pp. 145–161. Springer, Heidelberg (2011)

19. Vouk, M.A.: Back-to-back testing. Inf. Softw. Technol. 32(1), 34–45 (1990)
20. Zhang, Z., Thangarajah, J., Padgham, L.: Model based testing for agent systems.

In: Proceedings of 8th International Conference Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 1333–1334 (2009)

