Toward Integrated Analysis & Testing of
Component-Based, Adaptive Robot Systems

Benedikt Eberhardinger, Axel Habermaier, Alwin Hoffmann, Alexander Poeppel, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Augsburg, Germany
Email: {eberhardinger, habermaier, hoffmann, poeppel, reif} @isse.de

I. StATUS QUO

Recent developments in robotics are heading toward
component-based architectures [1] that are able to cope with
novel challenges, e.g., increasing autonomy or human-robot-
collaboration in Industry 4.0. These applications have in
common that the robot system has to adapt to new situations
or external disturbances and, thus, has to change or at least
to adjust its current task. This development is, among other
things, driven by collaborative working environments of robots
and humans which pose new challenges for engineering in-
tegrated, autonomous robot systems. Especially sensing is an
important aspect to safely detect human presence and calculate
an according reaction [2]. This includes safe and time-critical
reactions to avoid collisions and moreover to evaluate, adapt
or even change the current task. Overcoming the separation of
working environments and enabling autonomy revises estab-
lished concepts and techniques that aim at ensuring functional
correctness and safety in particular.

This (r)evolution has to be taken into account on many
different levels, e.g., the revision of safety standards such as
ISO 10218 [3] addresses the ongoing development by updating
and renewing regulations. The next iteration of these standards
will include further restrictions and safety considerations for
human-robot-collaboration. In order to comply with these
future standards, scalable, automated, and reliable analysis
and testing (A&T) techniques will be needed that are able to
cope with autonomous, adaptive robot systems. We therefore
propose a systematic, model-based approach for analyzing this
class of systems: The approach is fully integrated into a robot
control system, thus making it possible to address functional
quality goals as well as safety aspects within one model-based
A&T approach. Robot software in the loop testing is enabled
by the use of the S# modeling and analysis framework [4].

A. Component-Based Adaptive Robot Systems

Our component-based run-time environment for robotics [5]
is able to reorchestrate the composition of its current compo-
nents instantaneously at run-time, adapting itself to new or
modified tasks. This run-time environment is comprised of
real-time components for accessing sensors and for controlling
actuators. Moreover, computational tasks (e.g., algorithms or
continuous behavior) can be specified in a data-flow lan-
guage [5]. Each computational task, specified as a data-flow
net, is executed in a dedicated real-time component, a net
executor. Data-flow nets are able to communicate with sensors

301

and actuators as well as with each other using dedicated ports.
At run-time, new computational tasks can be submitted; their
coordination is specified using synchronization rules which
are able to stop running tasks and start newly submitted ones.
Hence, this run-time environment can change the composition
of active components in order to adapt the overall behavior of
the robot system to newly arising situations (cf. Fig. 1).

B. The S# Modeling and Analysis Framework

The S# modeling and analysis framework uses Deductive
Cause Consequence Analysis (DCCA) [6] for fully auto-
mated safety analyses with the explicit-state model checker
LTSMIN [7]. DCCA computes all minimal critical fault sets
(the causes) that can cause hazards (the consequences), i.c.,
situations that result in environmental damage, injuries, or loss
of lives. S# provides a domain specific modeling language
embedded into the C# programming language and the .NET
run-time environment [4], supporting convenient modeling of
faults such as sensor or actuator failures. The C# code consti-
tuting a model is executed using its normal semantics during
model checking; consequently, models are allowed to use most
C# language features as well as many standard .NET libraries
and tools. Despite the high level of modeling flexibility and
expressiveness, S# can still efficiently and automatically assess
system safety by conducting DCCAs.

II. INTEGRATING COMPONENT-BASED ROBOTICS AND S#

The core idea of our approach is to combine the strengths
of our component-based robot run-time environment with the
model checking-based verification and safety analysis tech-
niques provided by S# in order to obtain an integrated analysis
approach for highly safety-critical human-robot systems. As
illustrated by Fig. 1, the foundation of this approach is the
integration of the actual robot controller software into a S#
model, the latter of which describes behavioral and structural
aspects of the controlled plant as well as the sensors and
actuators available to the controller. This software in the loop
model (SithLM) is used for simulation, analysis as well as test
suite derivation and execution. The S# parts of the SithLM
test-drive the actual controller software using S#’s model
checker, enabling systematic, explorative, model-based testing
of adaptive, component-based robot systems.

a) Technical Feasibility: As S# models are regular .NET
programs, they can execute almost any code during simulations
and model checking. Therefore, sensors and actuators within



_ «coordination»
ﬂE) g § «computation» |
S E 39 Task A !
£ «c;mponenl» :> - _ :> |
s .= Cnsor
é 2 % | «computation» Actuator

5 -

= I Task B

:

2 ‘ —

= Model of - Model of Plant - I Model of

& Sensor Actuator

0w
Fig. 1. The system is separated into controller and plant as common in

control theory and safety analysis [8]. This forms the feedback cycle which
enables the system’s overall adaptivity. The upper part shows the controller,
i.e., the actual component-based robot control software. The lower part depicts
the plant, sensors, and actuators modeled in S#. Abstractions are generally
necessary in order to establish the link between the actual control software and
the discrete-state S# model. Faults (indicated by flashes) must be integrated
into the S# model in order to subsequently allow S# to assess system safety.

the S# models can use standard technologies such as remote
method invocation or services to interface with the device
drivers of the robot controller, bridging the gap between the
different programming languages (C# and C++ in this case),
run-time environments, and, if necessary, levels of abstraction.
S# subsequently allows the SithLM to be simulated and
model checked, executing the modeled sensor, plant, and
actuator behaviors as well as the connected robot controller.
Abstractions are required in order to reduce large SithLM state
spaces to manageable levels and to facilitate model checking.
In particular, robot controllers typically have low cycle times
in the range of a few milliseconds, requiring significant effort
just to analyze a few seconds of robot behavior. It is therefore
unlikely that fully exhaustive model checking can be used to
analyze these systems; instead, bounded model checking that
verifies only short periods of time might have to suffice. In
addition to restricting the analyzed amount of time, it might
also be necessary to limit the analyzed behavioral variance
of the system if no suitable abstractions can be found that
would otherwise allow exhaustive model checking. With these
restrictions, S# model checking becomes a non-exhaustive
form of testing, which, however, still facilitates analyses of
both functional correctness as well as safety concerns.

b) Testing Functional Correctness & Safety: The inte-
grated approach not only enables testing functional aspects
of the systems, but also allows S#’s fully automated DCCA
to assess the most safety-critical situations, uncovering po-
tential safety issues in a testing fashion. As it is not always
possible to conduct exhaustive DCCAs, appropriate test cases
must be selected using appropriate test strategies; we aim
at integrating mainly two different strategies: (1) random
testing and (2) integration of usage profiles of the humans
interacting with system. In particular, the human workflows
in industrial working environments are highly standardized
and consequently repetitive, leading to usage profiles with
low variance. Test cases for the most likely usage scenarios
are therefore highly significant while noticeably reducing the
number of required test runs. Additionally, the test oracle
problem has to be addressed: test runs need to be assessed,
i.e., they have to be classified as either correct resp. safe or

302

incorrect resp. unsafe. We see two different solutions: (1) we
use constraints to characterize functional properties and safety
hazards that can be evaluated automatically to classify test runs
at run-time [9], and (2) we introduce mathematical models
describing the intended behavior of the robot system, e.g.,
differential equations describing the robots’ dynamics.

III. ROAD MAP

We outlined how component-based robotics and the
component-based analysis techniques of S# can be brought
together in order to cope with the new engineering chal-
lenges posed by recent developments in industrial and service
robotics. This combination leads to a broad research road map
toward systematic A&T of adaptive robot systems in times of
Industry 4.0. In particular:

1) Adequate Abstraction. A key challenge that needs to
be addressed is selecting the right level of abstraction
for the S# models, especially for adequately describing
the behavior of humans that interact with the robots.
As outlined above, one approach is to describe their
behavior statistically with usage profiles.

Test Case Selection. A common trait of the systems
we investigate is that exhaustive testing is currently not
feasible. As a consequence, appropriate testing strategies
need to be identified.

Oracle Problem. The oracle problem is a ubiquitous
challenge in testing. Our initial proposal of using con-
straints and mathematical models must be evaluated
and extended into a concept that addresses the special
challenges of the robotics application domain.

Hazard Identification & Specification. Key modeling
aspects for safety analysis are the identification and
specification of hazards. The norms and standards that
are under development partially address these issues, yet
each application requires unique care and consideration.
Coping with Adaptivity. Adaptivity poses new challenges
for A&T that also need special attention [9].
Addressing these open research questions is vital to establish
safe and adaptive robot systems for industrial applications.

2)

3)

4)

5)

REFERENCES

[11 D. Brugali and P. Scandurra, “Component-based robotic engineering
(Part 1),” IEEE Robot. & Autom. Mag., vol. 16, no. 4, pp. 84-96, 2009.
A. Hoffmann, A. Schierl, A. Angerer, M. Stiiben, M. Vistein, and W. Reif,
“Robot collision avoidance using an environment model for capacitive
sensors,” in Plan., Cont., & Sen. f. Safe HRI, ICRA, 2015.

International Organization for Standardization, “ISO 10218-1/2:: Robots
and robotic devices — Safety requirements for industrial robots,” 2011.
A. Habermaier, J. Leupolz, and W. Reif, “Executable Specifications of
Safety-Critical Systems with S#” in DCDS. [FAC, 2015, pp. 60-65.
M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif, “Flexible
and continuous execution of real-time critical robotic tasks.” Intl. J.
Mechatronics & Autom., vol. 4. no. 1, 2014.

F. Ortmeier, W. Reif, and G. Schellhorn, “Deductive Cause-Consequence
Analysis (DCCA),” in 16" IFAC World Congress. Elsevier, 2006.

G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk,
“LTSmin: High-Performance Language-Independent Model Checking,” in
TACAS. Springer, 2015, pp. 692-707.

N. Leveson, Engineering a Safer World. MIT Press, 2011.

B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif, “Towards Testing
Self-organizing, Adaptive Systems,” in /CTSS. Springer, 2014.

[2]

[3

[l

[4]
[5

—

[6]

[7

—

[8]
[91



