A Flexible Architecture for Automatically Generating Robot
Applications based on Expert Knowledge

Miroslav Macho, Ludwig Négele, Dr. Alwin Hoffmann, Dr. Andreas Angerer, Prof. Dr. Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, 86159 Augsburg, Germany
Email: macho@isse.de, Phone: +49 821 598-2227, Fax: +49 821 598-2175

Abstract

In this paper, we propose a general software architecture for off-line programming platforms to semi-automatically
program a robot system and its end-effectors in industrial automation. It considers that such platforms should be
geared towards domain experts — especially when regarding low-batch size manufacturing of customized products as
part of Industry 4.0. Hence, it supports a process-oriented guidance for complex manufacturing tasks and includes the
possibility for interactive planning with domain-specific user interfaces. Moreover, the extensibility for new domains,
work-flows, algorithms, user interfaces or hardware plays an important role in the proposed approach. Finally, the
architecture was successfully evaluated on an off-line programming platform for the manufacturing of carbon-fibre-
reinforced polymers (CFRP) which can be characterized as a low-batch size production process.

1 Introduction

The International Federation of Robotics (IFR) estimated
the total worldwide stock of operational industrial robots
at approximately 1.5 million units to the end of 2014 [1].
According to this statistics, the most important sector for
industrial robots is the automotive industry followed by
the electrical and electronics industry. Both industries
have in common that they widely use industrial robots
for mass production. Due to the tedious programming
of industrial robots [2], robotics systems still are not of-
ten used in production processes with high variability or
low-batch sizes. However, customers are more and more
expecting highly customized products today. The vision
of Industry 4.0 with its smart factories as well as inter-
connected intelligent machines and products supports this
demand for variable and customized products. Manipula-
tors — either as a cooperative team or in combination with
a mobile platform — are highly flexible and freely pro-
grammable machines which are appropriate for Industry
4.0. Hence, new ways and means for programming in-
dustrial robotics systems for customized, low-batch size
production are required.

For that reason, we have inspected a production process
that differs from a mass production, i.e. the manufac-
turing of composite components made of carbon-fibre-
reinforced polymers (CFRP). In collaboration with the
German Aerospace Centre (DLR), we have developed a
offline programming platform tailored to the special re-
quirements of the CFRP production [3]. CFRP compo-
nents can be composed of several hundreds or thousands
of textile cut-outs. During the CFRP production process,
each cut-piece must be picked from a storage and placed
into a mold. In this way, hundreds of cut-pieces are lay-
ered to form of the product’s final shape. In an automated
production, this leads to complex robot movements and
end-effector actions that repeat for each cut-piece, how-
ever, with slight differences depending c.g. on the size,

shape, or material of the cut-piece. For a single CFRP
component, the programming of a complete production
process with standard programming tools and algorithms
can be very tedious [4]. Furthermore, the automation of
this process is ongoing research and, thus, the work-flow
can evolve or even completely change and novel handling
end-effectors can be developed requiring new program-
ming approaches.

Generally, there are production processes like the CFRP
manufacturing which consist of a large number of similar
production steps that may slightly differ in robot move-
ments or end-effector control depending on various pa-
rameters. Some of these parameters can be computed,
e.g. based on geometric information included in CAD
models. Some parameters cannot be computed without
extensive effort, because they are optimization problems
(e.g. optimal actuator pose for placing a cut-piece into
a mold). Other parameters are based on domain expert
knowledge and, thus, depend on user input (e.g. maximal
robot movement speed during transfer movements in or-
der that cut-pieces hold on the end-effector).

This change in production processes — especially due to
the Industry 4.0 efforts — raises special demands regard-
ing the programming of robot systems and end-cffectors.
For the automation of such production processes with a
reasonable effort, a computer-assisted off-line program-
ming [5, 6] approach is required. Here, robot program-
ming does not take place directly at the robot cell, but in
a simulation environment with a virtual representation of
the robot cell. There are several advantages that make off-
line programming outstanding for introducing and plan-
ning new manufacturing processes (e.g. the robot cell is
not occupied during programming, additional informa-
tion can be visualized, and no collisions can occur).
According to a previously conducted analysis [3], a main
requirement for such a programming approach is that
it should be geared towards domain experts. Hence, it
should lead the (expert) user through the process work-

flow, generate robot movements as well as end-effector
actions automatically and combine them with additional
user input, if some process steps need domain expert
knowledge or are to complex to be computed. As user in-
put can be required during or improve the work-flow gen-
eration, we call this approach semi-automatic program-
ming. It also allows domain experts to experiment with
new parameters for a specific production step while keep-
ing other parameters on default settings. To observe the
impact of a parameter change, it should be possible to ad-
just these parameters in an iterative way and to visualize
the defined process or selected production steps.

Besides the semi-automatic program generation with ex-
pert knowledge, extensibility is a further key requirement
for the software architecture: It should be extensible with
new work-flows, algorithms, domain-specific user inter-
faces and hardware (i.e. robots or handling tools). To sup-
port this extensibility, the software architecture has to be
modular enabling a dynamic interconnection of individ-
ual modules. Moreover, it should be possible to integrate
modules for computation as well as modules for domain-
specific user interaction to involve the domain expert and
his knowledge.

Hence, we propose in this paper a general software ar-
chitecture for off-line programming platforms to semi-
automatically program a robot-based manufacturing pro-
cesses. Being a modular approach as mentioned above,
we introduce and explain so-called Task Contribution
Units as base modules for the approach in Section 2. Sub-
sequently, the successful application of this approach to
CFRP manufacturing is described in Section 3. While a a
short overview of related work regarding robot program-
ming is given in Section 4, the paper is concluded with
Section 5.

2 Task Contribution Units

Software architectures aimed for creating robot-based
process definitions often deal with challenges regarding
extensibility, reuse, time-effort, collaboration and com-
plexity problems. This is especially the case when differ-
ent domains are targeted within one application, such as
hardware, workpiece-specific process information, math-
ematical algorithms, etc., and several experts from dif-
ferent domains have to work together. Quite often, also
huge numbers of workpieces or process-steps make coor-
dinated collaboration very difficult. As a solution to these
challenges, we propose a modular and flexible architec-
ture based on Task Contribution Units (TcUnits), that
enable a structured, separated development of domain-
specific parts contributing to one mutual result. For this,
the manufacturing process needs to be split into small
partial tasks which describe individual steps of the pro-
cess. A process 'mounting a car door’, for example,
might be composed of tasks for picking-up, transporting
and attaching the door. These tasks, of course, can be
highly dependent on other tasks and their concrete param-
eters; In order to implement such a task, lots of additional
information and calculation is needed (i.c. Task Contri-

butions), e.g. mathematical and geometrical calculations
and optimizations, information about robots and the en-
vironment, data look-ups, depending tasks, and also situ-
ational information given by domain experts.

2.1 Definition

In the proposed architecture, the common interface of all
these atomic contributions is called TcUnit. While defin-
ing a specific output data type (i.e. result type), a TcUnit
encapsulates its internal computational mechanism for re-
trieving the concrete result of that respective type. We
identified three different kinds of TcUnits:

1. Data provider TcUnit: Most production processes
rely on CAD data or manufacturing information,
which is to be obtained from files, databases, etc..
This kind of TcUnits loads and provides such data
for generation processes.

2. Computational TcUnit: Usually, a manufacturing
process is defined by lots of computational values,
such as geometric relations, best fit parameters, or
derived setting values. Computational 7cUnits pro-
vide such results by using mathematical mecha-
nisms or algorithms.

3. TcUnit basing on expert input: Some informa-
tion of manufacturing processes are conditioned
situational and can not be computed automatically.
Hereby, investigation of an expert is needed who
contributes additional information to the process.
Such TcUnits are intended to involve expert knowl-
edge into the process definition where necessary
(see 2.3).

Regardless of its kind, each TcUnit can specify an indi-
vidual set of input parameters (i.e. input types) which
need to be provided in form of concrete inputs in order to
generate its result. Assume the notation of a TcUnit given
its result and input types as follows:

TcUnit : RESULT < INPUT,,INPUT,,... (1)

A TcUnit providing a robot’s target position for mounting
a car door, for example, might require several concrete
inputs: geometrical information of the car door, relative
position of the car body, robot and tool to be used for
performing the mounting.

Assume a sct of TcUnits; with their respective result
types A through E. Their given input types establish de-
pendencies among each other:

TcUnity : A< B,C
TcUnity : B < C
TcUnits : C < E

TcUnity : D < FE
TcUnits : E < 2)

All TcUnits together form the ecosystem of available
TcUnits, and their result types denote the set of types
which can be generated by that ecosystem (i.e. generat-
able types). Figure 1 demonstrates the TcUnits and their
generatable types of an ecosystem along with their depen-
dencies (i.e. dependency graph). TcUnits are connected

by arrows Lo their respective input types. Edges are used
to denote the relationship between TcUnits and their re-
sult types, at which one type can have edges to multiple
TcUnits. That means, a result of that result type can be
generated alternatively by all connected TcUnits. Cycles
are not allowed in this dependency graph. However, they
are not supposed to happen since it does not make any
sense that two results depend on each other in order to
being generated.

(T0ni)(B)

(a)
-TcUnit3 G

(tctnits { E y—(Tetnit D)

Figure 1: Example ecosystem of TcUnits with its gener-
atable types and dependencies.

When generating result A by TcUnit, inputs B and C are
required to be generated before, and finally E needs to
be the very first being generated by TcUnits. Generally,
the generation recipe for a certain result type is expressed
by a sub-tree of the dependency graph (see example in
Figure 1), consisting of necessary TcUnits and their de-
pendencies respectively. In the given example (where A
should be generated) it is called candidate tree for gener-
ating A. In this case, result type D and thus TcUnit, are
irrelevant and not part of the candidate tree. When topo-
logically sorting such a candidate tree, a serialized order
of TcUnits arises which is also called generation trace. In
the given example, the one possible generation trace for
generaling A is:

Tracei(A) : TcUnits — TcUnits — TcUnity — TcUnity

3)
When generating results of certain types by following the
order of these topological traces, it is always ensured that
all input values needed by the respective TcUnit have al-
ready been generated before.

2.2 Extensibility

When extending the ecosystem with new TcUnits, the de-
pendency graph will get additional branches depending
on the respective result type and needed input types of
the TcUnit. A more branched dependency graph can lead
to an increased number of possible - perhaps completely
different - candidate trees and also generation traces con-
sequently. In the given example case, the new TcUnitg
enables an absolutely different Traces for A while rely-
ing on already existing TcUnits of the ecosystem:

TcUnitg : A<= D

4
Traces(A) : TeUnits — TeUnity — TeUnitg @

Tc bnlf)

é/
TcUnit)
TcUnitg

Figure 2: Extended dependency graph of TcUnits which
enables a new generation trace.

TcUnztr

Both, TcUnit; and TcUnitg, are eligible for generating
A. Therefore, the respective connections between A and
the two TcUnits shown in Figure 2 express alternatives
to choose from, whereas dependency arrows are always
strictly required. Another possible extension would be
a TcUnit which allows for generating a completely new
data type while maybe relying on existing TcUnits. Ow-
ing to the modularity of TcUhnits, it is very easy to extend
and exchange parts of the ecosystem. However, the level
of extensibility is mainly determined by the concrete use
and chosen structure for TcUnits.

When designing TcUnits for a concrete use case, we pro-
pose to divide and classify single contributions into dif-
ferent domain parts, i.e. robot-specific computations, ge-
ometrical basics, etc., as well as application domain spe-
cific parts of the process (e.g. automotive industry or
composite manufacturing). This way, specific parts or be-
haviours of the generated process can be systematically
influenced or modified by replacing or adding particu-
lar TcUnits. That might be the supply of new alternative
actuators, the replacement of an improved algorithm, or
an extension which leads to tasks being able to be per-
formed in a new different way (by different traces). The
latter implies, that when adding a new TcUnit for solving
a particular problem by relying on already computable
results, the generation capacity of the ecosystem is ex-
tended whereat functionality of already existing TcUnits
can be reused. Even TcUnits of equivalent result types
can, however, contribute to make one problem solvable
by using different actuators, resources or techniques.

In particular, applications solving similar low batch size
production or consisting of a huge number of simi-
lar tasks can profit from this result-finding architecture.
Which TcUnits are needed to generate a desired result, as
well as their execution order, highly depends on amount
and nature of all available 7cUnits in the ecosystem. The
navigation through the generation order - where some
TcUnits compute their results silently and others might
request expert input over Ul - can be arranged highly in-
teractive and tailored to the particular use case.

2.3 Expert involvement

As a main goal, we addressed the involvement of domain
experts in our proposed architecture. While programmer

and mathematical experts identily, design and implement
TcUnits needed for a given application domain, experts
of the overall domain themselves should be involved at
the latest when it comes to generate concrete application
processes. This is conceptually included in two different
levels in the architecture:

1. When generating a specific type, usually multiple
generation traces exist: some just having permuted
orders of TcUnits, but also some basing on dif-
ferent TcUnits. Especially for the latter case, the
choice of the one trace to use can be delegated to
the expert, who knows about even minimal differ-
ences of impact on the result quality, for example,
depending on the concrete TcUnits.

2. At some point, process definitions often need in-
formation provided by a domain expert in regard
to concrete, present facts (which e.g. evolve from
a foregoing process). The presented architecture
intents TcUnits being able to rely on expert input
when generating. In a concrete implementation of
the architecture, we propose to give TcUnits the
possibility to initiate and handle Ul-actions.

In addition, TcUnits requiring expert input might com-
pute example values which can be provided as sugges-
tions to the expert. This helps to make the expert focus
on solving problems which can not be computed auto-
matically. In some use cases, the generation for the same
result is repeated iteratively, that means an existing gen-
eration trace is executed again, in order to modify and
improve the result by entering slightly adjusted expert in-
puts. When intermediate user interaction is requested, the
generation mechanism can set up input values from a pre-
vious generation, which makes it easier for the expert to
adjust previously entered values.

3 Application to CFRP production

The concept of TcUnits has been used as base archi-
tecture in an off-line programming platform for defin-
ing processes in the domain of carbon-fibre-reinforced
polymers [3]. This off-line programming platform was
part of a project together with the German Aerospace
Center, Center for Lightweight Production Technology
(DLR-ZLP), and aimed at semi-automatically specify-
ing robot-based manufacturing processes for CFRP plane
parts [7]. Thereby, hundreds of differently shaped CFRP
textiles (cutpieces) of up to 2m? need to be laid out (i.e.
draped) in a concave form in multiple layers in order to
build one CFRP component. High pickup and draping
precision and the preforming of cutpieces to their three-
dimensional shapes play an important role for the overall
manufacturing quality, which is, of course, extremely im-
portant in the domain of aerospace. For the preforming,
three diverse particularly designed grippers using differ-
ent preforming strategies have been built and should be
evaluated in respect to draping quality and accuracy.

All the different related domains of this application,
i.e. aerospace, CAD and construction, modular and ex-
changeable hardware, CFRP, etc., are a perfect match for
an integration with our presented architecture based on
TcUnits. For this, the process of draping a CFRP tex-
tile has to be analysed, and single contributions of differ-
ent domains have to be identified which can be solved by
concrete TcUnits.

. /Gripper In Form . 5::3
Cutpiece . Draping —
In Form Task

3 R 1
Cutpiece ‘ 1
On
Gripper S::E
2 2 Transport =
/—z: | Task
c t . . Cutpiece On Table § 1
Xpert inpu rE—_—u— I
R Gripper Pickup =5
j & On Table Task
A& /3 2 1

Figure 3: TcUnits used in CFRP production example.
Their result types are not shown explicitly but are indi-
cated by the TcUnit’s name.

The generation of process definitions is performed
"backward-oriented" [3]. That means, the position of the
cutpiece on the gripper is not determined by the pickup
but by the later draping within the form. However, since
the pickup as well as the draping movement both depend
on one cutpiece position on the gripper, the backward-
orineted approach thus facilitates the important parts of
the process which are primarily responsible for high pre-
cision and quality. Figure 3 illustrates the concrete use
of TcUnits in the offline programming platform which
allows for a user-guided, semi-automated definition of
process descriptions for handling multiple cutpieces. Ev-
ery numbered box stands for a TcUnit, connected by ar-
rows which denote their dependencies. Their result types
are implicitly indicated by the names of the respective
TcUnits.

Each TcUnit numbered with 1 (green) is responsible for
generating concrete tasks for robots. The generation of
TransportTask, for example, results in a transfer move-
ment between the final position after PickupTask and the
start position before DrapingTask, which are thus re-
quired inputs for TransportTask. Those numbered with
2 (blue) are domain specific TcUnits with respect to the
chosen gripper and have been provided for a variety of
different grippers each. Depending on the concrete grip-
per, the respective TcUnit is chosen for generation traces.
Amongst others, this includes the optimal gripper posi-
tion when e.g. draping the textile into the concave form
depending on the particular gripper geometry. TcUnits
numbered with 3 (gray) contain data-supply (CAD) and
computations within the CFRP domain.

TcUnit CutpiecelnForm, for example, retrieves its result
by loading the geometrical target position of the cutpiece
from the engineer’s construction plan. Having this infor-
mation, an optimal GripperInForm position can be speci-
fied which optimally fits the transformed gripper onto the

target position of the cutpiece. Herewith, robot and grip-
per movements can be generated to perform the Draping
lask. Additionally, the CutpieceOnGripper position is
implicitly given and can be computed. Along with the
CutpieceOnTable position, the position of the gripper in
order to pick up the cutpiece can be calculated. Now, the
concrete robots’ PickupTask and subsequently the Trans-
port Task can be obtained.

3.1 Expert involvement

Most TcUnits of Figure 3 are either data providers
or generate their results by geometric and actuator-
specific computations. However, GripperlnForm and
CutpieceOnTable require domain expert knowledge and
use interactive Ul requests when triggered to contribute
their results. In the offline programming platform, two
kinds of user-interactive dialogs are provided for the ex-
pert to find optimal results for the two TcUnits.

Generate
® Place the grippertothe desied draping positon iside theform.

Figure 4: TcUnit acquiring expert input for ideal gripper
position when draping.

Figure 4 shows a dialog initiated by TcUnit GripperIn-
Form: the robot can be moved and the transformation of
the gripper can be set by the expert. A visualization al-
ways shows the robot cell configuration as it would be
like when the draping process would be performed with
the current inputs. It thus allows the user for interactively
experiencing with different possibilities. Within the dia-
log, the coverage of vacuum modules of the gripper above
the cutpiece is indicated for the current input values and
already gives feedback about quality and if the cutpiece
can adhere on the gripper et all. Furthermore, the colli-
sion distances between vacuum modules and the form are
calculated by a physics engine and are indicated coloured
in the dialog in order to support the expert when position-
ing the gripper.

A second dialog (see Figure 5) provides the draggable
and rotatable contour of the cutpiece on top of the sup-
plier table and aims for specifying the original Cut-
pieceOnTable position from where the cutpiece can be
picked up by the gripper. Snap-ins, zoom, coordinate-
extraction and table-border detection support the expert
to specify the cutpiece position in sub-millimetres accu-
racy.

Figure 5: TcUnit acquiring expert input for cutpiece po-
sition on supplier table.

3.2 Extensibility

By using the presented architecture of TcUnits, it was
very easy to add functionality for multiple grippers.
For each gripper, specific TcUnits GripperlnForm, Cut-
pieceOnGripper and CutpieceOnTable had to be pro-
vided. In order to support a new, fourth gripper to per-
form the manufacturing process, new implementations of
only these three TcUnits would have to be provided ac-
cordingly.

Owing to the complexity of some grippers, some TcUnits
show up Ul-elements and rely on expert input. For
TcUnit GripperInForm (see figure 4), an alternative
TcUnit had been implemented which uses an evolution-
ary optimization algorithm instead. This algorithm re-
trieves genetic variations of possible draping positions of
the gripper along with their collision information from
the physics engine. The results are evaluated relating to
their respective fitnesses, i.e. the coverage of vacuum
modules on the textile and their collision distances to the
form. Thus, the platform had been extended by an alter-
native (more automatized) way how to generate draping
processes for textiles.

For an additional level of abstraction, the offline pro-
gramming platform had conceptually been designed as
a service-oriented architecture (SOA) [8]. In the java-
based implementation, all TcUnits of the platform have
been integrated as OSGI services [9] which implement
the interface of TcUnits. The generation logic now dy-
namically retrieves TcUnits by using the standard OSGI
mechanism. This allows the platform for dynamically ac-
tivating and deactivating specific TcUnits during runtime.
This way, the expert can define which TcUnits are en-
abled for the next generation. For example, the expert
based TcUnit GripperInForm can be disabled while the
new one basing on the genetic algorithm is enabled.

3.3 Experimental results

In the offline programming platform as a case study for
the concept of TcUnits, the resulting robot tasks (Pick-
upTask, TransportTask and DrapingTask) are both, con-
vertible to Kuka Robot Language (KRL) and compatible

to the robotics framework Robotics API [10]. Whereas
KRL had been used to bring the programs onto real robot
controllers, the Robtoics API moreover enabled a simula-
tion of the manufacturing process where robots and grip-
pers perform the cutpiece handling. Thus, all three grip-
pers could be successfully evaluated each with different
cutpieces in simulation and real-world runs. Owing to
the modularity of the presented architecture of TcUnits,
it was easily possible to also exchange the robot cell in
which the manufacturing process is performed. Hence,
the process could be defined and executed in either the
"Multi Functional Cell" (MFC) [11] or the "Technology
Evaluation Cell" (TEC). In Figure 6, the manufacturing
process with the same end-effector, i.e. the so-called Grid
Gripper [7], is shown in both robot cells.

The manufacturing of three different CFRP textiles of up
to 2 square metres have been fully evaluated: defining
the process by the presented concept of TcUnits, convert-
ing the process definitions to runnable code, preform and
drape the real cutpieces into the form. The evaluation re-
sults of the platform basing on TcUnits have been very
good: the programming effort could drastically be re-
duced compared to conventional robot teaching. Whereas
manual robot teaching took about half an hour up to one
hour per textile, the defining of the process by an expert
with our platform only took about 2 up to 7 minutes per
textile, while draping accuracy of textiles still could be
performed within sub-millimetres. More detailed results
in respect to quality, accuracy and time-efficiency are pre-
sented in [3].

Figure 6: Evaluating the manufactruing process with the
Grid Gripper in both the MFC (top) and the TEC (bot-
tom).

4 Related work

An overview of current robot offline programming tools
can be found in [12]. As mentioned before in [3], pre-
sented solutions are powerful general purpose tools (e.g.
WorkVisual [13], Robotics Suite [14] or Easy-Rob [15]),
where the process is usually specified with basic robot
movements (e.g. movements along linear, circular or
spline paths). But most of these tools do not support
domain specific, semi-automatic program generation on
the abstraction level of process steps. There are also
tools specialized for concrete domains (e.g welding) or
even for a different type of CFRP production called Auto-
mated Tape Laying (e.g. Vericut [16], Microplace [17]).
Those tools usually do not provide a process-oriented
guidance for more complex manufacturing tasks or in-
teractive planning support. In contrast, we presented a
general concept for a software architecture of program-
ming platforms that enables extensibility to a new do-
mains without extensive programming effort which is not
the case regarding current tools.

Robot programming by demonstration (PbD) [18] is an-
other, powerful, online method besides offline program-
ming with many different approaches (e.g. [19, 20, 21]).
For example, with KINETIQ Teaching for Yakasawa
robots, a robot operator can teach welding trajecto-
ries with hand guiding the welding tip to desired posi-
tions [22]. Generally, PbD reduces required program-
ming knowledge due to minimizing explicit program-
ming of robot tasks. But for production processes with
a large number of production steps, process definition
with PbD without any automatic program generation or
guidance would be very time consuming. Traditional
PbD systems use a teach-pendant to demonstrate the de-
sired robot motion, but teaching large robot systems with
heavy tools can still be problematic. In this case, offline
programming tools have advantages that they can display
the scene in the robotics cell from different perspectives
or visualise different parameters that are not necessary
obvious during the teaching. PbD could be very well in-
tegrated in the presented architecture in form of a TcUnit
with user input.

For handling complex robot task programming in uncer-
tain environments, there are several concepts of sensor-
based programming as proposed e.g. in [23, 24, 25, 26].
Another example is the sensitive lightweight robot arm
LBR iiwa from KUKA. It has integrated joint torque sen-
sors that make contact detection possible. Therefore it
can be used for tasks, where the position of the object
can be determined sensitively. In most cases, these ap-
proaches have preplanned or offline calculated trajecto-
ries and they try to handle differences in geometric mod-
els and reality by position control with different sensors.
Again, they minimize the amount of explicit program-
ming, but they lack of process-oriented guidance or in-
teractive planning support. On the other hand, offline
programming requires detailed geometric models that are
usually available for industrial robot cells and production
parts, so that the production process can be computed au-

tomatically.

One of the most common formalism for describing plan-
ning domains is PDDL [27]. In PDDL, there is a do-
main description (based on predicates) and descriptions
of possible actions with preconditions and their effects.
The desired goal state and initial conditions are part of
the problem description. The planning environment tries
find a sequence of actions that lead to the desired goal
state. In presented architecture, the planning is done by
combining TcUnits with suitable inputs and outputs to get
a generation trace. Therefore, the set of available TcUnits
in the ecosystem and their compatibility, play the major
role for planning. If various generation traces have been
found, one has to be chosen. This can be done manually
by domain experts or automatically, e.g. based on prefer-
ences or some heuristic.

5 Conclusion

In this paper, we presented a software architecture
for semi-automatically programming manufacturing pro-
cesses with industrial robots. Therefore, we introduced
the concept of TcUnits which provides a flexible and dy-
namical ecosystem of modules. Each module can solve
different task, e.g. the planning of robot motions, the
computation of end-effector poses, or the query of expert
user input. Especially, the involvement of expert knowl-
edge and its integration into robot programming is a key
contribution which improves the current situation. When
a manufacturing process is modified, the ecosystem of
TcUnits can be extended with new modules and searched
for new solutions.

We have implemented the proposed software architec-
ture into an off-line programming platform tailored to the
needs of the CFRP manufacturing domain. For evalua-
tion purposes, we have been generating robot programs
for two different robot cells with three different handling
end-effectors [7, 3]. The evaluation successfully con-
firmed that the concept of TcUnits performs very well
and increases the productivity of defining robot-assisted
production processes. Compared to conventional manual
teaching, which is still state of the art, we could accel-
erate robot programming tremendously, i.e. we could re-
duce the time from 66 to 7 minutes for one cxemplary
cut-piece. This clearly shows that the proposed software
architecture can contribute to the evolution of industrial
automation towards an Industry 4.0.

References
[1] International Federation of Robotics. Indus-
trial robot statistics. [Online]. Available: http:

/Iwww.ifr.org/industrial-robots/statistics/

[2] J. N. Pires, “New challenges for industrial robotic
cell programming,” Industrial Robot, vol. 36, no. 1,
2009.

[3] L. Nigele, M. Macho, A. Angerer, A. Hoff-
mann, M. Vistein, M. Schonheits, and W. Reif, “A
backward-oriented approach for offline program-
ming of complex manufacturing tasks,” in 2015
The 6th International Conference on Automation,
Robotics and Applications (ICARA 2015), Queen-
stown, New Zealand, 2015.

[4] A. Angerer, M. Vistein, A. Hoffmann, W. Reif,
F. Krebs, and M. Schonheits, “Towards multi-
functional robot-based automation systems,” in
Proc. 12th Intl. Conf. on Inform. in Control, Autom.
& Robot., Rome, Italy, 2015.

[5] J. Craig, Introduction to Robotics: Mechanics and
Control, 3rd ed. Prentice Hall, 2005.

[6] M. Higele, K. Nilsson, and J. N. Pires, “Industrial
robotics,” in Springer Handbook of Robotics, B. Si-
ciliano and O. Khatib, Eds. Berlin, Heidelberg:
Springer, 2008, ch. 42, pp. 963-986.

[7]1 T. GerngroB and D. Nieberl, “Automated manufac-
turing of large, three-dimensional CFRP parts from
dry textiles,” in SAMPE EUROPE Technical Conf.
& Table-Top Exhib., Sep. 2014.

[8] T. Erl, Service-Oriented Architecture (SOA): Con-
cepts, Technology, and Design. Prentice Hall PTR,
2005.

[9] OSGi Alliance, “OSGi Core Specification, Release
6,” URL: https://osgi.org/download/r6/osgi.core-6.
0.0.pdf, 2014.

[10] A. Angerer, A. Hoffmann, A. Schierl, M. Vis-
tein, and W. Reif, “Robotics API: Object-
Oriented Software Development for Industrial
Robots,” J. of Software Engineering for Robotics,
vol. 4, no. 1, pp. 122, 2013. [Online].
Available: http://joser.unibg.it/index.php?journal=
joser&page=article&op=view&path=53

[11] E Krebs, L. Larsen, G. Braun, and W. Du-
denhausen, “Design of a multifunctional cell for
aerospace CFRP production,” in Advances in Sus-
tainable and Competitive Manufacturing Systems,
ser. LNME. Springer, 2013, pp. 515-524.

[12] Y. Gan, X. Dai, and D. Li, “Off-line programming
techniques for multirobot cooperation system,” in
International Journal of Advanced Robotic Systems.
InTech Europe, 2013.

[13] KUKA Robotics. KUKA.WorkVisual. [On-
line]. Available: http://www.kuka-robotics.com/
en/products/software/engineering_environment

[14] Stdubli. Robotics Suite. [Online]. Avail-
able: http://www.staubli.com/en/robotics/
robot-software/pc-robot-programming-srs/

[15] EASY-ROB. EASY-ROB 3D Robot Simulation
Tool. [Online]. Available: www.casy-rob.com

[16]

[17]

(18]

(19]

(20]

(21]

CGTech. Vericut composite programming. [On-
line]. Available: http://www.cgtech.de/products/
composite-applications/vcp/

Mikrosam. Mikroplace. [Online]. Avail-
able: http://www.mikrosam.com/new/article/de/

advanced- off-line-composite- programming-software/

A. Billard, S. Calinon, R. Dillmann, and S. Schaal,
“Robot programming by demonstration,” in
Springer handbook of robotics. Springer, 2008,
pp. 1371-1394.

D. R. Myers, M. J. Pritchard, and M. D. Brown,
“Automated programming of an industrial robot
through teach-by showing,” in Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA. IEEE In-
ternational Conference on, vol. 4. 1EEE, 2001, pp.
4078-4083.

R. Zdllner, O. Rogalla, R. Dillmann, and M. Zoll-
ner, “Understanding users intention: programming
fine manipulation tasks by demonstration,” in Intel-
ligent Robots and Systems, 2002. IEEE/RSJ Inter-
national Conference on, vol. 2. IEEE, 2002, pp.
1114-1119.

Y. Yokokohji, Y. Kitaoka, and T. Yoshikawa,
“Motion capture from demonstrator’s viewpoint
and its application to robot teaching,” J. Robot.
Syst., vol. 22, no. 2, pp. 87-97, Feb. 2005. [Online].
Auvailable: http://dx.doi.org/10.1002/rob.v22:2

[22]

(23]

[26]

[27]

Robotiq. Kinetiq Teaching. [Online]. Available:
http://robotiq.com/products/robotic-welder/

M. H. Raibert and J. J. Craig, “Hybrid posi-
tion/force control of manipulators,” Journal of Dy-
namic Systems, Measurement, and Control, vol.
103, no. 2, pp. 126—133, 1981.

L. E. Weiss, A. C. Sanderson, and C. P. Neuman,
“Dynamic sensor-based control of robots with vi-
sual feedback,” Robotics and Automation, IEEE
Journal of, vol. 3, no. 5, pp. 404—417, 1987.

J. De Schutter, T. De Lact, J. Rutgeerts, W. Decré,
R. Smits, E. Aertbelién, K. Claes, and H. Bruyn-
inckx, “Constraint-based task specification and es-
timation for sensor-based robot systems in the pres-
ence of geometric uncertainty,” The International
Journal of Robotics Research, vol. 26, no. 5, pp.
433-455, 2007.

B. Finkemeyer, T. Kroger, and F. M. Wahl, “Exe-
cuting Assembly Tasks Specified by Manipulation
Primitive Nets,” Advanced Robotics, vol. 19, no. 5,
pp- 591-611, 2005.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins,
“PDDL - The planning domain definition lan-
guage,” 1998.

