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Introduction

The aim of this thesis is to prove rigidity results for homogeneous isoparametric
submanifolds of Hilbert space.

A submanifold M of a space form or a Hilbert space V is called isoparametric
if its normal bundle is flat and the principal curvatures along parallel normal fields
are constant. The beginning of the study of isoparametric hypersurfaces dates back
to 1920 and these early investigations culminated in the work of Elie Cartan in the
1930s. In the early 1980s the notion was generalized from isoparametric hypersurfaces
to submanifolds of higher codimension in R"™ by Terng ([TER85]) and others; in a
subsequent paper she further generalizes the definition to submanifolds of Hilbert space
([TER89]).

Homogeneous isoparametric submanifolds are closely related to polar representa-
tions, i.e. representations which admit a section, a submanifold that intersects any
orbit perpendicularly. Polar representations of compact Lie groups on R" were clas-
sified by Dadok ([DAD85]). They are orbit-equivalent to s-representations, i.e. iso-
tropy representations of semi-simple symmetric spaces. Thorbergsson proved in 1991
([THO91]) that any isoparametric submanifold of R” with codimension > 3 is homo-
geneous. Therefore isoparametric submanifolds are classified except for the case of
inhomogeneous ones of codimension two, where 10 cases still remain open cf. [CCJ04].

In infinite dimensions a large class of polar representation is known which arise from
finite dimensional hyperpolar actions on compact Lie groups: The so-called P(G, H)-
actions introduced by Terng ([TER95]). Many of these (e.g. any with cohomogeneity
greater than one) may be seen as an s-representations of an affine Kac-Moody symmet-
ric space, an observation already made though not proven in [HPTT94] and [TER95].
Gross ([GROO0]) proved on the other hand that s-representation of affine Kac-Moody
symmetric spaces are polar and Heintze sketches in [HEIO6] a proof for the classification
of affine Kac-Moody symmetric spaces.

As in finite dimensions, there is a homogeneity result for isoparametric submanifold
of Hilbert space — they are homogeneous if the codimension is greater than one. This
result is due to Heintze and Liu ([HL99]). So far no classification result, neither for
homogeneous nor for inhomogeneous isoparametric submanifolds of Hilbert space, was
known, though the analogy to the finite dimensional theory suggests that at least
those of codimension greater than one should be orbits of s-representations of affine
Kac-Moody symmetric spaces.

In this thesis we obtain rigidity results for a certain class of homogeneous isopara-
metric submanifolds in Hilbert space by proving that they are isometric to principal
orbits of P(G, H)-actions. Essentially the additional assumption is that the eigenspaces
of the shape operator are irreducible modules of the isotropy representation. This class
includes any isoparametric submanifold whose affine Dynkin diagram is of type A,
(TL Z 2), Dn, Ek (k‘ = 6, 7, 8), F4 or Gz.



2 INTRODUCTION

Moreover we obtain information about the geometry of P(G, H)-orbits, in particular
their affine marked Dynkin diagrams and slice representations.

In CHAPTER (1] we provide the preliminaries for proving rigidity of isoparamet-
ric submanifolds. The normal homogeneous structure S (introduced by Olmos and
Sénchez (JOS91]) in a single point x in M together with the second fundamental
form «, determines an isoparametric submanifold uniquely. Moreover an isoparamet-
ric submanifold M of higher codimension is determined by certain hypersurfaces, called
rank-one leaves, contained in M. This leads to a strategy for a classification: First
classify homogeneous isoparametric hypersurfaces (Chapters [2{ and , then investigate
how the affine Dynkin diagram of an isoparametric submanifold of higher codimension
determines the type of rank-one leaves (Chapter [5)).

The irreducible modules of the isotropy representation, which we treat in CHAP-
TER [2] are essential to understand the normal homogeneous structure just as in the
finite dimensional setting cf. [LES97]. A main difference between finite and infinite
dimensional isoparametric submanifolds is the different role of the space E(0), which is
the eigenspace of the shape operator corresponding to the eigenvalue 0. Any isopara-
metric submanifold of R™ splits as a product of F(0) with a compact isoparametric
submanifold. This is no longer true in the infinite dimensional setting; actually we
prove that E(0) is always infinite dimensional. We assume any other eigenspace of
the shape operator to be irreducible under the isotropy representation. Thus the main
task in Chapter [2|is to determine the splitting of E(0) into irreducible modules of the
isotropy representation. To do this we associate an isotropy module with a pair of
eigenspaces using the covariant derivative of the shape operator.

In CHAPTER (3| we refine the results about the isoparametric hypersurfaces treated
in Chapter |2 to obtain their normal homogeneous structure.

We determine in CHAPTER [4] affine marked Dynkin diagrams and slice represen-
tations of the known examples of polar representations on Hilbert space, that is the
P(G, H)-actions. Such arise from hyperpolar actions on compact Lie groups and were
classified on simple groups by Kollross in [KoL02].

We proof rigidity of isoparametric submanifolds of codimension greater than one
with irreducible eigenspaces in CHAPTER It turns out that they are principal or-
bits of Hermann actions on Hilbert space. As a by-product of this classification we
determine which Hermann actions are orbit-equivalent.

Though we have not classified homogeneous isoparametric submanifold with re-
ducible eigenspaces or whose slice representations are not s-representations, the results
nourish the hope that this problem can be solved in general.

I would like to thank my advisor, Prof. Dr. Ernst Heintze, for his encouragement
and many useful discussions during the last years. For many helpful suggestions on the
topics of Chapter [4]T would like to thank Dr. habil. Andreas Kollross and for discussions
I thank Dipl. Math. Christian Boltner.



CHAPTER 1

A Rigidity Theorem for homogeneous isoparametric
submanifolds

1.1. Preliminary Definitions and Results

We will summarize the results on isoparametric submanifold, that will be used
throughout the thesis, starting with the definition of isoparametric submanifolds in
Hilbert space taken from [TER89.

DEFINITION 1.1. A submanifold M of a Hilbert space V' is called proper Fredholm
or a PF-manifold, if the end point map

Y:vM—>V
v—=r+v HvevyM

is Fredholm and the restriction of Y to the unit disk normal bundle is proper.

A Hilbert manifold M is proper Fredholm if and only if the shape operator A, for
any normal vector v is compact. The codimension of PF-manifolds is finite.

DEFINITION 1.2. An immersed PF submanifold M of a Hilbert space V is called
isoparametric if

(1) the normal bundle v M is globally flat.
2) the shape operators A¢(;) and A¢(,) are orthogonally equivalent for any parallel
£(z) &)
normal field £ and any point z and y in M.

REMARK. In [HLOOO] it was proven, that any isoparametric submanifold is em-
bedded, this was already stated by Terng. Moreover it is sufficient to require flatness
of the normal bundle, cf. [HLOOO, Theorem B].

DEFINITION 1.3. Let V be a Hilbert space and G a Hilbert Lie group. An affine
representation 9: G — Iso(V) = O(V) x V is called polar if
(1) the G-action on V is proper,
(2) the orbit maps w,: G — V with ¢ — o(g)(x) are Fredholm for any x € V' and
(3) for any regular point = the normal plane v, M meets every orbit and always
perpendicularly.

THEOREM 1.4 ([TERS9]). A homogeneous submanifold M of a Hilbert space is
wsoparametric if and only if it is a principal orbit of a polar representation.

Examples of homogeneous isoparametric submanifolds of Hilbert space were found
by Terng ([TER89)]), Pinkall and Thorbergsson ([PT90]) and Terng gave in [TERIJ]
a fairly general construction by lifting hyperpolar actions on compact Lie groups to
Hilbert space, cf. Chapter Hyperpolar means that the action is polar with a flat
section.

As for any proper action, for a polar action on Hilbert space any isotropy group
G, is compact. Since the orbits are PF-manifolds, the shape operators at a point x

3



4 1. A RIGIDITY THEOREM FOR HOMOGENEOUS ISOPARAMETRIC SUBMANIFOLDS

are compact and since the normal bundle is flat ; therefore there is a simultaneous
eigenspace decomposition of the tangential space T,M. Moreover since the shape
operators are orthogonally equivalent along parallel vector fields, this yields a splitting
of the tangential bundle as

TM=@EN), with dim(E(\)) =m(X)
icl
where [ is a countable set and A;: v, M — R are the eigenvalues. The eigen distribu-

tions E(\;) are called curvature distributions. Note that 0 is always an eigenvalue and

m(0) = oo is possible, whereas m();) < oo for any other eigenvalue. For any normal
field v

AU|E(>\1') = <U7 UA@'> id |E(>\i)
for a well-defined parallel normal field vy,, the so-called curvature normal. Throughout
this thesis we will assume that the curvature normals vy, (x) span v, M, therefore M is
full, that is, not contained in a proper closed affine subspace of V.
The curvature distributions E()\;) are autoparallel and their integral manifolds are
spheres with center ¢y, (z) = z + (vy,(z)/||va,||?) and radius 1/||vy,||. These are called

curvature spheres Sy,(x). Note that the integral manifold of E(0) is an affine plane
x+ E(0)(x) C M.

REMARK. In finite dimensions, if 0 is an eigenvalue of the shape operator the
isoparametric manifold M C R” splits as M = M x E(0), where M is a submanifold
of a sphere 7 4m(E(©) " This is not true for infinite dimensions.

Let Iy, (z) C  + v, M be the normal hyperplane to v, that is,
Ihz)={z+v]|{v,uy)=1,veEVM}.

Denote by RS : (v +v, M) — (x+v, M) the reflection at [, (). Then the group gener-
ated by the RS is an affine Weyl group W (x) and its Coxeter graph is an affine Dyknin
diagram. By the marked affine Dynkin diagram of an isoparametric submanifold we
understand the affine Dynkin diagram of the reflection hyperplanes [),(z), where a
vertex associated with I, (x) is marked with my,. Note that m,, = m,,, if there is an
element in W (z) mapping [y, (x) to [y, (z).

For any eigendistribution E(J;), with \; # 0, there is a diffeomorphism ¢,, which
maps a point z to the antipodal point of x on the curvature sphere Sy, (z). If the
hyperplane RS (I, (z)) = l,\0j<i)(x), then

EQ)(er () = E(Ag; i) (2)-

Since the curvature normals induce an affine Weyl group, there are only finitely
many non proportional curvature normals and for any curvature normal there is an
infinite family of proportional curvature normals v, which are of the form v, = 2,
where v is some normal field and d a number which encodes the distance of the associ-
ated reflection hyperplanes. The eigenvalue associated with this family is then of the
form )\, = -5 for ¢ € R and d € R depending on the point x € M.

d+n
Finally we give the definition of an s-representation.

DEFINITION 1.5. Let M = G/K be a semi-simple simply connected symmetric
space, that is, the connected component G = I°(M) of the isometry group is a semi-
simple Lie group. Then the isotropy representation of M is called an s-representation.
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Let M be of compact type. If g and € are the Lie algebras of G and K respectively,
and g = €@ p is the Cartan decomposition, then the isotropy representation of G/K
at any point is equivalent to the adjoint representation of K on p:

Kxp—=yp
(K,v) — KvK™*

DEFINITION 1.6. Two representations p; : G; — SO(n), i = 1,2 are called orbit-
equivalent or w-equivalent, if there exists an isometry F': R — R" such that

F(Gi(2)) = Go(F (7))

for any x € R”, that is, the representations p; have the same orbits. Replacing R™ by a
Hilbert space V and SO(n) by Iso(V') generalizes the definition to affine representations
of Hilbert space.

1.2. Reduction of the codimension

Let M be a homogeneous isoparametric submanifold of a Hilbert space V. In
[HL97] a construction is given which associates with each affine subspace of the normal
space a homogeneous isoparametric submanifold of lower rank. This is done in the
following manner: One chooses a point ¢ € M and an affine subspace P C v, M which
defines an distribution on M by

Dp =P {EN) | vs(a) € P}.

This distribution is autoparallel, and we denote the leaves through © € M by Lp(z)
and let Wp(z) = x + Dp(z) @ span {vy,(x) | vy, (a) € P}. Then the following theorem
([HL97], Lemma 3.3.) is valid:

THEOREM 1.7. If M s a full, irreducible isoparametric submanifold of an infinite
dimensional Hilbert space with codimension at least 2, then Lp(x) is an extrinsically
homogeneous isoparametric submanifold of Wp(x) for any affine subspace of v,M and
any a € M.

REMARK. Theorem C in [HL99] says that these submanifold are homogeneous,
if the codimension of M is greater or equal to two, even if M is not assumed to
be homogeneous. This is the infinite dimensional version of the Homogeneous Slice
Theorem of [HOT91] and a crucial step in proving the homogeneity of M.

If the subspace P is not linear, then Lp(x) is finite dimensional since there are only
finitely many non-proportional curvature normals. On the other hand, if it is linear
(and contains at least one curvature normal), the leaves are infinite dimensional. Note
that the distribution Dp contains E(0) in this case, therefore as we will see generically
Lp(x) is reducible, one can split off a subdistribution of E(0).

We start with the following proposition, describing generally the part of F(0) by
means of Va which splits off from a given isoparametric submanifold M by Moore’s
Lemma. Compare with Lemma 3.1. in [HL97] where a similar construction is described
using the orthogonal complement of the span of all normal spaces.

PROPOSITION 1.8. Let M be a homogeneous isoparametric submanifold of Hilbert
Space V' and deﬁne

H(z)={Z € E(0)(z) | (Vxa)(Y,Z) =0 for all X,Y € T,M}.
Then M = H x Mg, where M, is the integral manifold of H™*.
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PROOF. We observe first, since (Vxa) (Y, Z) = 0 for all Z if X and Y are contained
in £(0)(z) that we may restrict ourselves to the case vy # 0, where vy is the curvature
normal associated with E()\), when Y € FE()\). We want to apply Lemma 3.1. of
[HL97]. For any X and Y € E(0)*(z) by [HL97, Lemma 2.1]

(VxOé)(Y7%) == <VX}/, H> Vy — — <}/, VX'H> Vy = 0

hence VxH C E(0)(x) for any X € T,M. Denote by V the Levi-Civita connection of
V. Then, by the Gauf} formula

erH =VxH+ Of(l‘,%) =VxHC E(O)

and hence v, M C E;(x) ® v, M for any y in any curvature sphere containing x. There-
fore H(x) L v,(M). The same holds trivially for y € x + E(0)(z).

In [HL99] the following equivalence relation ~q is defined: If for two point x = xg
and y = x,, exists a finite number of points x; such that x; is contained in a curvature
sphere containing xy_; or xy € x_1+ E(0)(x_1), then  ~y y. The equivalence classes
are denoted by Qq(z), and Qo(x) = M ([HL99, page 163 and Theorem DJ).

Therefore H(x) L v,M for any y € M, since we have proven orthogonality for any

Yy € Qo(l’) Let

V' =span{v(y) | y € M and v(y) € v, M}
and hence H(z) L V'. By Lemma 3.1. of ([HLI97]) M = M’ x (V')* so it remains to
prove H(x) = (V')*.
Since (V')* is a subdistribution of E(0) and parallel (cf. proof of Lemma 3.1. in
[HL97]) and moreover for any v € (V')*
(Vxa)(Y,v)) = (VxY,v)vy = = (Y, Vxv)vy C(Y,(V) vy =0
we conclude (V') C H, which finishes the proof. O

If we consider a leaf Lp(z) for some subspace P of v, M, we can describe the part
of F(0) that splits of by the last proposition, namely

Hp(x) ={Z € E(0) | Vxa(Y,Z) =0 for all X,Y € Dp(z)}.
By Lp(z) we will denote the reduced leaf.

_ DEFINITION 1.9. Let P be an n-dimensional linear subspace of v, M, then we call
Lp(z) a rank-n leaf of M, if span{v;(a) € P} is n-dimensional.

Let Dp = Ep & E(0), then
E(0) =Hp & (V. Ep)y,
where (-)o denotes projection onto E(0). Moreover if Py L P, then Vg, Ep, 1 E(0),
since
(Vip,@)(Ep,, E(0)) = (Vigy, Epy, E(0)) ny = (Vg Ep, E(0)) ny =0

by Codazzi equation and the fact that non zero curvature normals v; € P; and v € P
are not, proportional.

Later (cf. Subsection on page we will see, that this construction may be
refined by considering distributions of eigenspaces, where associated curvature normals
do not consist of whole proportional families.

Heintze and Liu proved in [HL99], that an isoparametric submanifold is uniquely
determined by the Lp(x) when P is one-dimensional. If we assume that the second
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fundamental form «,, that is the affine marked Dynkin diagram is fixed, the rank-
2 leaves for P, that is not linear, contain no additional information, because finite
dimensional rank-2 isoparametric submanifolds are determined by their marked Dynkin
diagram. This proves the following slight modification of Proposition 3.1 in [HL99]:

COROLLARY 1.10. Let My and Ms be two irreducible isoparametric submanifolds
of V. with rank bigger than or equal to 2. Assume that there erist x € M; N My
such that TyMy = Ty My and Ly(x) = Lyy(x) for any one-dimensional linear subspace
I C My = v, My and oy (x) = ag(x). Then My = Ms.

In other words: Two different isoparametric submanifold with same second fun-
damental form at one common point have to contain at least one rank-1 leaf that
is different. Hence: Understanding the homogeneous isoparametric hypersurfaces is
a crucial point in understanding isoparametric submanifolds of higher codimension.
Therefore we concentrate on hypersurfaces in the next chapters.

1.3. Normal homogeneous structures

Our aim in this section is to show that an isoparametric homogeneous submanifold
is uniquely determined by the second fundamental form o and the normal homogeneous
structure S in a point. We will use the ideas described in [BCOO03] chapter 7.1.b.

The investigation of (extrinsic) homogeneous structures has been started in the
paper [OS91] by Olmos and Sénchez. They proved that a compact full submanifold of
Euclidean space admits a normal homogeneous structure if and only if it is an orbit of
an s-representation, that is, a submanifold with extrinsic homogeneous normal bundle,
in particular these are homogeneous submanifold with constant principal curvature.

DEFINITION 1.11. A normal homogeneous structure S on a submanifold M on V' is
of the form S =V + V! — V where V = V¢ + V<1 is a so-called canonical connection,
i.e.

o Vis a metric connection.
e « is V-parallel.
e S is V-parallel.

We use the operator
[,X =S5,X+a(v,X") - Agwv

for v € TpM and X € V which encodes the information of the second fundamental
form and the homogeneous structure and is V-parallel.

REMARK. The more general notion homogeneous structure is defined likewise,
where V.= V@ V!t — S and TM is a V-parallel bundle, without requiring that
the connections coincide on the normal bundle.

A central point in the following discussion is, that the differential equation for
V-geodesic has constant coefficients, namely

D

—B = BC,

dt
where B(t) = ( ( ) ..,Bk(t),BkH(t), ...) is a V-parallel Darboux frame along ~y
and Cjj = <F > Thereby let (B, ..., Bg) be a normal frame, By = 7

and (Byyy(t), . ) be a orthonormal Schauder ba81s of Ty M.



8 1. A RIGIDITY THEOREM FOR HOMOGENEOUS ISOPARAMETRIC SUBMANIFOLDS

Therefore the V-geodesics starting at p and the V-parallel transport along any
curve through p are determined by I',. The following lemma is valid, cf. [BCOO03),
Lemma 7.1.10], formulated for infinite dimensions.

LEMMA 1.12. Let M be a submanifold of Hilbert space V' admatting a homogeneous

structure and let p and q be arbitrary points in M. Then there exists an isometry
F:V =V mapping p to q and F(M) C M.

PrROOF. The same proof as in [BCOO03| also applies on the infinite dimensional
setting. 0

The arguments in the proof show that I' is Fi-invariant along curves in M. We
modify the proof to show

THEOREM 1.13. Let My and My be two connected, complete, homogeneous isopara-
metric submanifolds of V' with normal homogeneous structures V1 and Vs respectively.
Assume that there exist x € My N My such that T, M, = T, M,, T'1(z) = T'y(x) and
a1(x) = ag(x). Then My = M.

PROOF. Since the second fundamental forms in z coincide so do the curvature
normals, the curvature spheres and the affine subspace E(0)(x). Let ¢ be a V-geodesic
either in a curvature sphere or in E(0)(x), which is determined by the given data I';(x).

Denote by 7 the Vi—parallel transport along ¢ and by F: V — V the unique
isometry such that F(z) = y and F,, = 7. Observe that we could also use V5 since
I'1(z) = T'y(x) and the curve ¢ is contained in M; N My. Therefore the second funda-
mental form and the homogeneous structures of M; and M, coincide on the curvature
spheres containing x and in x + E(0), since I'; is F,-invariant.

Hence the two geometric data coincide on the common dense subset of M; and Mo,
namely on Qo(M;) = Qo(Ms) (cf. proof of Proposition on page [5)) and therefore
M; = M, since the manifolds are complete. O

Therefore, to obtain a rigidity result, we have to determine the canonical connection.
The ideas arise from is description of V¢ in the finite dimensional case, i.e. for the orbits
of s-representations, which is closely connected to the so-called projection connection
V7. The latter is defined by

k
XY = Z(VXYn)n
n=1
where TM = @©f_ F, and (-); denotes projection onto F;. This is the canonical con-
nection if the restricted root system of the corresponding symmetric space is reduced.
Leschke gave in [LES97] the canonical connection for any finite dimensional homo-
geneous isoparametric submanifold, which is almost a projection connection as well,
projecting onto modules of the isotropy representation instead of onto the eigenspaces.
We will describe this more closely, cf. further details [BCOO03|, example 3.2 on page
49ff. and example 3.4 on page 63.

Let G/K a semi-simple symmetric space and g = € ® p the corresponding Cartan
decomposition. Let a be a maximal abelian subalgebra of p, which is a section of the
polar representation K acting on p. Then the spaces py are the eigenspaces of ad(a)?
for a € a, where X is a positive restricted root and pgy = 0 if 2 is not a root. If
M = K -a is a principal orbit of the s-representation, then the eigenspaces of the shape
operator are given by E)\ = py+poy and this decomposition is respected by the isotopy
representation.
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Then the canonical connection V¢ is the projection connection of the p) with the
only exception if X € poy and Y € p) then

VOV = (VyV)y + %(VYX)A. (1.1)

Note that (VY'),, = 0 when Y € py with X\ # p, cf. [LESIT, p. 58].

The reason for this exception is the following: Any K-invariant vector field has to
be parallel with respect to the canonical connection and for such vector fields V,, p,, =
(e, Pu)T C (pasp @ pap)T. So after projection to p, this is not zero only in the case
A = 24, which is the exception from above.

Our aim is to study the situation for the infinite dimensional setting, i.e. to deter-
mine the canonical connection for certain isoparametric hypersurfaces. In general the
eigenspace F'(0) is infinite dimensional and in order to define a projection connection
V7™ with respect to irreducible modules of the isotropy representation, the main task is
to describe these modules within £(0). We will do this in the next chapter by means
of VA. In fact this will prove that the normal homogeneous structure is determined
by A and VA, at least if the eigenspaces of A are isotropy irreducible.

A projection connection in that sense is a good candidate for the canonical connec-
tion, for the latter has to respect modules of the isotropy representation:

COROLLARY 1.14. Let G be a Hilbert Lie group acting polarly on a Hilbert space V
and let a be a reqular point. With respect to the canonical connection the modules of
the isotropy representation are parallel distributions.

PRroor. Since the holonomy of the canonical connection is part of the isotropy
representation, there is for any curve ¢ a unique curve g: I — G such that ¢(t) =
g(t) - ¢(0) and the parallel translation along ¢ is given by ¢(t).X.

Let W be a tangential distribution, which is invariant under the isotropy repre-
sentation, and @ € M a regular point. Then W(g - a) = ¢.W(a) for any g € G. Let
c(t) = g(t) - a be a curve and X (¢) =Y 1 | Ai(¢)g(t).X; an arbitrary vector field along

¢, where X7,..., X}, is a basis of W(a). Then
Ve X (1) =Y M)V g().Xi + Y é(t)(Ni(t)g(£).X:) € W(c(t))
i=1 =1

since the first summand vanishes by the choice of ¢(t) as above. 0



CHAPTER 2

The isotropy representation of isoparametric hypersurfaces

Throughout this chapter let G x V' — V be an irreducible, effective polar repre-
sentation of a Hilbert Lie group G on a Hilbert space V' with cohomogeneity one. Let
M = G - a be a principal orbit hence an isoparametric hypersurface and assume that
it does not split in the sense of Proposition on page [5] Since the isotropy group
G, is compact and finite dimensional the tangent space T, M splits into finite dimen-
sional irreducible modules of the isotropy representation. Our aim is to describe these
modules, to determine the canonical connection of M.

Let

T.M = P E. & E(0),
neZ
where E, = E()\,) is the eigenspace associated with the curvature normal v, = vy, =
v
d+n”

REMARK. Note that there is an (finite dimensional) eigenspace E; associated with
the greatest positive eigenvalue Ay, which must not be mistaken for £(0), the eigenspace
associated with the eigenvalue 0. Nevertheless this notation will turn out to be very
useful in this and the next chapter.

Since

9+(Agv) = Ag.e(g:0) = Agguv
the eigenspaces are invariant subspaces under the isotropy representation.

The submanifold M is a hypersurface, its affine marked Dynkin diagramm is of
type Ay, that is 7%%%2. The eigenspaces F, are of dimension my, if n is even and of
dimension my if n is odd. Note that m; = my is possible.

To understand the isotropy representation, it is necessary to investigate the isotropy
group closer.

2.1. Structure of the principal isotropy group
PROPOSITION 2.1. Let ¢, be the midpoint of the curvature sphere S,(a). Then
(Gelae, ={9€G | g-cn=—cp, gla—cp) =a—c,} =G,

i.e. the principal isotropy group of the singular slice representation is the principal
isotropy group of the action.

PROOF. We observe that
g€ (Gelaee, = g-cn=cpand g(a—c,) =a—c, <= g-a=a

since the action is affine which yields one inclusion, the other being clear by the same
argument because G, C G, . O

10
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Since G, is compact we equip its Lie algebra g, with a biinvariant metric and

decompose

g, = 00, D gon,
where g is the Lie algebra of the subgroup of G.,, which acts trivially on v, (G - ¢,)
and gﬁf the orthogonal complement.

Then G,, = (GM),_., is the part of G, which acts effectively on E,(a), by the above
lemma this is the principal isotropy group of the effectivized slice representation, i.e.
the principal isotropy group of an action which is transitive on the curvature sphere.
By the classification of actions transitive on spheres (cf. Section on page , G,
consists either of one or two simple factors or of one simple factor and a one-dimensional
abelian factor.

Since (G, is compact, it is clear that only finitely many of these factors G, may
be different. If m; # msy, then Go, is not isomorphic to Gs,11, but for some low
dimensional exceptions. Our aim is to show that G, = G, 2 for all n or all G, are
equal. First we prove

ProOPOSITION 2.2. Let k,n € N arbitrary. Then G, = Gagap-

Proor. Consider the antipodal map ¢ on the curvature sphere Sg, i.e.

=z + & ()

Pra, (V) =0 = Ag ()0
Restricted to an eigenspace E,, the map ¢, is equivariant, that is,

g*(@k*(v)) — <1 - 2<Uk,1)n>> g*(U) — Lk_dg*(y)

d+n

Since ¢.(FEy,) = Eok_y, and @y, (Eog_y) = Eo, this implies
Gpla) = Gan-r(pr(a))

since ¢y, is a diffeomorphism and G, = G, () by the last proposition.
Let hy € G be an element such that hy(a) = ¢x(a). Then

hiGrn(a)hyt = Gu(pr(a)) = Gapn(a).
An easy calculation shows hy(hy(a)) = ¢k(¢i(a)) and this yields by the above equation
Gn(pr(pi(a))) = Gog—n(wi(a)) = Go-ar+n(a) =
Gu(lu(hi(a))) = hiGr(hi(a)hi ' = Ga—n(hi(a)) = Gopsiin(a)

With help of the last proposition we prove

THEOREM 2.3. Let M = G - a be a homogeneous isoparametric submanifold, with
dim E5, = my and dim Ey, 1 = my. We assume that G, acts effectively on T, M.
The isotropy group s a product

G, = G x Gy x Gy,
where Gap, = G X Gy (Gope1 = G x Gy resp.) is the principal isotropy group of a
transitive action on S™ (S™2 resp.), acting effectively on the corresponding eigenspace

Eon (Eany1 resp.).
Any of the factors of G, may be trivial.
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Proor. We divide the proof into two steps. First we show that there is no factor
acting effectively on E(0) but not effectively on any E,.

STEP 1. Assume there is an element g € G, such that ¢.|g, =id|g, but g.X =Y
for X #Y, X,Y € E(0). Then (Vg,o)(E;,X) = (Vg,a)(E;,Y) , hence X —Y €
ker(Vg,)(E;,-) for all 4,5 € Z which implies that A splits, cf. Proposition on
page [bl This contradiction proves that GG, is the product of the G, for n € N.

STEP 2. We prove G,, = Gy, in this part. We have already seen that G, = Gaxynp,
which yields, together with the first step, a splitting on Lie algebra level

Oo =91+ 82+ 083+ 04

into ideals g;. Moreover we have proven in the last proposition, that thnh,gl = Gog_n,
when h(a) = pr(a) and therefore g; = g3 and gy =2 g4.

Observe that hy commutes with G, whenever g, and g, are disjoint, since the
maximal subgroup of G¢F with Lie algebra gy is GyU{g - hi - 97" | g € G} and contains
in particular any element hy.

So far we have proven, when g; N gy = {0} then G,, = Gy, for any k,n € Z. This
corresponds to the case when G vanishes in the statement of the theorem. We remark
that the converse is also true, that is if g, = g3 = hogihy ', then [gi, go] = 0. This
yields go = g4, too, since hy - G5 - hfl = (G5 = G4 holds.

Let now g; Ngs # {0}. We start with the case, when g; C go. By conjugation with
hy the following holds: g; C g1 Nge = g1 N g4 and therefore g; C go N g4. The same
holds for g since hogihy' = g3 C hagohy ' = go. So either gy =gs or g1 @ gs = g2 N g
consists of two isomorphic summands.

In the first case, by the remark above g = g4 and therefore g, = g or g, = g2 2 g1.

In the second case go = g4 because any g; consists of at most two ideals or one-
dimensional abelian summands, being the principal isotropy algebra of an action tran-
sitive on a sphere. But then again g, = g3, which yields a contradiction.

It remains to analyze the case , when {0} # g1 N go # g; for i = 1,2, in particular
g; consists of two summands for any ¢. Since conjugation with appropriate h; yields

g1NG=giNgs=gaNgs =gz g,

either g, = g &® Zle h; (where gi = g@ b;) or g1 = g1 Nga P g1 N gs. The latter case
implies that G; = Sp(1) x Sp(1), for this is the only possibility with two isomorphic
summands, and h; interchanges the two factor, by explicitly examining the s-represen-
tation Sp(2) x Sp(1) acting on R®, one sees immediately that this is not the case.

Let therefore g, = g & 2321 h;, and H; C G, the connected, closed subgroup with
Lie algebra b;. Then G35 = G x Hs = hoG1hy' = hoGhy' x hoH hy' = hyGhy' x Hy
since [go, h1] = 0. Therefore h; = b3, which finishes this step. O

REMARK. Any of the four cases for the principal isotropy group, namela G| = Gb,
Gy C Gq, {id} € G1 NGy & G; and G; NGy = {id} does occur. We give examples
(for the calculation of the diagrams and the description of the P(G, H)-actions, see
Chapter [4)) and characterize the corresponding Dynkin diagram.

We remark, that for the known examples the factor G is U(1) or Sp(1), if either
Go or Gy does not vanish. Moreover in the case G = {id} the isotropy group is
SO(ml) X SO(mg)

G1 = G3: In most cases the Dynkin diagram is of type gnign for m € N. An
example is given by the P(G, H) action with G = SO(m+1) and H = (SO(1) x
SO(m))?, the principal isotropy group is then SO(m).
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9o = 0 | Diagram | Action
50(2) = u(1) 573 G2/(SU(3) x SO(4))
2o A TI-TII(3, 3)
50(3) = su(2) = sp(1) =0 C 11(1, 2)-11(1, 2)
oo A TI-TI1(3, 5)
sp(1) @ sp(1) o9 rank-2 C I1(2, 3)
s0(5) = sp(2) o0, E II-1V
50(6) = su(4) o=e rank-2 E I
su(3) o9 SO(16)/Spin(9) x (SO(2) x SO(14))
s0(7) o9 F II-11
| 9. =898 | | |
sp(m) @ u(1) S aos | SO(4m)/Sp(m) - Sp(1) x SO(4m — 2)
sp(m) & sp(1) oo A IL11L(3, 2m + 3)
su(m) @ u(1) S D I(3, 2m + 3)-1II
[ 0.9 Dg | |
sp(m) @ sp(1) ® sp(1) Z%r?wz’) rank-2 C I1(2,m)

TABLE 2.1. P(G, H)-action with “exotic” principal isotropy group

The fact that some low dimensional Lie algebras are isomorphic yields a sec-
ond kind of examples: One is the rank-2 example of E II (cf. subsection on
page , which has isotropy group U(4) and Dynkin diagram g=e , that is
U(4) acts as Spin(6) on some eigen spaces. We give the complete list of these
examples in the table on this page. The last two example arise from the fact
that s0(7) and su(3) are the principal isotropy algebra of two different actions
transitive on spheres respectively.

G1 C G2: In most cases the Dynkin diagram is of type Tﬁgmﬂ or gﬁzmﬁ . An

example is given by G = Sp(m) and H = (Sp(1) x Sp(m — 1))2, the principal
isotropy group is Sp(m — 2) x Sp(1) and the diagram is §£Z(m—2)+3'
Again the isomorphisms of low dimensional Lie algebras give another kind

of example: The exceptional cohomogeneity one action with G = SO(4m),

= Sp(m) - Sp(1) and K = SO(4m — 2) has isotropy group Sp(m) x U(1).

The diagram is gﬁz(m 23 that is the factor U(1) acts as SO(2) on some

eigenspaces. The examples of that type are collected in the table on the current
page.

{id} ¢ G1 N G2 ¢ Gz The Dynkin diagram is of type , e or 4m01i2m>+3 for

any m; € N. Examples of those type are given by complex Grassmannians (i.e.

G =SU(n), H=S(U(k)xU(n—Fk)) xS(U(l) x U(n—1)) for k # [) with isotropy

group SU(my) x U(1) x SU(ms) or quaternionic Grassmannians.
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Again there is an exceptional example, namely the rank-2 example aris-
ing from C II(2,m), whose diagram is ¢~ L, With principal isotropy group
Sp(m) x Sp(1)*.

G; NGz = {id}: No restrictions on the Dynkin diagrams. An example of this
type is given by real Grassmannians (i.e. G = SO(n), H = SO(k) x SO(n — k) x
SO(I) x SO(n — 1) for k # ) with isotropy group SO(m;) x SO(my).

REMARK. For a finite dimensional homogeneous isoparametric submanifold M =
G - a the effectivized slice representation always coincides with the normal holonomy
representation, hence is an s-representation ([HO92|), if one considers the maximal
group G, i.e. the connected component of the full group of isometries on M. This is not
true in the infinite dimensional setting although the normal holonomy representation
is an s-representation (cf. [HL99, Lemma 2.1]): Let G be SO(16) and H C G x G be
Spin(9) x (SO(2)xSO(14)), the action of H on G has cohomogeneity one and is therefore
hyperpolar and lifts to a P(G, H) action. One of its singular slice representation is the
polar action of Gy on S%, which is not an s-representation, the other is U(4) acting on

8 . - . oio
S, that is, the diagram is g~ .

DEFINITION 2.4. We call a homogeneous isoparametric hypersurface of a Hilbert
space elementary if the diagram is

o T s TR A
and the isotropy group is SO(m), U(m), Sp(m) x Sp(1) and Spin(7) respectively.

REMARK. Among the Hermann actions the P(G, K x K)-actions are elementary,
if G/K is sphere or a projective space.

We will see later for the case G, = SO(m;) x SO(my) , that each non elementary
isoparametric hypersurface contains two elementary parts, each associated with one of
the vertices of the Dynkin diagram (cf. section on page . This is done by showing
that the distribution D; = {X € TM | G, - X = X} = Fixg, (T'M) is autoparallel.

2.2. Decomposition of eigenspaces F,,

To describe the decomposition of F, in modules of the isotropy representation we
only have to determine the groups acting effectively on F,, by means of Theorem
Let dim E,, = m.

m arbitrary: Let the effectivized slice representation be the standard represen-
tation of the group SO(m + 1) acting on R™"! with principal isotropy group
SO(m).

The effectivized isotropy representation on F, is the standard representation
of SO(m) on R™, which acts transitively on the sphere, hence E, is an irreducible
module of the isotropy representation.

m = 2m + 1: Additionally the effectivized slice representation could be the s-rep-
resentation of a complex projective space, i.e. S(U(1) x U(rm + 1)) = U(m + 1)
acting on C™*1 = R*"+2 with principal isotropy group S(U(m) x U(1)) = U(1n).

The effectivized isotropy representation on FE, is the representation of U(m)
on R?™+1 therefore F, decomposes into an 2m-dimensional module with the
standard representation of U(/m) and a one-dimensional trivial one.

m = 4m + 3: Additionally the effectivized slice representation could be the s-rep-
resentation of a quaterionic projective space, i.e. Sp(m + 1) x Sp(1) acting on
H™ ! = R with principal isotropy group Sp(m) x Sp(1).
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The effectivized isotropy representation on E,, is the representation of Sp(m)x
Sp(1) on R¥™*3 therefore E, decomposes into an 4m-dimensional module with
the standard representation of Sp(/) and a three-dimensional module with the
standard representation of Sp(1).

m=15=8 +7: Additionally the effectivized slice representation could be the s-
representation of the projective Cayley plane, i.e. Spin(9) acting on R'® with
principal isotropy group Spin(7).

The effectivized isotropy representation on F,, is the representation of Spin(7)
on R'®| therefore E, decomposes into an 8-dimensional module with the repre-
sentation of Spin(7) and a 7-dimensional module with the standard representa-
tion of SO(T7).

Finally we consider the case of a transitive action on S™"!, which is not an s-represen-
tation.

m = 2m + 1:  Additionally the effectivized slice representation could be SU(m + 1)
acting on R*™*2 with principal isotropy group SU(m), therefore F,, decomposes
into an 2m-dimensional module with the standard representation of SU(m) and
a one-dimensional trivial one.

m =4m+ 3: Additionally the effectivized slice representation could be Sp(m—+1) x
U(1) acting on R¥™* with principal isotropy group Sp(m) x U(1). Therefore E,
decomposes into an 4m-dimensional module with the standard representation
of Sp(m), a two-dimensional with the standard representation of SO(2) and a
one-dimensional module.

m =4m+ 3: Additionally the effectivized slice representation could be Sp(m + 1)
acting on R¥™ ™ with principal isotropy group Sp(m). Therefore E,, decomposes
into an 4m-dimensional module with the standard representation of Sp(m) and
three one-dimensional modules.

m = 6: Additionally the effectivized slice representation could be Gy acting on R”
with principal isotropy group SU(3), therefore E,, is irreducible.

m = 7: Additionally the effectivized slice representation could be Spin(7) acting on
R?® with principal isotropy group Gs, therefore E, is irreducible.

2.3. Decomposition of F(0) — associated modules

We associate a module of the isotropy representation with each pair of modules by
means of Ve in the following manner.

DEFINITION 2.5. Let V; and V5 be not necessarily irreducible modules of the iso-
tropy representation and let & be a parallel normal vector field. Then we define

Vinw, = ( [ ker(Vxa)(Y, -)) = span{(ker(Vxa)(V; )" | X € 1,V € V3}

Xev,Yev,

={(VxA)Y | X € 1N,Y € 1}
the module associated with V| and V5.

REMARK. (1) If the V; are modules, then V3, y, is a module as well.
(2) We have dim Vi, v, < dimV} - dim V5.
(3) The Codazzi equation implies Vi, v, = Vig1s-
(4) For now on we use the abbreviation

Vn,m =Ve,.E

s em °
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Note, that V,,,, = {0}, since eigenspaces are autoparallel.

PROPOSITION 2.6. Any irreducible module of the isotropy representation is con-
tained in some associated module. Moreover the modules V,, ,, span E(0).

ProoF. The first claim means that the tangent space is spanned by the associated
modules. Assume there is a vector perpendicular to all associated modules, that means
it is contained in ker(Vxa)(Y,-) for every X and Y. This is a contradiction since M
does not split, cf. Proposition on page

For the second part we observe that if both modules V; are subsets of E(0) the
associated module is 0 since (Vy, A)¢(V2) = 0 by the autoparallelity of E(0). If V; C
E(0) and V5 C E, by the Codazzi equation the associated module is not contained in
E(0) which proves the second assertion. O

Thus, to describe the splitting of F(0) into irreducible modules of the isotropy
representation, it is sufficient to understand the representation on the modules V;, ,.
As we will later see the converse of the last proposition is not true: there could be
modules V}, , which are not subsets of £(0).

The effectivized isotropy representations on E, and F),, induces a natural action on
E, ® E,,, either by G, or one of its factors, i.e. the map

v EyQE, — Vi
X® Y = (VxA)Y.

is equivariant. The same group acts effectively on V, .0 let g.|p, 05, = id|5,08,
then (Vxa)(Y,Z) = (Vxa)(Y,9.Z) for all X € E,,Y € E,, and Z € T,M hence
9l = 1id v, ., if we assume, that M does not split.

The representations on E, ® E,, which are tensor products of standard represen-
tations are well known, and by Schur’s Lemma ) restricted to an irreducible module
is a multiple of the identity. Hence, to determine the irreducible modules within V}, ,,,
we have to figure out which of the modules of F,, ® F,, vanish under ¢y and whether
they are subsets of E(0).

Our first observation shows the close relation between the spaces V,,,, and the
involutions associated with curvature spheres. Again we denote by ¢, the antipodal
map of the curvature sphere Si. Since restricted on an eigenspace this is an equivariant
map and so is v, the following diagram is commutative.

(or)=

E,.(a) ® Ep(a)

d
Vim(a)

We will use this diagram to determine in which eigenspaces the V,, ,,, are contained.

o n(pr(a)) ® Egpm(pr(a)) (2.1)

v

(©r )=
o %k—nﬂk—m(@pk(a))

PROPOSITION 2.7. Let n # m, then the associated module V,, , is contained in

E(0) ifn—m=0 mod4
E(O)@Eme ifn—m=2 mod4
E(0)® Eopmpn & Eop_py ifn—m=1 mod 2.

PROOF. Let Ey, and FE», be two eigenspaces and as in the proof of Theorem
denote by ¢ = ¢+, the involution interchanging the two eigenspaces. The diagram
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(2.1) in this case yields:

Eyn(a) ® Ean(a) Eam(p(a)) @ Ean(p(a))

o |y

Px

Vanzm (@) —————= Vamn(#(a)) = Van2m( ()
By the explicit description of ¢, namely
d+2m . d+2n
90*|E2n = - d+ 2” : ld |E2n and 90*|E2m = _d+ 2m : ld |E2m

we obtain .| g, e, = id |5, 0m,,, -
This proves

‘/Zn,Qm C E(O) EB Em+m
because these are the only invariant subspaces under ¢, for which ¢, restricted to is id
or —id. Moreover Vay, o (@) = Vanom(¢(a)) as linear subspaces. Similarly Vo, 119m+1 C
E0) ® Entnti
We denote the eigenvalues by ;. The fact that Vg, E,, C V,,, @ E,, yields
<(vEnA)£En+4m7 En+2m> - - <En+4m7 (VEnA)fEn—&-Qm) -
= - <En+4m7 /\n+2m(vEn En+2m) + Aé(vEnEn+2m>
C <En+4m; E(O) S En—l—Qm 57 En+m> = 0.
Hence Vi, my C E(0) for n —m =0 mod 4. The same for 4m + 2 instead of 4m shows
that
<Vn,n+2m+1= Eyiamy2) # 0 if and only if <Vn,n+4m+27 Eyomyr) # 0.

Since Vn,n+2m+1 = Vn+2m+1,n7
<Vn,n+2m+la En—2m—1> # 0 if and only if <Vn+2m+1,n—2m—17 En> # 0.

These are the only eigenspaces which are not orthogonal to Vi, 4 2m+1- l

2.4. Modules of the isotropy representation for irreducible eigenspaces F,

Let us consider an isoparametric hypersurface with multiplicities m; and mo and let
G, act on each eigenspace as SO(m;), i.e. the eigenspaces F, are irreducible modules
of dimension m; or msy of the isotropy representation. In this and the next chapter we
will study hypersurfaces of this type, in Chapter 5| infinite dimensional isoparametric
submanifolds of higher codimension with isotropy irreducible eigenspaces.

REMARK. Throughout the chapter we identify for convenience reasons the isotropy
group G, with SO(my) x SO(mz) via a Lie homomorphism @, such that ®, is a Lie
algebra isomorphism.

There are three types of associated modules:

SO(my) acting on Vay, o
SO(my) acting on Vapy1 2m41
SO(my) x SO(mz) acting on Vay i1 9m

If my = my and G, = SO(m;) only one of the module types exists so some of the
following arguments are redundant.
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PROPOSITION 2.8. The associated modules Vap op, and Vopi1 9m+1 decompose into
at most three submodules: trop(41)2m(+1) (which is one-dimensional) and the mi(mi—1)
dimensional module Aop(41)2m(+1) where SO(m;) acts as the adjoint representation and
SQQn(+1)72m(+1), where SO(m;) acts as the s-representation of the symmetric space A L
All modules are contained in E(0), if G, consist of two factors or my = mg > 3.

We list the multiplicities and modules which may project non trivially to Eopyoni1:

my | Mo module
3| 38 Adns2.4m
21 2 S? 4ns2.4m
m | 1 trant2,4m
2 | 1 |traptoam 07 Aapyoam

If Van(41)2m+1) C E(0) then
P(X ®Y) = A1) (VxY) ()

for any X € Egp11),Y € Eam(i1y, where (+)g) denotes the projection to E(0).
If my = my the statement is also valid for modules Vo, om1.

PRrROOF. Let us study Vi, o, the other being treated similarly. The action of SO(m;)
on R™ x R™ by conjugation decomposes into three modules: the antisymmetric,
denoted by A (adjoint action), the symmetric traceless denoted by S? (s-representa-
tion AI) and the trace (trivial). We have seen in Proposition 2.7/ any of these modules
has to be contained in F(0) if m —n =0 mod 2 and in E(0) & E,,., otherwise.

Assume the image under ¥ of one of the three modules projected to E,, ., is not zero,
in particular this implies that m+mn is odd and that both dimension and representation
coincide. Since on eigenspaces Fajyq the effective group acting is SO(ms) while on
Vanam acts SO(my) this only can happen in two cases: If m; = my and G, = SO(m,)
or if my =1 for a one-dimensional module of V}, ,,.

We start with the case my = 1. The trace module try, ,, is always one-dimensional
and if m; = 2 the antisymmetric module as well and one of those could be not orthog-
onal to K1y, if my = 1.

Let now m; = mo and G, = SO(my). If my > 3 none of the modules of SO(my)
acting on R™> ® R™ coincides with the standard representation of SO(ms).

e If m; = my = 3 the antisymmetric module is three dimensional. This is an
equivalent representation to the standard representation, so (Asy 9m, Enim) 7
0 is possible.
e If m; = 2 The symmetric traceless module is two dimensional, therefore
(S?9n.2ms Enym) # 0 is possible.
e If my = 1 the only module is the trace and could be not orthogonal to £, .
Let us consider the generic case, ie. V,,, C E(0) and X € E,, Y € E,, since
VxY C V,m @ B, the following holds

I/)(X ® Y) - (Van)Y = VX(AGY) - Aa(VXY) — ()\m ld —Aa)VXY — )\m(VXY)E(O)
Ul

PROPOSITION 2.9. Let my # my. The associated module Vo, oy 1 5 irreducible and
dim Vo, 9m11 = mimg or 0. If Vap ome1 C E(0), then
Vanomyi(a) = Vz(k—n),z(k—m)—l(%(a))-

If my > 1 and my > 1, then Vapom+1 C E(0).
If my =1 and my > 3, then either Vap omt1 = Ean—am—1 07 Vapoms1 C E(0).
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If mi =1 and 1 <my <3, then Vaopoms1 C Ean—om—1 @ E(0).

PROOF. Since the action of SO(mq) x SO(msy) on R™ x R™ is irreducible, 1 is just
a multiple of the identity and the first part of the proposition is proven. Considering
the diagram ([2.1) in this situation proves the second assertion, since ¢y, |go) = id |g(0)-

If both multiplicities are different from 1, because of dimensional reasons Vay, 211
can not be an eigenspace Ej, hence V5, 1 is a subset of E(0).

If m; = 1 then dim(Vanom+1) = me. If additionally me > 3 then the Va1 9mi1
does not contain an my-dimensional module, so either V5, 9,41 is contained completely
in E(0) or Ez. In the latter case, by Proposition the candidates are Ey,19_2, Or
E4p_9m—1, but the first is one-dimensional.

If my € {1,2,3} there are my-dimensional modules in Va,i19m11, 50 Vapoms1 is
contained in E(0) & Fy4, 2, 1, but maybe diagonally. O

REMARK. We give examples among the known P(G, H)-actions where the excep-
tional cases of the last propositions arise.
(1) The action G = SO(7) and H = Gy x U(3) has isotropy group SO(3) and
my = my = 3. Here the antisymmetric modules Ayp19.4n = Eomionti.
(2) Consider the o-action of SU(3), that is G = SU(3) and H = {(g,0(g)}, where o
is complex Conjugation. Then 524m+2,4n = E2m+2n+l and Vv2n,2m+1 = E4m—2n+2-
(3) The action of type A I-1II (i.e. G = SU(n), H = SO(n)xS(U(1)xU(n—1)) has
multiplicities n—2 and 1. Here tray,24n = Fomiont1 and Vo 91 = Fam—ong2.
(4) The exceptional cases m; = 1 and my < 3 do not occur, we will exclude them
in Proposition 2.19] on page 28]

2.4.1. The singular isotropy representations for isotropy group SO(n).
The simplest case among isoparametric submanifolds with irreducible eigenspaces, are
the elementary submanifolds with diagram oo and principal isotropy group SO(n),
which we will investigate in this subsection.

It will help to understand first the modules the singular isotropy representation
to determine those of principal isotropy representations. As before let a be a regular
point and denote by ¢(a) the midpoint of the curvature sphere Si(a). First assume
G, = SO(n), that is any eigenspace is n-dimensional.

Let G., = SO(n + 1) and G, = SO(n) x SO(1), let us assume embedded in G,
in the standard way, i.e. (A4,1) — (49). Modules of the singular isotropy counsist
of the span of some modules of the principal isotropy, which are trivial(R), standard
(R™), adjoint (A?) or A I (S?), i.e. the representation of SO(n) on symmetric traceless
n x n-matrices. Hence we have to check which representations of SO(n+1) if restricted
to SO(n) decomposes into those modules.

PROPOSITION 2.10. Any isotropy group G, acts on the tangent space T, M as trivial,
standard, A?> or S%-representations. Moreover the modules of the singular isotropy
representation if restricted to a principal isotropy group decompose in the following
way:

R — R" @ R
A*(n+1)=A*(n) oR"
S?n+1)=S5*n)®oR"®R

The only exception for n = 3 is

T (g,22) = 5%(3)
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Proor. We use the classical Branching Theorem for the restriction of representa-
tions of SO(n + 1) to SO(n) (cf. [KNAOL] p. 424 f). Let the root space be spanned
by a orthonormal basis ei,...,e;, where k = [§] is the rank of SO(n + 1). Then a
representation I'y is uniquely determined by the highest weight A = (ay,...,ax) (that

iS, a1€1 + -+ akek)7

a12a22-~~2ak20 1fn—i—1:2k+1
where .
a; > ag > - > apq > ag| ifn+1=2k.
When restricted to SO(n), the representation 'y decomposes into @5['5, where the sum
is over all A = (¢ ...,¢;) or (¢1...,cp_1)resp. which fulfill the following condition:

2.2
a1 > €1 >0y > Corv > Q1 > Cpoy > |ag] iftn+1=2k (2.2

{Ch > >y > 6 2> Aoy > g1 > a > | fn+1=2k+1
That is: For a module T of the singular isotropy representation each \ has to be either
(0,0,...,0), (1,0,...,0), (1,1,...,0) or (2,0,...,0) (if n > 4).
Since A = A for n = 2k + 1 and A\ = (ay,...ax_1) for n = 2k is always possible, the
only representations I'y are the once mentioned in the statement, if £ > 2.
We list the exceptions for low dimensions:

n=>5: For the representation A = (1,1,1) as well as for (1,1, —1) of SO(6) is A =
(1,1) the only possibility. But these representations are excluded since they are
not of real type (cf. [BTD95] p. 276).

n=4: Here the adjoint action of SO(4) decomposes into highest roots (1,1) and
(1,—1), but if one is a valid A so is the other. The situation stays the same as
in the general case.

n=3: For SO(3) the standard and the adjoint representation are equivalent with
highest root (1), the A I-representation has highest root (2). Possible represen-
tations of SO(4) are therefore (a;,as) with a; < 2. Among these only (2, £2) is
real (cf. [FHI91] p.26)

n=1,2: The branching rule applies without problems. Note that for n = 2
it is not clear what the weight of the representation in this case is, but we will
prove later (cf. Proposition on page 24 an preceding remark), that in fact
only the representation I'(.,y for ¢; =0, 1,2 occur.

O

REMARK. For the rest of this and the following subsection we will exclude the case
of one-dimensional eigenspaces, they will be treated in Subsection [2.4.3] on page

We denote by G, C G, the set mapping a to its antipodal point ¢i(a) on Sk(a).
If G, =SO(n+1) and G, = SO(n) x SO(1), then G, = (¢ 2 ), where A € O (n),
ie. A€ O(n) and det A = —1.

In Table 2.2) on the next page we collect the behavior under Gy, for the modules of
the principal isotropy representation V' in dependence of the extension to a module vV
of the singular isotropy representation. That means e.g. : Let V' be a standard module
of G, contained in a module V of G, x a vector in V and g = (4 %) € Gy. Then, if
V is a standard module g,z = Az while if V is a A2 or S2module g,z = —Az.

By these properties we will be able to study the behavior of the modules of the
isotropy representations closer. First of all we need to know which modules V' of the
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re |V=tr|V=R"|V=A(n)|V=25%n)
V =tr
V =Rl - Ax
V=A(n+1) — Az Az AT
V=Sn+1)| =z — Az Az AT

TABLE 2.2. Extension of modules from SO(n) to SO(n + 1)

principal isotropy representation admit an extension to a module V of the singular iso-
tropy representation. We call such a V' an extendable module and a necessary condition
for extendability is invariance under Gy.

Let g € Gy, then g.(Fy(a)) = E,(¢r(a)) = Fa_m(a). Hence the module of the
singular isotropy representation, which contains E,,(a) has to contain Eor ,,(a) as well
and is therefore not irreducible. This means eigenspaces are not extendable, but the
2n-dimensional space E,,(a) ® Eox_m(a) has to contain two n-dimensional extendable
modules.

To describe these, we have to choose first an appropriate basis for E,,(a)® Eok_m(a).
Let ® be the Lie homomorphisms from G, to SO(m) and choose f,, such that the
following diagram is commutative.

Go ~ Ep(a)

P b fm (2.3)
SO(n) ~ R"

By choosing a fixed basis €1, ..., ¢, of R™ this gives a bases X = f—!(e;) of E,,(a),

m
we will call such a basis natural. Note that f,, is only determined uniquely up to sign.

Let g be an element of SO(1) x O~ (n — 1) x O~ (1), then X?*~™ = ¢, X7, the rest of
the basis of Eox_,,(a) is defined likewise. These bases are equivariant, that is the linear
map X +— X2F™ is equivariant.

PROPOSITION 2.11. Let V be a module of the singular isotropy representation in
the point c(a) and V' C V a standard module of the principal isotropy representation at
the point a. Denote by {X™ |i=1,...,n} and {X[" |i=1,...,n} equivariant bases
of the eigenspaces Fy,(a). Then

V = span {sz + X2 =1, ,n} = diag" (B, Eor-m) or
V = span {sz — X2 =1, n} = diag (Em, For-m)

and V is a standard module in the first case and a A%- or S2-module in the second case.

PRrROOF. Note that the spaces diag" (E,,, Eor_m) and diag (Ep,, For_m) are both
invariant under GG, and G} and they are the only n-dimensional subspaces of T, M
with that property, hence the only candidates for V' in E,, & Ea_,.

Let V = diag" (B, For ) and v; = X™ + X?k’m € V and choose g € G}, such
that ¢, X]" = sink_m with ¢; = 41 for all 7, i.e. a diagonal matrix within G. Since we
have chosen equivariant bases g, X Zk—m _ ;X" and therefore g,v; = ¢;v;, that means
V is a standard module (cf. Table . On the other hand if w; = X — X* ™™ c V =
diag™ (E, Esp_m) then g,w; = —w; and V is a A%- or S2-module. O

Next we study the extendability of modules in V} ,,, @ Vi 24—, Where we choose
natural bases for E,, and Es,_,, as above. Let X¥ ... XF be a natural basis of Ej,
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where the choice of sign does not matter. Then

tr),m = span Z Y(XF o XM

i=1

Apn =span {O(X! @ X' = XF@ X[") |1 <i<j<n}

Sk =span {Y(Xf @ X"+ XF@ X") |1 <i<j<n}

@ span {P(XF @ X" - XF@ X" [1<i<j<n}
and diag® is used as in the last proposition. The calculations are similar to those
in the case of eigenspaces, using additionally ¢, X = —&;X*. This is because FE}, is

contained in a standard module and X¥(a) = —X*(¢r(a)) = (¢r)X¥(a). Comparing
with Table 2.2] on the page before yields the following table:

Module V possible extension V
diag ™ (614 m, g2k m) tr or R(n + 1)
diag™ (t7km, tTk.2km) tr or S%(n + 1)
diag™ (Agm, Ak ok—m) none

diagi (Ak,m7 Ak72k:7m) A(Tl + 1)
diag+(s2k,m7 SQk,Qkfm) none
diagi(‘sak,m) SQk,Qkfm) SQ(” + 1)

We treat the generic case, i.e. associated modules are contained in E(0) first.

PROPOSITION 2.12. Assume that V., is a subset of E(0). Any isotropy group
G, acts on the tangent space T,M as trivial, standard or A*-representation for both
singular and regular points p. Choose natural bases for Ep,(a), Eog m(a) and Fx(a) as
above, then the irreducible modules of the singular isotropy representation in cx(a) are

Vi = diagt (trgm, trpokm) @ diag’ (B, Fog—m)  and
V_ = diag’ (Ak,ma A]“gk_m) ) diag’ (Em7 E2k_m).

PROOF. Any module of the principal isotropy representation, whose possible exten-
sion is of unique type is extendable or vanishes, that holds for the diag™ (E,.,, Far m),
diag™ (Agm, Ak2ke—m) and diag™ (S%;m, Sk 26-m)-

Since Vg, B, C Vi @ By, and Vg, Eop_py C Viog—m @ Eop—y, it is clear that a
module containing diag" (E,,, Eor ) is a subset of B, @© For @ (Vi + Viokm)-
Since its extension is (n + 1)-dimensional and diag™ (try,,, tr2x—ms) is the only one-
dimensional modules admitting such an extension, the first part of the statement is
proven, when n > 3.

As we have seen in the last table diag" (Agm, Akok m) and diag" (S%k.m, S%k2k-m)
are not extendable and therefore have to vanish. Using the basis vectors from above
we deduce for any 7 # j

P(XF @ X)) — (X e X
Y(XF @ X + (X @ X[
PXF @XM — (X @ X

and therefore

—p(XF @ XJ) + (X @ X,
—p(XF @ XFFTT) — p(X] @ X,
—O(XF @ X +(XF @ X7

Y(XF @ X)) = —u(X @ X7 (2.4)
Y(XF @ X" + (X @ X = (X7 @ X') + (XF @ XFF™) (2.5)
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for any ¢ # j.
Both the possible extension of diag™ (Agm, Axok—m) and diag™ (S} ., Siop ) (for
n # 3, see below for n = 3) have to contain diag™ (E,,, Eaog—m), therefore one of them

has to vanish. This yields by the equation (2.4)):
k my __ k m
V(X ®Xj )= 5¢(Xj ® X[")

for any i # j and ¢ € {1,—1}.
Using Proposition on page [18 and the Gauf} equation, shows:

(WX @ XE), $(X7" © XF)) = M (Ve X, T XI) =

J

= XA (XE Vxn Vg X*) = = Md (X5, Vi Ve X7+ Vi x XJ1) =
= M (Vs X5, Ve XY = M (XE, Vo X5 )

The first summand vanishes since the eigenspaces are autoparallel. For the second
summand only the projection onto E(0) of [X7", Xi"] does matter and an easy calcu-
lation using Lemma 5.2. from [HL99] proves that Viym xuXj" = —Vxn Ve X" (for
the projection), which yields

(VX" @ XJ), 0(X]" ® X[)) = — (V(X] @ X["), v(X]" ® X)) .

Both sides are always positive or always negative independent of ¢ # j.

Since all (X" ® X7) have the same length by the equivariance of 1), this proves
V(XT®X]") = —e(X" ® XF). This yields e = —1ifn > 3, and therefore the module
diag™(S%,,,S% 9. ) as well as diag™ (tvg m, trg ox m) vanishes.

In the second part of the proof, we treat the exceptions in low dimensions. As-
sume first n = 3, the representations I'(; +2) were not excluded by the branching rule in
Propositionon page If it occurs as a singular isotropy representation module v,
it is contained completely in F(0), since V =V = 52(3) in that case. Generally mod-
ules V are invariant under Vg, and for V' C F(0) this yields ¢(E, ® V) = 0. But then
(Fp ® T,M) LV, in particular V L Vj,, for any m. Therefore diag* (5%, S?,. )
are not I';g +9)-modules of the singular isotropy representation in the case n = 3 and
have to vanish by the arguments on general n above.

Now we study the case n = 2. Since Gy acts on the one-dimensional module
diag® (Akm, Ak ok—m) as id, not as —id, the module diag™ (E,,, Ea_n) has to extend
to V4 as in the general case. Moreover ¢(X}® X/*) = (X" ® X}) holds, since
otherwise diag™ (trg m, tTx2x—m) vanishes. Again this excludes any possibility except
V_ as an extension of the module diag (E,,, Eog_m)- O

Eventually we collect the results on V}, ,.

COROLLARY 2.13. For any k,m € Z the modules Vi = Viog—m, while Vi, is

orthogonal Vi for any other m € Z. Moreover Vi, = trym @A%ym s of dimension

1+ n(n2—1) .

In particular the space E(0) is infinite dimensional.
PrOOF. The proof of the last proposition shows that S,im vanishes, as well as
diag™ (trxm, trx.2k—m) and diag™ (Agm, Agok—m). Therefore Vi, = Viok—m. Any other

space Vi is orthogonal, since it is contained in a different modules of the singular
isotropy representation in ¢ (a). O
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Observe that the identity Vi ,, = Vi or—m may be iterated, yielding for example
Voo =Vip = V3 ="--+. More general the following theorem holds

THEOREM 2.14. Under the condition of proposition the spaces Vi, ., depend
only on |n —m)|, i.e. for any k,n,m € Z

Vn,m - Vk—n,k—m
and
E(O) = Z Vn,m = Z‘/k,n = @‘/k,n
n,mez nez n>k

for any fixed k € 7.

PRrROOF. We proof the statement by induction over { = |n — m|. The case [ =1 is
already proven, so we assume the statement to be true for any [ < [, for a fixed [y € N.
Assume Vj 41 is perpendicular to V; j,49. Using the Gauss equation and Proposi-

tion [2.8] this yields:
0= <VE0E10+17 VE1Elo+2> = - <Elo+17 VEOVElElO+2> =
= (Ve Eiys1, Vi EBigra) + (Egs1: Vige, g Eig2)

Since by the induction hypothesis V; .41 = Vo1, L Vogo42 the first summand has to
vanish and
(Eiyt1, Vigo,mEigr2) = (Eigt1, Vg, Big+2) = 0,
which means ¢(Vp1 @ Ej+2) L Ejy+1. This is a contradiction, since Vo1 = Vi 41 50+0-
The rest of the statement follows by the last corollary. O

To finish this section we study the case when V,, ,,, is not a subset of E(0).

PROPOSITION 2.15. Let G, = SO(2) and let Ergrme C V(Eky, Em,) for at least one
2

pair (ko, mg) with kg —mo =2 mod 4. With out loss of generality let ko be even.
Then Eiim C W(FEg, Em) holds precisely for any pair (k,m) of even numbers with
k—m=2 mod 4. For k even and m odd V(Fg, Em) = Eop k.
Choose natural bases for F,,(a), Fo_m(a) and Ex(a) as above, then modules of the
singular isotropy representation are the same as in Proposition if k is odd or

k—m =0 mod 4 and otherwise
Ve = diagt (trgm, tr2k m) © diag™ (B, Eogm) @ diagJ’(Ektm , ESk;m) and

V_ = diag_ (Ak,m7 Ak,2k—m) S, diag_ (Em, Egk_m) D diag_ (Ek+m s ESk—m).

2 2

Denote by V,),,, the projection onto E(0) of Vi m, then:

Vr?,m:0 form—m=1 mod 2
Vnom = ‘/2(277172]4:7777, form—m=0 mod 2
Vnom L Vno+1,m+1 and

tran42,4m42 = tron 1 2m1 -

PROOF. In this case it is a priori not clear with which weight SO(2) acts on the
eigenspaces (see remark below for the case when associated modules are subsets of
E(0)), but it acts with same weight on eigenspaces Es, and Es,. 1 respectively.

If Kk —m = 0 mod 4, by Proposition on page the associated module is
contained in E(0) and the situation stays the same as in the statement of Proposition

2.12
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Since Ergimg = S?1e,mo the isotropy group SO(2) acts on Eppiq as e while
on FE,,, as F(i), that is with double rate on eigenspaces of odd index. But ¢ = 1
for otherwise G, does not act effectively. Therefore (Eoyi1, Fomy1) C E(0), since
F(g) X F(g) = P(o) &} F(O) D P(4) contains no module of type F(l).

Let EHTm C (B, Bp), then diag=(S%m, S?kor—m) L E(0) and the equations

(2.4), (2.5) and their analogues for diag™ prove that
(X7 © XM poy) = (X] @ X)) = ¥(XF @ X))
V(X © X po) = —(X) @ X" p(0)

Since diag” (Agm, Mkok_m) as well as diag™ (tTgm, trrok m) are subset of E(0), this
proves they both have to vanish.

Since T'(;y ® ['py = T'(1y @ L3y the module ¥ (E); ® EHTW) contains at most one
2-dimensional module in E(0)besides E,, (cf. proposition . We observe that any
module of the singular isotropy representations contains precisely one 1-dimensional
module and up to two 2-dimensional modules. The module in the statement provides
the only possibility for diag®(E,,, For_m) @ diag*’(EHfm,Esk%m) and ¢ (Ey,-) of this
space only contains one 1-dimensional module. The same holds for diag. Moreover
V(Fg, B HTm) = FE,,, since there are no one-dimensional modules left.

Next we prove that the modules behave that way for any pair of even number
(k,m) with £ —m = 2 mod 4. Observe first that it this is true for any pair with
|k —m| = |ko — mg| by using antipodal maps ¢;,. Therefore for any odd number I
there is a pair (k;,my) such that E;, C ¢(Ey,, Ey,). Hence for any even k the space
E; @ Eoy—; ® Vi @ Vior— consists of two-dimensional modules and is therefore neither
invariant under SO(3) = G, nor under ¥(E; ® -). Since ¥(E, ® E(0)) L E(0) this
means that Vj; can not be contained entirely in E(0), so Ey_x C Vi, (the eigenspace
Eyj,_; is not possible, for 2k —1 is odd). This is equivalent to E; C Vi, by Proposition
2.1

Finally we investigate which spaces Vn()m coincide. For n —m =0 mod 4 the proof
of Theorem holds (induction step | — [ + 4), proving Vim = Vig—nak—m- The
same holds for odd n,m with n — m = 2 mod 4 and induction step [ — [ + 2, i.e.
Vam = Vor—n2r—m in that case.

We use the same calculation as in Theorem that is

<Vn1,m17 Vn27m2> = <Vn17m2> thnz) + <Vn1,m27 le,m) . (2'6)

We have omitted factors in this equation, but as long as one of the summands on the
right hand sight vanishes, this is sufficient for our arguments.

Setting 1y = ny + 1 and my = m; + 1 in equation (2.6) proves V), L V)., ., for
n and m of the same parity:

(Van2ms Vani1,2m11) = (Bam-2n+2, Ban-2m12) + (Pany2; Bamy2) = 0.
The last statement of the theorem is proven by
(Vint2,4m+2, Vant1,2m+1) = (Eam—an, Ean—am) + (Eo, Eo) # 0
and finally
Vinam, Vint2,am+2) = Vinam, Vons1,2mi1) = (Bim-ant2, Ein—amy2) + (Ea, Ea) # 0
OJ
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REMARK. In Propositions and we have assumed in the case n = 2, that
the eigenspaces are I'(;)-modules. This is justified by the same argument as we used in
the last proof: since any modules of the singular isotropy representation has to contain
one-dimensional modules, therefore the representation on each eigenspace has the same
weight. If the weight is not 1, the principal isotropy group has a non trivial effectivity
kernel, but we have assumed, that it acts effectively.

REMARK. We will not treat the exceptional case G, = SO(3) with associated
modules not contained in E(0) since it is of no relevance for rigidity results of higher
codimension.

Now we are prepared for the more general case of non simple isotropy groups.

2.4.2. The singular isotropy representations for isotropy group SO(my) X
SO(m32). Let k be even and G, = SO(m; + 1) x SO(ms), G, = SO(m;) x SO(1) x
SO(my) and Gj, = O~ (my) x O~ (1) x O~ (my), let us assume both groups embedded
in G, in the standard way. Furthermore let dim Ey, = m; and dim Ey,.1 = my. We
will see that for the modules Fy,.1 and Va4 9,41 the situation is the same as in the
case of simple isotropy group, for SO(m;) acts trivially on these spaces. So our main
focus in this paragraph lies on the eigenspaces Ly, and on Va2, and Vop omi1. We
remark that Corollary on page [23is also valid for Vs, o1.

Let p : G, x V — V be an irreducible representation, hence p = p; ® po, where
p1:50(my +1) x Vi = V4 and ps - SO(msg) % Vy — V, are irreducible representations
with V = ‘71 ® ‘N/Q Moreover V is the span of irreducible modules of GG, denoted by
Wi;.

V=V0V,=
WieW,e - eW,=W eW)e-- oW, aWp)
The spaces W/ are irreducible modules of SO(m;) and V; = Z?Zl Wi. Since V, is an

?
irreducible modules of SO(msy), it consist only of one summand, while V; may consist
of at most two summands by the previous discussion in Proposition [2.12] on page
which generalizes in the following way.

COROLLARY 2.16. Any irreducible module of G,, on which SO(my) acts trivially
and SO(my) does not, is also an irreducible module of the singular isotropy represen-
tation or its extension contains a subspace of Zmez Vaiojti-

Any irreducible module of G, on which SO(my) acts trivially and SO(my) does not,
extends to a module of the singular isotropy representation as is described in Proposition

212

ProOOF. Without loss of generality let V, = W2. The space W, = W/} @ W? is by
definition an irreducible G -module, and either one of the SO(m;)-factors acts trivially
or Wy = Vap om+1 for some n,m € Z. O

Hence we mainly need to determine the extension of modules in ZUEZ Vaiojr1. We
collect the knowledge on the modules of the singular isotropy representations in the
following theorem.

THEOREM 2.17. Let M be an homogeneous isoparametric hypersurface with prin-
cipal isotropy group G, = SO(my) x SO(my) and dim Es, = my and dim Ey, 1 = ms.
Let k be even and ci(a) the mid point of the curvature sphere Si(a) with G, =
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SO(my + 1) x SO(my). Then the irreducible modules of the singular isotropy repre-
sentation are

diag ™ (trs.2m, tTk 2k—2m) D diag™ (Bom, Fok—om)
diag™ (Ag.2ms Ak2k—2m) @ diag™ (Eom, Eor—2m)
diag™ (Vami 1,k Vo 2m-14) © diag™ (Eomi 1, Pok2m 1)
diag™ (Eami1, Fak—2m-1)
diag™ (Ak+1,2m—|—17 Ak+1,2k—2m+1)
Moreover Vi, m = Vak—nok—m and tTpm = trpi1 mi1-
REMARK. An isoparametric submanifold with isotropy group SO(m) and Dynkin

diagram gnﬁgn is a special case of the theorem if one allows the multiplicities to be 0,
that is m; = m and my = 0, compare to proposition 2.12| on page

PROOF. Invariant under GGy are the spaces
diag™ (Vam+1,5s Vatb—2m—14) = span { (X" @ V; + X" @ Y;) |i,j =1,....n},
diag_ (Vv2m+1,k7 ‘/Qk—2m—1,k) = Span {I/)(ngm+1 & }/j - X?k_gm_l ® }/]) | Z7J - 17 e ;n} .
We remark that we choose the basis of Fop o, 1 with respect to that of Fs,,.1 by
requiring that any element g of G, = O~ (my) x O~ (1) x SO(ma) of type A x (=1) x £
fulfills g, X" = XAt

Let V be an extension of one of those spaces. By

diag™ (Vamt1 s Vatk—om—1,6) = Y(Ex ® diag™ (Bami1, Bok—om—1))
follows that W} = Ej and W? = diag*(Esmn+1, For_2m_1). Therefore Vi = v, M @ Ej,
for this is the module of SO(m; + 1) containing Ej, and
Vo = (diag™ (Eom1, Esg—om—1) ® Vo M) = diag™ (Esm1, Eog—om—1)-
Consider an element ¢ as described above, then
g*(X2m+1 iX?k—2m—1) — j:(XQm—‘rl + X?k—2m—1).

Comparing this with the standard representation of SO(m; 4+ 1) x SO(my) yields
that only diag™ (Eomi1, Eor om 1) is extendable and diag® (Eom1, Eor om 1) is an ir-
reducible module of the singular isotropy representation. Moreover the modules of
type diag® (Vama14, Vor—2m—14) vanishes for there is no m; - my dimensional module of
SO(my) x SO(mg + 1).

Eventually we have to discuss the spaces diag™ (tran119m+1, tT2n+1,26—2m+1). The
reason, why they do not arise in the list in the theorem is, that they coincide with
diag™® (tr2n,2m, tran 2k 2m)-

To prove this, we show that trom, 2, = tram 412041

<VX_2mX7:2n,vX2m+1XZ-2n+1> = — <X,i2n7vX27nVX2m+lXi2n+l> —
_ 2n 2n+1 2n 2n+1\ __
- <Xi Vg1V gan X > + <XZ. Vo e X > _
_ . 2n . 2n+1\ 2n 2n+1
= = (Vo X2, Van X2} = (X, Vi X2

Since trom 9m41 = tran2n—1 by the first part, the second summand is not zero. Therefore
either the left hand side does not vanish (trom 2, = trom+1,20+1) or the first summand
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(trom+1,2n = trom ont1). Using Theorem which holds by the same proof for even k
and assuming tro,, 1,95, = trom on+1 we deduce

k=2m+2 k=2m

triom—n)+2 =  tromti2n = tromont1 = tro2m-n)-1 = tr12(m-—n)-2,
which contradicts Proposition 2.12] on page O

We summarize the results on the irreducible modules in E(0).

THEOREM 2.18. If the isotropy group G, = SO(my)xSO(my) then E(0) decomposes
into irreducible modules of the isotropy representation in the following way:

E0)=Ptr.oPri.e P Ao P Vien=TroA(m) & A(ms) & Vi .

ne2N ne2N ne2Na1 ne2N

The eigenspace E(0) is infinite dimensional.

2.4.3. The singular isotropy representations for one-dimensional eigen-
spaces. One-dimensional eigenspaces do not fit into the context of the treatment in the
preceding subsections for some reasons: first the distinction between isotropy groups
with one or two factors does not make sense, second the choice of equivariant bases
for £, and Es_,, is not possible as we have done it. This point may be solved easily:
Assume the spaces Es, are one-dimensional and % is even. Choose a unit vector X?™
of By, and define X%-2m = —g X?™ where g € G}, = {g}, then the spaces diag® are
defined and behave just as in the last subsections. For m; = my = 1 proposition [2.12]
holds, the modules in a singular point ¢x(a) are

Vy = diag™ (trg m, tTox—m) ® diag® (E,,, Fog_)  and
V.= diag™ (Fm, Fak-—m)-

Moreover V;, ,, = Vi k—m by the same proof.

REMARK. There is no analogue for Theorem in the case m; = my = 1, more
precisely its statement is the same as proposition if one writes try, 9,11 instead
of Vo om+1 and observes that the choice of signs in Theorem is different for odd
numbers, interchanging diag™.

If m; =1 < my Theorem holds by the same proof.

Finally we consider the case GG, = SO(n) with diagram ¢~° , when the associated
modules are not always contained in E(0).

PROPOSITION 2.19. Let G, = SO(n), dim(Ey,) = n and dim(Eyy,41) = 1 and let
Ergimg C Y(Eky, Epy) for at least one pair (kg, mg) with kg — mg = 2 mod 4. Then
2
ko is even, and Ek-gm C Y(Ey, En) holds precisely for any pair (k,m) of even numbers

with k —m =2 mod 4. For k even and m odd {)(Ey, Ey,) = Eop_k.-

Choose natural bases for E,,(a), Eo_m(a) and Ex(a) as above, then modules of the
singular isotropy representation are the same as in Theorem ifk—ky=1 mod 2
or k is odd and otherwise

Vi = diag" (Ep, Esk_m) ® diagJ’(EHTm, ESI\%) and
Vo= diagi(Skam SQk,Qkfm) S diagi (Em7 EQkfm) S diagi (Eﬂ%a E@)
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Denote by V,),,, the projection onto E(0) of Vi, m, then:

VT?,mZO forn—m=1 mod 2
Vr?,m = ‘/296—%216—771 forn—m=0 mod 2
VT?,m 1L V7?+1,m+1 and

0 __ /0
‘/;Ln+2,4m+2 - Vv2n+1,2m+1'

PROOF. Assume first n > 3. The pair (kg, mg) consists of even numbers, since
Von+1,2m+1 is one-dimensional and Ejyy, is n-dimensional. Therefore try, ,,, = Ergtmg

2
and %07k0§m0 = B, for dimensional reasons, cf. Propositions and W Modules

Vont1,2m+1 are always subsets of E(0).

Both modules diag™ (tr4y mo» tTko 2k0—mo) a0d diag™ (trxg 1mgs tko.2k—mo) 0 NOt van-
ish, therefore the given modules provide the only possibility.

Let k and m be even numbers, such that |k —m| = |ky — mg|. The equation (2.6)
yields

0= <V;c,m7 Vk+1,m+1> = <Vk,m+17 Vk+1,m> + <V;€,k+1> Vm,m+1> .

Since the first summand on the right hand side vanishes (cf. the end of the proof of
Theorem (Vikt1, Vmms1) = 0. If they both are contained in E(0) they have to
coincide, therefore Vj 11 = Ejpy2 and by Proposition on page Vikr2 DO Epy.
Using again the equation ({2.6)

(tro2, tr_g4) = (tro,—2,tra4) + (troa, tra, o) = (E1, E3) + (tro4, tra_g) # 0.
proves tr_, 4 = E;. Inductively we derive trag am+2 = Eortom+1 for any k& and m.

The proof, which spaces V;),, coincide works as in the proof of Proposition on
page [24]

Finally we treat the cases n < 3. For n = 3, we remark that again try, ,,, = Erg+mg
2
by Proposition and the modules V.. are the same. This proves V| «gimy = Epp, for
» T3
n = 3, since the 3-dimensional modules A?(R?) vanish.

Let n = 2, then the same arguments as in Proposition 2.12] on page 22 prove that
tTkgme = Erotmo, since diag” (A)-modules are not extendable to standard modules of

2
SO(3). The space E(0) contains the two-dimensional modules 5?4 4,12, therefore it
is a priori not clear that Vapiom+i14m = Eunyo. But the representation of SO(2) on
eigenspaces is I'(y, while it is I'iz) on S?-modules, which proves the assertion in that
case, too.
Let n =1, then trg, ,, = Ek()jt% holds, assume ky to be even. Then Va1 ami3 C

E(0) since otherwise Vi, 241 is not orthogonal to Ey,, 9,42 and to Eyy,_9,—1. Since
modules of the singular isotropy representation are at most two dimensional and in-
variant under Vg, , this is not possible. Moreover by the by the same argument, it
follows that ‘/2n,2m+1 = E4m72n+2- O

2.5. Reduction to elementary isoparametric hypersurfaces

Let G, = SO(my) x SO(my). We define two tangential distributions of T M, asso-
ciated with the families of eigenspaces of even respectively odd index.

D ={XeT,M]|gX =X for all g € G5}
Dy ={X eT,M]|gX =X forall g€ G}
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Observe that neither Dy N Dy = {0} (one-dimensional modules belong to both distri-
butions) nor Dy + Dy = T, M, since the modules of type Vap, 9,41 are missing.

THEOREM 2.20. The distributions Dy and Dy are autoparallel and therefore in-
tegrable with totally geodesic leaves. In other words: A homogeneous isoparametric
submanifold contains two totally geodesic submanifolds which are elementary isopara-
metric. Moreover if Gy is the group acting effectively on Fs, and if we assume addi-
tionally that associated modules are subspaces of E(0):

D, = @E2n+ @ ‘/Qn,2m

neZ nmeZ
D, = @EQn—H + @ Vantt,2m+1
neZ nmeZ

ProoOF. The autoparallelity follows easily since for all X and Y € D, and g € GY:
g*(VXY) - Vg*Xg*Yv - VXY

Therefore VxY € D;. For the alternative description of the distributions we observe
that G5 acts trivially on @nez E,, + EBn,meZ Van 2m and on non of the other modules,
except the trace modules in V5,11 9mm41. But we have proven in Theorem that
those coincide with the trace factors of Vi, 25, which finishes the proof. O



CHAPTER 3

Canonical connections of isoparametric hypersurfaces

In this chapter we describe the canonical connections of certain homogeneous iso-
parametric hypersurfaces. Together with Theorem [1.13]on page [§ this yields a rigidity
result for those hypersurfaces. We have already seen the close relation between canoni-
cal connections and projection connections for s-representations in Section [1.3] similar
constructions work in the infinite dimensional setting. We consider the case when the
isotropy representation acts irreducibly as the standard representation of SO(n) on
any eigenspace except F/(0), more precisely the principal isotropy group is of the form
SO(my) x SO(my) or SO(m), by Theorem [2.3| on page [11}

For a finite dimensional homogeneous isoparametric submanifold the following is
true, cf. [LES97] and [BCOO03| Exercise 7.4.4] :

PROPOSITION 3.1. Let G/K be a semi-simple symmetric space and let M = K - a
be a principal orbit of its isotropy representation. Then the projection connection
VLY = 37 (VxYi):, where g is the number of the curvature normals and (-); de-
notes projection onto the eigendistribution Fj;, is the canonical connection if and only
if the restricted root system of G/K is reduced.

Since the eigenspaces of the shape operator of M are of the form E) = p) @ pax
and the isotropy representation respects this splitting (cf. page @, having a reduced
root system is equivalent to the fact that the eigenspaces are irreducible modules of
the isotropy representation. Since in infinite dimensions E(0) is never irreducible, one
has to examine its behavior more closely.

DEFINITION 3.2. Let GG be a Hilbert Lie group acting polarly on a Hilbert space V'
and let a be a regular point. Moreover let T, M = ®;-;V; where the V; are irreducible
modules of the isotropy representation and the V; are subsets of an eigenspace of the
shape operator. Moreover the V; C F(0) are contained in associated modules of two
eigenspaces in the sense of definition on page

The projection connection V™ is defined by VLY = ., (VxY;); where (-); denotes
projection onto V;.

We denote by S™ = V — V7 the corresponding normal homogeneous structure, then
the tensor S™ is G-invariant, since we project onto modules of the isotropy represen-
tation. Moreover since the eigenspaces are V™—parallel so is a. Therefore it would be
sufficient to show that the holonomy representation of V™ is contained in the isotropy
representation (i.e. G-invariant vector fields are V™—parallel) because this yields that
any G-invariant tensor field (especially S™) is V™—parallel and thus V7™ would be the
canonical connection. In fact we will show that G-invariant vector field in any F, are
V7—parallel, but this is not true for G-invariant vector fields in E(0). We give the
description of the canonical connection V¢ after some preliminary propositions.

First we give an alternative description of the associated modules.

31
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PROPOSITION 3.3. Let E; and Ej be eigenspaces and Vi; the associated module. Let
X e I'(E;) and Y € I'(E}) be vector fields, then VxY € V;; if and only if X and Y are
G-invartant vector fields.

Proor. By the definition of Vj; it is obvious that Vg E; C E; © Vj;. More-
over {VyY | X e I'(E;),Y € T'(E;) are G-invariant vector fields} is a module of the
isotropy representation, therefore equals V;. 0]

REMARK. For the rest of this chapter by VW, where V and W are modules of
the isotropy representation, we mean

{VxY | X €eT(V),Y € I'(W) are G-invariant vector fields}

By Proposition on page [16{4(V, W) = VW for eigenspaces except for an constant
factor.

We now have to check whether Vy,V; (for G-invariant vector fields) is orthogonal
to Vj, because this yields V7 —parallelity. This is evident if V; and V; are eigenspaces,
because either their associated module are contained in E(0) or it is an eigenspace not
equal to V; or V;, cf. Proposition on page [L6

REMARK. In the next paragraphs we will only consider the case of associated mod-
ules lying in E(0), the other cases we will be solved in proposition on page
Moreover we will not mention explicitly the case G, = SO(n) with diagram %ﬁ% , but
the conclusions hold for this case as well, cf. also the remark after Theorem [2.17] on
page . Only modules of type tro, and Ag, do exist (n even or odd), the other
equations being of no relevance in that case. Therefore we consider an isoparametric
hypersurface G - a with isotropy group SO(m1) x SO(ms).

DEFINITION 3.4. We choose bases {X7,..., X0 } for By and {X{,..., X, } for
E; as on page P1]in (2.3)), where the choice of sign does not matter. Then there are
bases { X", .. X2”} for By, and { X7 00 X201 Y for Fay 1, defined as described
on page . We will call these bases natuml Moreover they give rise to a choice of
natural bases on the irreducible modules on E(0), that is e.g. (X} ® X7") is the
natural bases for A§ ,,.

The next proposition solves the case of one eigenspace Ey and one module V in
E(0). Remember that by Theorem it is sufficient to consider only modules V
either associated with Ey or E; for these span E(0).

PROPOSITION 3.5. Let k and n be even and E), be an eigenspace of dimension my
and V' a module in E(0). Then the associated module of Ey, and V is orthogonal to Ey,
and to V. The following table contains the precise information:

V= ‘ tron = tripp ‘ A%,n ‘ Al n+l ‘ Vont1
Vi,V = | diag” (Etin, Fr—n) | diag (Bgan, Ex—n) | 0 | diag (Exins1, Br—n_1)
VvE, = | diag™ (Egtn, Ex—n) | diag™ (Bgin, Ex—n) 0 | diag" (Expnt1, Ex-n—1)

More precisely V xr (X9 @ XI') = [[og][ (XFF" + XF~) and for s # t:

o] (X7 — X0y e =
Vi (X0 @ X[Y) = 4 ol (- XETD 4 XEEY) =t
0 ifs#r#t

Stmilar statements hold when k is odd.
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PRrROOF. We start with the modules of type Vg, V. Generally, if Vg, V' is orthogonal
to Ej for some [/, then Vj; is orthogonal to V. This is because the connection is metric:

0=«(VgV,E)=—(V,VgE)

This proves immediately that Vg V' is orthogonal to Ej since Vi, = {0}. Moreover
by the same argument and the fact that E(0) is autoparallel, the associated module of
Ey and V is orthogonal to F(0), in particular to V. Now we study the situation more
closely:

The module V;,, = Vg, E, is the associated module of Ey and Ej,, as well as of
E; and FEj_,. These are the only possibilities involving Fj and therefore

VEk‘/(),n C Ek—l—n S Ek—n-

The statements (1) and (2) follow since the modules diag™ (trg frn, tts x—p) and
diag® (A} 4, A} s_p) vanish (cf. Proposition on page [22| and especially Equation
E1)).

Now we consider the case V = Ainﬂ, the associated module of V' and Ej, is zero
by the discussion above, since Ay 41 L Vj, for any [.

The precise statement on VxY follows, since the following diagram is commutative
(up to a constant factor) if we choose natural bases

R™ ® A%(m;) R™ (3.1)

| |

By ® A%, ) — > diag (g1, Er n)

Thereby is ¢ an equivariant map — the projection onto the irreducible module within
the tensor representation R™ @ A%(my), that is

ey ifr=s
@(67®(es®et—et®es)) =< —e, ifr=t
0 if s#r#t.

The behavior of V for natural bases is the same as for & up to a constant factor,
which is ||vg||. This is since A%om) @ diag (Ekin, Ex_n) is an irreducible modules of
the singular isotropy representation at the midpoint of the curvature sphere Si(a), the
radius of which is m For the other cases similar arguments hold.

Finally we consider the case V = Vg FE, 11, where the conclusion is proven as in the
first case using the fact that diag™ (Vi xyni1, Vek_n 1) vanishes, cf. Theorem on

page [26]
For modules of type Vy Ej, we use the fact that (X ® V) = (Y ® X), which
holds by the Codazzi-equation and therefore if X € I/, and Y € E,

(A(y) - id —A)VxY = (\() - id —A¢)Vy X



34 3. CANONICAL CONNECTIONS OF ISOPARAMETRIC HYPERSURFACES

Now let X € Ej, and Y € try,, then VxY = Z;., + Z;_,, by the first part of the proof
(Zg+n isotropy equivalent vectors in Fyi,). Hence

~VyX = (A = Mk) T Ae(Ziin + Zi—n) =
= (Ag = AMR) T K + 1) Zisn + Mh = 1) Zj—n) =

Mk +n) L M)

TAEAn) AR T T Ak —n) = AER) T
d+k d+k

= - :; Zk+n + * Zk—na

which proves case (1). We have used the description of the eigenvalue given in Sec-

tion on page , namely A, = 7%
The other cases are treated likewise. O

Eventually we study the case of two modules in E(0), where the situation is slightly
more complicated.

PROPOSITION 3.6. Denote Tr = @, . tro,2n) C E(0), then for G-invariant vector
fields holds:
VeoFEO) LTr and Vi E(0)=0

ProoOF. First note that the two statements are equivalent by the autoparallelity of
E(0).
Let v € E(0)(a) and choose an h € G such that h-a = a+wv, then Tr(h-a) = h, Tr(a)
since Goyy = hG,h 1. For any vector in Tr(a) is of type Vx, X,, for appropriate vector
fields in some eigenspaces E,, and FE,,, which are isotropy equivalent. Then h,X,, and
h. X, are isotropy equivalent vector field as well lying in the orthogonal complement
of £(0)(a) = E(0)(h-a), that is h.(Vx, X;) is a subset of Tr(h - a) as well as of Tr(a).
Therefore Tr(a + v) = Tr(a) for any v. Hence Tr is a parallel distribution within E(0)
and it remains to prove V, Tr = 0 for G-invariant vector fields. This is since the above
argument holds as well for the distributions try, . O

PROPOSITION 3.7. Let V' and W be irreducible modules in E(0) associated to
ergenspaces of same parity and let w.l.o.g. n,m be even numbers.

(0) If V or W is a trace module, then VyW and Vw 'V vanish.
(1) If V. =A5, and W = A§,,, then
VVI/V = diag_ (A(2),m+n7 A(Q)/mfn) = diag+(A(2),m+n7 A(Q)mfm) Zf my 7£ 2
while VyW and V'V vanish if m; = 2.
(2) IfV=A},,, and W =A7, .\, then
VVW = diagi (A%,nerfl? A%,mfnJrl) = diang(Ainerfl? A%,nfmfl)'
(3) If V.=A5, and W =A%, .\, then VyW and V'V vanish.
Let V =V g, Enq1 be a module in E(0) associated to eigenspaces of different parity.

4) If W = A2 or A2 , then
0,m 1,m+1

VW = diag" (Vg Emins1 ® Vi Em—ni1),

VWV = diag_(VEOEm+n+1 D VEoEm—n—I—l)-

(5) If W =V g, Epi1 then
VVVV - diag_ (Ag,m—l—n—l—% Ag,m—n) @ diag_ (A%,m+n+37 A%,m—n—&-l)'

Only in case (1) and (2) VyW does intersect V if m = 2n, W if n = 2m.
Precise formulas for the covariant derivative of G-invariant vector fields (natural
bases) may be exhibit explicitly as in Proposz'tion on page .
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PRrROOF. All modules VW are contained in E(0) since this is an autoparallel dis-
tribution.

The statement (0) is obvious by the last proposition, (3) by dimension reasons,
except the case, when at least one of the multiplicities is 2. We will treat this case
later.

The dimension of the modules VW and Vy/V are determined by the decompo-
sitions of tensor representations of SO(m) and SO(m;) x SO(ms) respectively , which
hold for not too small dimensions:

AMoAN=troN SN o L0000 @020,
R ® R™2 R AQ(mQ) — (le R Rmz) <) (le ® A3(m2)) D (le R F(1,170,-~~))
R™ @R™) ® (R™ @R™) = (tr ®A*(m1) @ S*(m1)) @ (tr ©A*(mg) @ S*(m»))

It is not difficult to check that in the low-dimensional cases the modules A? , R™ @ R™?
and A%(my) ® A%(my), respectively, are contained in the decomposition of the tensor-
representations as well. Remember that tr-modules do not arise by the last proposition.

Let Vj be an arbitrary module in E(0) (associated to Ey). For the precise statement,
we use the Gaufl equation and the last proposition:

<vAg’nVEOEmaVk> = <VEOVAg’nEm"/k> + <V[E0,A%’H}Em7vk> =
= <VEovAg,nEm>‘/k> + <VVE0A'(~’),nEm>Vk> - <VVA3 EoEmavkr> =

PropfEH <vaoAg,nEm, Vk> C (diag™ (Vo Emin, Vi Emn), Vi) -

Statement (1) is hence proven by the dimension argument above, (2) and (4) are proven
in a similar manner. Non of these modules vanishes, which is proven by using the same
calculation for the natural bases together with proposition on page which gives
the precise description of the projection connection. Moreover this proves the statement
also for the case when at least one of the multiplicities is 2.

To prove statement (5) we use statement (4) and the fact that the connection is
metric:

<VVW7 diagi (Ag,m—l—n—l—% Ag,m—n)> = <W7 VV diagi (Ag,m—l—n—l—% A(Q),m—n)> =
- - <W7 diagi (dlagi (‘/2n+m+37 Vm+1)7 diagi (Vm+1> Vm72n71))>

This is only nonzero for diag™ (A, 12, AJm_n). Since the same holds for the module
diag™ (A7, n13 Al ny1) and only for these two spaces, it is clear that Vi W is con-
tained in the direct sum. Since both of them are irreducible modules of the isotropy
representation on which different subgroups of GG, act effectively, the only possibility

is the one stated. O

THEOREM 3.8. Let M be a homogeneous isoparametric submanifold of Hilbert space
with isotropy group SO(m) or SO(m1) x SO(my). Then the canonical connection is

VoY = {V”XY — 2(VEX)n if X € Mppon, Y € Npjpn

VLY otherwise

PROOF. As we have seen at the beginning of the chapter V&Y = VLY for vectors
X and Y in modules Vy and Vi respectively, if ¢(Vy, Vi) is orthogonal to Vy-. The
propositions and prove, that this is true except the case when X € Ago, and
Y € AO,n ( X € A172n+1 and Y € Al,n+1 respectively).
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Let {e1,...,e,} be a basis of R” and {v;; =e; ®e; —e;Q¢e; |1 <i<j<n}bea
basis of A%(n), then it is easy to check that the map (v;;, vig) — v;x i8 equivariant and
describes the projection from A%(n) ® A%(n) — A?(n). Therefore we only have to deal

The idea is the same as in finite dimensions, cf. equation on page [0 we
subtract the interfering part (VxY)y;, but to ensure that the result is a tensor in Y
we interchange the roles of X and Y, i.e. subtract u(VyX)y., where u is a constant
factor, such that u(Vy X)v,. = (VxY ). The factor p is easily calculated by Codazzi-
equation, when either one of the vectors is orthogonal to F(0). In our case we do not
exchange the vectors themselves but only X JQ" and X}, again using Gauf-equation:

(Ve (T X0) Ao =
= <VX$(V(VX0X]?”)XI?)>A0,n> + <V[VXQXf”7X?]XZ>A07n> = (1) + (2)

The map (e;, v;;) — €, is the projection of R ® A%*(n) — R™ (bases chosen as above).
Therefore the term (1) vanishes. For the vector [VX?XJZR’ X7?] only the projection onto
Es, plays a role, and using Lemma 5.1. of [HL99] shows:

d—+ 2
Vo Vxo X" = — ; “ X"
1 1 n

where yi; = ||v;]| only depends on E;, cf. proof of Proposition [3.5]on page[32 Therefore

_d+2n
2n

[VX?X?TL Xi] =

2) = — ' <V 20 X7, A n> e "o Var X" Aoy ) =
(2) o o\ Vairae, fo, [HL99] om0 d—i—2n< Xi<hi o0 >
d_|_n d+n _
=" o, " o <VX;;XJ2n7AO,n> -~ T, “Ho Mo ' <VVX9VX10X;?XJ2”’A0,H> -
5.1 d+n —n 9 1 9
lHL:99J on d+n <v[vx?X7§7X?]Xjn’A0’"> - 2 <V[VX?XE’X?]Xjn’AO’”>

Finally the Gauf3-equation yields

n 1 n
V(VXOX;Z”)(VX?X]C) - iv(VX?XI?)(VX?XJ? )

i

O

Eventually we treat the exceptional cases described in propositions [2.15|on page

and on page

PROPOSITION 3.9. Let M be a homogeneous isoparametric submanifold of Hilbert

space with isotropy group SO(2) and affine Dynkin diagram g=g or SO(m) with

oo . where associated modules Vipamy2 O Eaniomi1. Then the canonical connection
18
VY = 5(VEX)n if X € Aggron, ¥V € Ajpyn for g7
VY = X €Sppiam, YV € Sppin for o3

VLY otherwise

PRrOOF. If the principal isotropy group is SO(2) and the modules are as in Propo-
sition the statements of the Propositions [3.5] and [3.7 hold by essentially the same
proof: the trace modules do behave differently (e.g. tram+o4nt2 = trami1,2n41), Which
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changes the statement of Proposition slightly, but this does not matter for Propo-
sition [3.7, where trace modules are of no importance. The precise description of V§Y
may be exhibited by diagrams similar to (3.1)).

The same holds also for the exceptional hypersurfaces with diagram ?ﬁ;@n, whose
modules are described in Proposition The A-modules have to be replaced by
S?%(m)-modules, whose behavior is similar, since

S*(m) @ S*(m) = tr®A*(m) & S*(m) & S* ® T2,100..) ® T020,.)
R™ ® S%(m) = R™ @ S*(m) @ U110,
O

Uniqueness of the canonical connection yields a rigidity result for infinite dimen-
sional homogeneous isoparametric hypersurfaces, which is all about the same as the
result of Exercise 7.4.5. in [BCOO03], where the assumption on the isotropy represen-
tation is formulated in terms of the restricted root systems.

THEOREM 3.10. Let M = G-a be a complete, connected, homogeneous isoparametric
submanifold of a Hilbert space. Assume that the isotropy representation acts as standard
representations of SO(m) on each eigenspace of the shape operator except E(0). Then
M s uniquely determined by the second fundamental form and its covariant derivative
in the point a.

REMARK. Instead of the condition on the isotropy representation, we may assume
likewise that the singular slice representation are standard representations of SO(m+1).

PRrROOF. The second fundamental form determines the curvature normals, spheres
and the eigenspaces of the shape operator. Moreover we have seen in section on
page (L0} that the isotropy group is either SO(m) or SO(m;) x SO(msy), if it acts as stan-
dard representation. The covariant derivative of a determines the irreducible modules
of the isotropy representation as described in the last chapter, especially distinguishes
hypersurfaces with affine Dynkin diagram o= with isotropy group SO(m) from those
with isotropy group SO(m) x SO(m), as well as from those cases where the associated
modules (Vg, A.)¢E,, are not always contained in E(0). To choose natural bases for
the irreducible modules (within associated modules) of the isotropy representation, we
only have to choose an Lie isomorphism between G, and SO(m;) x SO(my), then as
we have seen in proposition on page [32 especially in equation (3.5), the projec-
tion connection of G-invariant vector fields are uniquely determined by the projections
onto irreducible modules of certain tensor representations. So far we have proven that
the projection connection is uniquely determined by the given geometric data. But
Theorem on page [35| gives the canonical connection, i.e. the normal homogeneous
structure in terms of the projection connection, which is therefore uniquely determined
as well. Theorem [1.13] on page [§] finishes the proof. O



CHAPTER 4

Slice Representations and Dynkin Diagrams of
P(G, H)-Actions

In this chapter we will determine the affine marked Dynkin diagrams and singular
slice representations of the known homogeneous isoparametric submanifolds in Hilbert
space, i.e. the principal orbits of the P(G, H)-actions described by Terng in [TER95].
We give a brief description of these actions and refer for further details to [TERIS].

Let G be a compact, connected, semi-simple Lie group, equipped with a biinvariant
metric and H C G x G a closed connected subgroup acting hyperpolarly on G by

(h,k)-g=hgk™".

For simple G such actions where classified by Kollross in [KoL02].

The most important class of a hyperpolar action is the following: If the subgroup
is of type H = K; x Ky, where both K; and K, are symmetric subgroups of G the
action is called a Hermann action ([HER60]). We refer to such actions by terms like
A I-II, where the letter stands for the group G and the roman numbers for the two
involved symmetric subgroup, cf. [HELO1] for the list of compact symmetric spaces and
Table on page [77] and on page [(9) for a list of the Hermann examples.

A g-action is given by a subgroup G(o) = {(g,0(¢9)) | g € G} where o is an outer
automorphism of G or 0 = id. These actions also may be seen as Hermann actions on
G x G with K; = G(0) and Ky = A(G) = G(id), since G(o) is the fixed point set of
the map (z,y) — (07 'z, 0y) and therefore a symmetric subgroup of G' x G.

If the cohomogeneity is greater than one, then the only examples are Hermann
actions or o—actions, whereas in the cohomogeneity one case one has a short list of

exceptions and examples arising from isotropy representations of symmetric spaces of
rank 2, cf. [KOLO2, Theorem A].

REMARK. There exist hyperpolar actions of cohomogeneity one on non-simple
groups, though they are not classified. Let for example

G = Spin(8) x Spin(8) x Spin(8),
K, = Spin(7) x Spin(7) x Spin(7) and
K> ={(g,a(9),0°(9)) | g € Spin(8)},

where « is the diagram automorphism of order 3 of Spin(8). Then G/K; = S"x S"x 57
and Spin(8) acts transitively on S7 with principal isotropy group Spin(7). The group
Spin(7) acts transitively on S7 with principal isotropy group Gy and G, acts with
cohomogeneity one on S7; hence the action of Ky on G/K, is a cohomogeneity one
action.

~ 'This kind of actions may be lifted to Hilbert space in the following way. Let
G = HY([0,1],G) and V = H°([0, 1], g), where g denotes the Lie algebra of G. Then
the action of the group

P(G,H) = {g€ G| (9(0),9(1)) € I}

38
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on V by gauge transformations (g.v = gvg ! — ¢g'g ') is proper Fredholm with the

same cohomogeneity as the H—action on G. The P(G, H)-action is polar if and only if
H acts hyperpolarly on G, cf. [TER95|] Theorem 1.2. and preceding remarks.

REMARK. Some of these examples are reducible in the sense of Proposition on
page [5l i.e. there is a subspace of F(0) which splits off.

To determine singular slice representations for Hermann actions we use frequently
the following proposition.

PROPOSITION 4.1. Let o and 7 be involutions such that K1 = G° and Ky = G7 are
the fized point groups. Then (G7°7, K1 N K3) is a symmetric pair and the associated s-
representation is equivalent to the slice representation at 0 of the P(G, Ky x Ky )—action.
The cohomogeneity is equal the rank of (G /(K1 N Ky).

PRrOOF. This is a simple consequence of Proposition 3.1 in [KOL0O2] and Theorem
1.8 in [TER95]. O

As we have already remarked on page [14] (c¢f. also [HO92, Theorem 2]) for a finite
dimensional polar representation, slice representations and normal holonomy represen-
tations are equivalent. Although this does not hold in general in infinite dimensions,
it is true at least for actions of Hermann type.

PROPOSITION 4.2. Let Ky and Ky be symmetric subgroups of G and consider the
action of P(G, Ky x Ky) on the Hilbert space. Then the (effectively made) slice repre-
sentation at some point a 1s equivalent to the normal holonomy representation.

PRrOOF. It is sufficient to consider the singular point 0, both slice representation and
normal holonomy representation being trivial in regular points. Let M = P(G, H) - 0.
The isotropy group is then Gy = K; N K5, the normal space is vygM = p; Np, where
g = & @ p; are Cartan decompositions. Therefore the slice representation is an s-repre-
sentation (g = €, NE, @ p; Np, is a Cartan decomposition with respect to 7 o 75, when
K; is the fixed group under 7;), cf. also [KoL05, Lemma 11.1]. The normal holonomy
representation (cf. [BCOO03] section 4.2.]). By the Homogeneous Slice Theorem these
two representations are orbit-equivalent, therefore equivalent or transitive on an odd
dimensional sphere.

In the latter case, let a C vgM be a maximal abelian subalgebra and a € a be
a regular point, that is v,P(G, H)(a) = a. Both s-representations give rise to root
space decompositions of vy M = p; Np, with respect to a maximal abelian subalgebra
a C yyM. Since the eigenspaces of ad(a)? do not depend on the representation, they
are equivalent. O

DErFINITION 4.3. Consider a polar representation of cohomogeneity k& on a Hilbert
space. Then we call a slice representation at a point p most singular, if it is of the same
cohomogeneity k. The point p is called a most singular point.

4.1. Possible marked affine Dynkin diagrams

Before dwelling on the calculations of the Dynkin diagrams of the known examples,
we give a list of all marked affine Dynkin diagrams which may arise. The results of this
section are similar to Theorem 8.7.6. in [PT88], but restricted to homogeneous sub-
manifolds. By [HL99, Theorem A] this determines any marked affine Dynkin diagram
of isoparametric submanifolds, for the inhomogeneous ones are of codimension one.
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The main a priori restriction is the following: If we consider a subdiagram of the
given marked affine Dynkin diagram, i.e. if we omit one or more vertices from the affine
Dynkin diagram together with the lines originating from them, this determines by the
Slice Theorem [PT88| Theorem 6.5.9.] an finite dimensional isoparametric submanifold
of lower rank, more precisely the principal orbit of a singular slice representation.
Therefore any subdiagram has to be the Dynkin diagram of some s-representation. In
[HPTR8S| one finds a complete list of the Dynkin diagrams of s-representations, we
have summarized the results in Table in the Appendix.

This argument was used by Terng as well, but we exclude some diagrams of type
Cy by means of the isotropy representation. The result are summarized in Table on
the next page. Multiplicities given there for higher rank are always possible for lower
rank as well.

4.1.1. Diagrams with uniform multiplicity. Vertices in a Dynkin diagram
joined by a single or triple line have the same multiplicity. Therefore isoparametric
submanifolds with diagram A, (k > 1), Dy, E (k = 6,7,8) and G5 have uniform
multiplicity. By omitting a certain vertex we obtain a singular slice representation with
diagram Ay, Dy, Ej, or G, respectively. Therefore the restrictions on the multiplicity
are just the same as in finite dimensions, i.e. the multiplicity is 1 or 2, except for Ay,
where it also might be 4 for any k£ and 8 for A2 Similarly Bk , Ck and F2 diagrams
with uniform multiplicity permit only multiplicity 1 or 2.

4.1.2. Diagrams with at most two different multiplicities — F,, B, and
A;. We start with F} and assume m, # myg, the diagram contains a subdiagram of type
Fy one of whose multiplicities is 1, the other 2, 4 or 8. This yields six different diagrams
of type Fy , which are all valid except $—5—¢—5—% which contains a subdiagram
S99 of type By that is not the Dynkin diagram of an s-representation.

A diagram of type By, contains one subdiagram of type By, and one of type Dy, this
yields that the only possibilities are (m,1) and (2m + 1,2), except k = 3, because of
D3 = Aj also multiplicity 4 is allowed. Hence the diagrams

4 4 4
o>o:o s O>o:o and 0>o:o
407 4 1 407 4 5 407 4

4m~+3

may also occur. )
For a homogeneous isoparametric hypersurface (i.e. diagram A;) in Hilbert space
there are no restrictions on the multiplicities.

4.1.3. Diagrams with three different multiplicities — C,. First assume
k > 3, then a diagram of type Cj contains two subdiagrams of type By. Hence for the
vertices in the middle, the only possible multiplicities are 1, 2 and 4. If it is 1 there are
no restrictions on the multiplicities at the boundary vertices, if it is 2 they are either
2 or odd, if it is 4 they are 1,5, or 4m + 3. All combinations of these are possible.

For k = 3 there is an additional diagram, namely ~ ¢ & ; , arising from the
s-representation of E VI.

Now let £ = 2, of course all examples for general k£ occur here as well. Hence we
restrict ourselves to the case, when the middle vertex has a multiplicity which is not 1,
2 or 4. All general diagrams with only two multiplicities arise here with interchanged
multiplicities, i.e. $=9%=% , $5,°77% » $aogsu forany m € Nand §—g=—% . Of the
same type but possible only for k =21is §—§—¢ and §—g—3 .
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Dynkin Diagram ‘ rank k& ‘ m m mo
m
o | >2 1,2 or 4
Ak mom o m m om m
g
4R 2 8
m m
o—>o 1 arb. arb.
mi mo
%” 5 1 arb.
~ >
Bi| e e, 2 | 2or2m+1
"> o0 3 4 | 150r4m+3
mo~ m  mso
?nlzfn:;)nz 2 cf. 02
arb. 1 arb.
i m m >3 2or2m+1 2 2or2m+1
1,5 0rdm+3 4 1,50rdm+3
S 3 1 8 1
~ 1 arb. 1
Ci 2 2m + 1 2
4 dm + 3 4
o o 2 6 9 2o0r6
9 6 lor9
2or4 5) lor4
1 3 4
m m
Dy \ >4 1or2
mom m m m m
Tm
Es om 6 1 or 2
m
E7 ‘ 7 lor2
mom m m m m m
Fy i 8 1or 2
mom m m m m m m
1 1,2,4 or 8
F, Ty g g g s 4 2 1or2
4 1
G- o-—o==o 2 1or?2

TABLE 4.1. Possible marked Dynkin diagrams for homogeneous isopara-
metric submanifolds of Hilbert space

41



42 4. SLICE REPRESENTATIONS AND DYNKIN DIAGRAMS OF P(G, H)-ACTIONS

ProPOSITION 4.4. Let M = G - a be an infinite dimensional homogeneous iso-
parametric submanifold with marked Dynkin diagram g—=5—>, . The vertex marked m
belongs to two irreducible subdiagrams o, m and o, m, that is, two different s-repre-

sentation. The m-dimensional eigenspaces of these s-representations are of the form
ps ®phy fori=1,2, c¢f. page[d Then dim(p},) = dim(p3,).

Proor. We fix an m-dimensional eigenspace, say Fj, of the infinite dimensional
manifold, together with its curvature normal v;. The isotropy group G, is the principal
isotropy group of any singular slice representation (Proposition on page (10| holds
for any singular point), hence the dimensions of the irreducible modules within Ej of
the isotropy representation are determined by the root system of any singular slice
representation.

Therefore to prove that the reducibility for both types of slice representations is
the same, we have to find two singular points ¢; with Ey C v,,(G - ¢;), such that the
effectivized slice representation at ¢; is the s-representation with diagram 5, ;. This
is possible since any two eigendistributions associated with non proportional curvature
normals may be focalized simultaneously without focalizing any other eigendistribution.
Applying this to E} and an m;-dimensional eigenspace leads to the point ¢; as the focal
point of a. O

The proposition excludes such possibilities as $5,977% or $,°973% , but we remark
that the list in [EH99] of polar representations, that are not s-representations gives rise
to two additional examples $—¢—% and $—2—% , since among those examples is one

with diagram 9~ 5 where the 5-dimensional eigenspace is reducible, cf. Table |5.4] on

page [73]

The possible Dynkin diagrams are stated in table on the preceding page.

4.2. Actions of type K; = K>

We determine the affine marked Dynkin diagrams in the case of a subgroup of
type K x K, where K is a symmetric subgroup of G. These actions were studied
first by Pinkall and Thorbergsson in [PT90]. To determine the singular slice repre-
sentations of this class of P(G, H)-actions is fairly easy since an explicit description
of the eigenspaces is computable without much effort. Together with Proposition
which yields that one most singular slice representation is the isotropy representation
of G/K or the adjoint representation of G = {g € G | g = 0(g)} for the o-actions,
this determines the marked Dynkin diagram.

The eigenspaces of o—actions where described by Terng in [TER89] for 0 = id and
in [TER95] for general . Here we give the eigenspaces explicitly for the other K; = Ko
cases, i.e. with simple G.

4.2.1. Actions on a simple Lie group G. Let K be a symmetric subgroup of
a compact Lie group G and g = € @ p the Cartan decomposition. Morover let a a
maximal abelian subalgebra of p which is a section of the P(G, K x K)-action. We
denote by A C a* the restricted root system with respect to a, which may be non-
reduced. Moreover let

by ={X €t|ad(a)’X = \(a)’X for all a € a}
pr={X €plad(a)’X = A(a)’X for all a € a},

where €, = €_, and py = p_n. We choose a regular ¢y € a and define Ay =
{Ae A Xag) =0} and Ay = {A € A| Map) > 0}. Then the eigenspaces of K - ag
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(that is for a principal orbit of the s-representation of G/K) are given by Ey = p) © pax
for any A € A, where poy = 0 if 2X ¢ A, . See for example [BCOO03], Examples 3.2
and 3.4].

To describe the eigenspaces of the P(G, K x K )—action we choose bases X7\, .. ., Xf,ibA
of &y and Y}, ..., Y,,, of py such that

[a, X7 = =A(@)¥
a.Y7] = Ma) X7
By my we denote the dimension of py. It is then easy to verify that the curvature
normals are given by (cf. [PT90])
A
Aa) +n
Note that vy, = vy 9, for non reduced roots. Let

Uan(a) = — fora€aneNAXeA,.

E,, = span {9 cos Y —sinnd X} |i=1,... ,my},

then the eigenspaces are given by E) o, = E~>\7n & E~2,\,2n and Eyopt1 = E2A72n+1 if \is
not reduced and Ey, = E), if A is reduced.
The eigenspace associated with the eigenvalue 0 is given by

E(0) = span {0 — cosndK;, 9 — sinndH; | n € Ny},

where {K;} is a basis of £, and {H;} is a basis of py and therefore £(0) is always infinite
dimensional.

The Dynkin diagrams of the s-representation may be found in Table[A.5|on page
the affine Dynkin diagram of the associated P(G, K x K)-action has to contain that
diagram as a subdiagram. Remember that the cohomogeneity of both actions is equal.
It is therefore true that isoparametric submanifolds arising from an s-representation
with Dynkin diagram Ay, Ey, Fy or G5 have a diagram of type Ay, Ey, Fy or G5 respec-
tively. The multiplicities stay the same, except Fy with two different multiplicities,
where it is a priori not clear which multiplicity belongs to the additional vertex. We
will solve this case later. All results (affine Dynkin diagrams and slice representations)
may be found in the Tables to in the Appendix.

By the description of the eigenspaces of the P(G, H)—action we know that no new
families arise, which excludes the possibility of the finite dimensional action having
a Dj-diagram and the corresponding infinite dimensional isoparametric submanifold
having a diagram of type By D Dy, therefore it has a Djy-diagram with the same
multiplicity. Note that this is not true for the o-actions.

What remains are the cases of Fy-diagrams with two multiplicities and of Bj-
diagrams, where we have to determine whether the P(G, H)-action has By- or Cj-
diagram and in the latter case what the multiplicity of the new vertex is.

We start with Fy which only contains three examples (corresponding multiplicities
in brackets): the s-representations of E I1(1,2), E VI(1,4) and E IX(1,8). First observe
that a Dynkin diagram g§—§—§—5 does not exists and therefore E IX has to have
diagram $—9 978§ 3.

Since (Eg, E;7) and (E7,SO'(12)) are both symmetric pairs, the reduced root sys-
tem of E VI is contained in that of E IX and the affine Dynkin diagram of E VI is
9793 9%. The same argument shows that $—9—9=9—% is the diagram of E II.

Next we consider the Bj cases, which are the Grassmannians A III-III, BD I-1
and C II-II (which will be solved in the subsection on page [47), D III(1,4) or
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(5,4), E 111(9,6) with £ = 2 and E VII(8,1) with £ = 3. For E VII and D III we see
immediately that only a ék—diagram is possible since neither A3 with multiplicity 8 nor
D, with multiplicity 4 are valid Dynkin diagrams for s-representations. Since no new
multiplicity occurs for the new vertex, the affine diagrams are (g g ; for E VII
and 7% % "9 19 for D IIT (k even). If k£ is odd, the multiplicity 5 belongs to
a non reduced root A with dim(p,) = 4 and dim(ps)) = 1. The description of the
eigenspaces yields that within the family E,,  of the P(G, H)-action the multiplicities
5 and 1 alternate and therefore the affine Dynkin diagram is §— % % 9 ¢ 1 for
D III with odd k. For the same reason §—2—% is the affine Dynkin diagram of E III.

4.2.2. o—actions. Denote by G the fixed point group {g € G | g =0(g)}. The
cases where the adjoint representation of G? has diagram Ay, Ey, G are solved by
the same arguments as in the last section, also £} since these diagrams have uniform
multiplicity 2.

The P(G, A(G))-action for G = SO(2n) has affine diagram D, which may be easily
seen by the description of the eigenspaces given in [TER89] — there are no families of
focal hyperplanes with a 45° angle between them.

We consider the P(G, A(G))-actions of SO(2n + 1) and Sp(n) both having finite
Dynkin diagram of type By. Let , x(a) be the focal hyperplanes, then the distance d)
between adjacent focal hyperplanes [,y and /,,11 ) is ﬁ The new vertex arising in
the affine diagram represents a family of focal hyperplanes with the smallest distance
d, that is, in this case the familiy associated with the longest root. Therefore the affine
Dynkin diagrams of the P(G, A(G))-actions of SO(2n + 1) and Sp(n) are B, and C,,.
We remark that the finite dimensional actions are not distinguishable by their Dynkin
diagram, while this is possible for their infinite dimensional lifts.

REMARK. We have proven now that the lifts of the adjoint action of G to a
P(G, A(G))-action has an affine Dynkin diagram of the same type as the Dynkin
diagram of the Lie algebra g.

By explicit calculations it is possible to find a second most singular slice repre-
sentation for the o—actions of SU(n) and SO(2n). We conjugate the group o(G) by
an appropriate involution .J, then the adjoint representation of G N Jo(G)J is a slice
representation of the P(G, G(o))-action at some point.

First consider the o—action on SO(2n) with G” = SO(2n — 1). The outer involu-

tion o is given by conjugation with the matrix ¥ = (§ 9%). Let J, = (7}321’ E2n0_2p

for p=0,...,n— 1, then the involution JX.J has fixed point group G? = SO(2p+1) x
SO(2n—2p—1) and the Dynkin diagram of the adjoint action of G? has two connected
components — both having By-diagrams. Therefore the affine Dynkin diagram of that
action is of type C,_; with uniform multiplicity 2.

The outer involution of the o—action on SU(n) is the complex conjugation and
G” = SO(n). For J we define (_% %) on SU(2n) and (7%71 Frnity on SU(2n + 1),
then the new fixed point group is Sp(n) or Sp(n) x U(1) respectively. Both adjoint
actions have diagram B, and therefore the affine Dynkin diagrams are B, for SU(2n)
and C,, for SU(2n + 1) with uniform multiplicity 2. The diagrams for the -actions
are listed in Table on the next page.
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G SO(2n) SU(2n) | SU(2n+ 1) | Eg | Spin(8)
G° SO(QTL - 1) SO(Z’I”L) SO(2TL + 1) F4 GQ
Dynkin diagram é’n,l Bn én F4 ég

TABLE 4.2. Dynkin diagrams of o-actions

4.3. Geometry of K, # K,-Actions

The explicit description of the eigenspaces for these actions is not necessary to
determine most of the slice representations, as we will see in the next sections. Nev-
ertheless we will give this description at least for actions with commuting involutions
and remark that the only cases where the involutions do not commute are A II-1II and
D I-I1I with & odd, D III-III" with n odd and D4 I-’ with &, even (k, [, n refer to the
dimensions as listed in Table on page [77), cf. [CoNG9)].

Let G be a simple Lie group and ¢ and 7 commuting involutions with fixed point
sets K; and Ky and Cartan decomposition

0=t PP =6LDp=E NGB NP) D (GNP D P NE) =: g1 D go.

Here we used the fact, that the involutions commute. If they do not commute there
are additional summands. Let a be a maximal abelian subalgebra of p; N py, which is
a section of the P(G, K; x K5) action.

The subspace g; is a Lie algebra, let A; be its restricted root system with respect
to a, €, and p, its root spaces just as in the case K; = Ko, cf. Section [4.2.T on page
This yields eigenspaces F) ,, in the same way.

The subspace g, is invariant under a in the sense that [go, a] C go. Let Ay be the
restricted root system of go with respect to a and let my C € Np, and ny, C p; N &
the corresponding root spaces. We remark that Ay C A; U2 - Ay, this is because in
any case e is a most singular point with slice representation G1/K; N Ky, where Gy is
a Lie group with Lie algebra g;. To determine the eigenspaces one has to assure that
the boundary values are contained in £; and &, respectively . Therefore we restrict the
parameter ¢ to [0, 7].

Let
Xf‘, e ,Xf,‘m be a basis of €,
Yf‘, cen YTQA be a basis of p
ur,..., Uﬁu be a basis of my
Vi, Vn);A be a basis of n)

then cos(2n)v¥Y —sin(2n)9X and cos(2n+1)9V —sin(2n+1)9U are tangential vectors.
There are four possible types of eigenspaces:

E)an = span {cos(2n)9Y; — sin(2n)9.X7, cos(4n)9Y;* — sin(4n)d X}
E)an+1 = span {cos(4n+1)9V;* — sin(4n+1)9U}
By apn+2 = span {cos(2n+1)0V;* — sin(2n+1)90;, cos(4n+2)9Y;** — sin(4n+2)9 X" }
E)an+s = span {cos(4n+3)9V;" — sin(4n+3)0U* }

The dimension of the eigenspaces are alternating

2

1 1 2 1 2
my + Mgy may my + Mgy may,
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where the upper index denotes the root system. Except m} any of these numbers may
be zero, if m)\ = 0 for any A we have the special case K| = K.

Slnce within a family of proportional curvature normals there are at most two
different (alternating) multiplicities, if m3, # 0 then m} = m3.

The eigenspace of the eigenvalue 0 is given by

E(0) = span {cos 2n0K;, sin 2ndH;, cos(2n + 1)IM;, sin(2n + 1)JIN; | n € Ny},

where {K;} is a basis of €, and {H;} of po, {M;} of mg and {N;} of ny and therefore
E(0) is always infinite dimensional.

Next we answer the following question: If we have a given marked Dynkin diagram
arising from a Hermann action with commuting involutions (including the K; = K-
actions), how many possibilities for m}, md,, m3, m3, are there?

For a vertex associated with a family of eigenspaces of the same dimension, espe-
cially for a vertex which is joined by only single lines to all neighboring vertices, there
are two possibilities. The root X is always reduced and either m3 = 0 or m3 = m,.

A pair of examples for this type are the P(G, A(G))-action for SU(n) (m3 = 0 since
it is of type K; = K3) and the action of type A I-II, which has the same diagram (cf.
Section [4.4)).

Now consider a vertex associated with a family of eigenspaces with alternating
dimensions, i.e. a boundary vertex joined by a doule line to its neighboring vertex of a
Cj-diagram or a vertex of a diagram A;.

° %L o : Since the roots are restricted, the only possibility for the multiplicities
are my = m and m3 = m. If m = m then also m3 = 0 is possible, this is
precisely the difference between principal isotropy group SO(m) and SO(m) x

SO(m).

> ol > . : : 1 _ 1
221y O s OF §5 9 Either \ ¢ A2, ie. mA = 2m and m3, = 1 (analogous
for the other dimensions) or m/\ =mj3 and m3, = m2>\

o0
00 S OF w22, + Here m} = 2m, mi = 2m and mj, = m2, = 1 (analogous
for the other dimensions). Among the P(G, H)-action the latter case does not
arise.

o0, =) . — 2 — 1 _ 2 _

®.,o 2 Or4£+ o or o*o: Here my = m3 = 2m, my, = 1 and m3, = m

(analogous for the other dimensions).

REMARK. The case of a family of eigenspaces with alternating dimensions and
both types are reducible with different dimensions of the smaller space (e.g. 4mi§i§ ,
this is the only example of such a hypersurface which belongs to a whole family of
isoparametric submanifolds of growing codimension) is only possible if the involutions
do not commute, or the action is not of Hermann type.

In the next sections we continue the calculation of the singular slice representations
and affine marked Dnykin diagrams, starting with the P(G, H)-actions arising from
Hermann actions. In Section on page [57 we study the exceptional actions of coho-
mogeneity one.

4.4. Actions on the Classical Lie Groups

In this section we start to determine the slice representations of Hermann actions
of type K; # K,. Note that one most singular slice representation of any such action
is listed in [KOLO5) Table 5].

As for the o—actions it is here possible to calculate most singular slice representation
explicitly. Sometimes the following proposition is useful, cf. [KoL0O2, Proposition 3.3]:
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PROPOSITION 4.5. Let G be a compact Lie group, o and 7 different, commuting in-
volutions of G. Then we have the following diagram, where all arrows denote inclusions
of symmetric subgroup:

G

I

GO' GO’OT G’T

~ 17

G°NGT

From such a diagram one can read off by Proposition a slice representation of all
three Hermann actions arising, e.g.: the s-representation of G°°"/G° NG" is a slice
representation of the P(G, H)-action with H = G7 x G".

We will use this proposition by considering a known slice representation, say the
s-representation of K'/H', of a Hermann action (G, K; x Ks), draw the associated
diagram and read off the slice representations for (G, Ky x K') or (G, K' x K3). Thereby
one has to assure, that K’ is a symmetric subgroup of G, i.e. we have to choose an
appropriate (most singular) slice representation. In many cases this will be a reducible
but most singular slice representation of a Ky = Ky—type action which then yields the
slice representation of a K # Ky—action.

4.4.1. Slice Representations of the actions A III-1II, BD I-1I, C II-II.
We focus on the real case BD I-I, the complex and quaterionic case may be treated
in an analogous way. Therefore consider an P(G, H)-action with G = SO(n) and
H = (SO(k) x SO(n)) x (SO(I) x SO(n — 1)) where we assume k < | < 2. Let
(4, B) € SO(k) x SO(n — k) be embedded in SO(n) in the usual way (A, B) — (4§ %).
For the first slice representation we embed SO(l) x SO(n — [) in the same manner,
while for the second one we use (A4, B) — (5 §). In both cases the point e turns out
to be most singular, and the (irreducible) slice representation at this point is easily
calculated to be:

Action ‘ first slice represention ‘ second slice represention ‘
ATIIIT | SUn 4+ & — 1) /S(U(k) x U(n —1)) | SU(k +1)/S(U(k) x U(1))

BD I-T | SO(n+k —1)/SO(k) x SO(n —1) | SO(k +1)/SO(k) x SO(I)

CII-II | Sp(n+k—1)/Sp(k) x Sp(n—1) | Sp(k+1)/Sp(k) x Sp(l)

O=——0——O0 =+ + +O—

Therefore the affine Dynkin diagram (for BD I-1) is %% 99 ¥ %, where

1
multiplicity 0 at one or both ends of the diagram denotes 1:>f*f . We will use

this convention throughout the rest of the chapter.

4.4.2. Slice Representations of Hermann actions on Grassmannians. In
this section we deal with the remaining hyperpolar actions on real, complex and qua-
terionic Grassmannian manifolds of k-dimensional linear subspaces of R”, C* and H"”
respectively. To determine slice representations we use the known slice representations
of Hermann K| = Ks-actions and the actions of the last subsection.

First consider A I-III, we remark that for C I-II the same arguments are valid.
Consider the action A I-1 and its reducible most singular slice representation of Typ
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Ay + Ay_p C A, which gives the following diagram.

SU(n)
/ \
SO(n) S(U(k) x U(n — k)) SO(n)
\ /

SO(k) x SO(n — k)

From this we can read off the s-representation of the symmetric space SO(n)/SO(k) x
SO(n — k) as a slice representation of A I-1IT and SU(n)/S(U(k) x U(n — k)) as a slice
representation of C I-11, respectively. In terms of proposition on page this slice
representation occurs, when we embed SO(n) and S(U(k) x U(n — k)) in the standard
way in SU(n), their intersection then being SO(k) x SO(n — k).

We claim that the second slice representation is the s-representation of Sp(k)/U(k)
for A T-IIT and the adjoint action of Sp(k) for C I-II. This can be proven by an
appropriate embedding of S(U(k) x U(n—k)) or Sp(k) x Sp(n — k), respectively. To be
precise, we embed U(k) C V and U(n — k) C V+, where V is the k—dimensional linear
subspace of C" given by span{e; — iegi1,...,€x — ieg} in the complex case. Then
the intersection of S(U(k) x U(n — k)) embed that way with a standardly embedded
SO(n) is U(k) and one can calculate explicitly, that the slice representation is the
one we have stated above. This proves, that the affine marked Dynkin diagram is
7T 97T 9% or 5% %Y S2(n-k)+1 respectively.

The other pair of actions on Grassmannians is D I-IIT and A II-ITI, which can
be treated simultaneously. Therefore we restrict our attention to the action of type
D I-III and start with the case £ > 2 even and a reducible slice representation of
D III-III of type C’g + OLnTﬂjik.

2

SO(2n)
T T
SU(n) SO(k) x SO(2n — k) SU(n)

S(U(5) x Un = §))

0—0—0+ + «0—0=—0

The above diagram shows that 777 7 "7 7 g(n—k)+1 is the Dynkin diagram of a
most singular slice representation of DI-III, § ¢ 4% 4mn—k)+3 of A II-1IL
Another slice representation may be found for the special case k = n, if we consider

the most singular slice representation of a certain action of type BD I-I with diagram
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An—l C Cn
SO(2n)

T

SO(n) x SO(n) SU(n) SO(n) x SO(n)

~ 1

SO(n)

Together this leads to the conjecture, that D I-III has affine Dynkin diagram B & with
multiplicities (2(n—k)+1,1) for k even and é’k%l with multiplicities (2(n—k)+1,1,1)
for k odd, where the most singular slice representation, which arises by omitting the
vertex marked 2(n — k) + 1, is the adjoint action of SO(L%J) This can be proven by
an explicit calculation of the slice representation at the (most singular) point e with
standard embedding of the symmetric subgroups on one hand (which yields the slice
representation found above) and on the other hand with embedding SO(k) x SO(n — k)
such that SO(k) cVcC RQ%) where V = span{el, ey €p_ L%J sy Cntly oy €n+L§J }

In the case of the hypersurface D I-III with £ = 2 it is not difficult to Co}npute the
eigenspaces with help of the description in Section on page and see that there
is only one type of most singular slice representation, i.e. the affine Dynkin diagramm
1S Oo—0

2n—1 2n°1
We finish this section by a summary of the results in the following table.

Action ‘ first slice represention ‘ second slice represention ‘
A T-II1 SO(n)/SO(k) x SO(n — k) Sp(k)/U(k)

A TI-1II Sp(n + k)/Sp(n) x Sp(k) SO(2k)/SU(k)

D I-I11 SU(n—%—i— L%J)/S(U([gj) x U(n— [%])) SO(L%J) X SO(L%J)/SO(L%J)

C I-II SU(n)/S(U(k) x U(n — k)) SO(2k+1) x SO(2k+1)/SO(2k+1)

4.4.3. Slice Representations of A I-1I, D III-1II’, D, I-I’. In this section
we determine the affine Dynkin diagrams of the remaining actions on the classical Lie
groups.

We continue with the action A I-II, obtaining a slice representation by a most
singular slice representation of A I-III (for even dimension 2n and k = n).

T~

/
Sp(n) S(U(n) x U(n))
\ /

SU(n)

SU(2n)

SO(2n)

o—o0 =+ +0—0

Therefore A I-II has a most singular slice representation of type 5 3775 5 and its
affine marked Dynkin diagram is A,,_; with multiplicity 2. The action has only one
type of most singular orbits.
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Next we consider the action D III-III’ arising from the diagram automorphisms «
of SO(2n), that is D III’ denotes SO(2n)/«(SU(n)). First we note that for the action
D I-IIT there is no difference in using «(U(n)) instead of U(n), the same holds for
D ITI-IIT if n is odd, cf. [KoL02, 3.1.1.]. Hence let n be even, the involution « is then
given by diag(—1,1,...,1).

The following diagram is given by the special case k = 2 of the action D T-TII

SO(4n)
/ SO(2) x SO(4n — 2) =
a(U(2n)) U(2n) = SU(2n) - U(1) U(1) x SO(4n — 2)

U@2n —1)-U(1) =
S(U(1) x U(2n — 1)) - U(1)

and yields a reducible slice representation of D III-III" with Dynkin diagram C;,_; and
multiplicities (5,4). The affine Dynkin diagram is C,_; with multiplicities (5,4,5),

—Ezpt1 0

which may be seen by embedding U(2n) standardly and using o = ( 0 syt )

then the intersection of U(2n) and «(U(2n)) is the group U(2p+ 1) x U(2n —2p — 1),
where the rank of both groups is odd and the slice representation of D III-III’ is of
type D 11I(2p + 1)&@D 1II(2n — 2p — 1).

The last Hermann action Dy I-I’ on the classical groups arises from the order 3
automorphisms 7 on Spin(8) with fixed point group Go. The only case when this is
not equivalent to some Hermann action is G = Spin(8) and H = (Spin(5) - Spin(3)) x
7(Spin(5) - Spin(3)) which is an action of cohomogeneity 2 with one slice representation
equivalent to the s-representation G2/SO(4), therefore the affine Dynkin diagram is

O0——0=0

11 1 -
If the column “second slice representation” is left empty, there is only one most
singular orbit type.

Action ‘ first slice represention ‘ second slice represention ‘
ATl | SUMn —1) xSU(n—-1)/SU(n —1)

D III-I1I SO(2n —2)/U(n —1)
Dy I-T Go/SO(4) SU(3)/S0(3)

4.5. Actions on the Exceptional Lie Groups

Since explicit calculations are more difficult here (but can be done by using a
computer algebra system, e.g. MAPLE, our main tool in this section is Proposition
4.5]

4.5.1. Slice Representations of Hermann Actions on Eg. Let 0 and 7 denote
the commuting outer involutions on Eg with fixed point groups Sp(4)/Zs and F} respec-
tively. Hence o o7 is an inner involution with fixed point group either Spin(10) - SO(2)
or SU(6) - SU(2). Since the only common symmetric subgroup of Sp(4) and Fj is
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Sp(3) - Sp(1) and this group has to be a symmetric subgroup of the fixed point group
of o o7, the only possibility is SU(6) - SU(2). This leads to the following diagram (cf.
[KoL02|, page 607), where we can read off one slice representation of E I-1I, E -1V
and E II-1V:

Eg (4.1)

TN

Sp(4)/Zs SU(6) - SU(2) Iy

~. 1 7

Sp(3) - Sp(1)

For the Hermann action E I-IV we obtain as slice representation the s-represent-
ation of SU(6)/Sp(3) which has Dynkin diagram A, with multiplicity 4. Since the only
affine Dynkin diagram of rank 2 containing A, as a subdiagram is A,, we conclude that
the Dynkin diagram of E I-IV is A, with multiplicity 4. The action has only one type
of most singular orbits, i.e only one type of most singular slice representations.

The action E I-II has cohomogeneity 4 and one of its slice representation is the
s-representation of Fyq/Sp(3) - Sp(1), which has diagram F; with uniform multiplic-
ity 1. Hence the affine Dynkin diagram of E I-1I is §$—$—9=9—%. There are two
types of most singular orbits, the second slice representation is the s-representation of
Sp(4)/U(4) not that of SO(9)/SO(4) x SO(5) (having the same diagram Cj), which
can be seen from the following diagram.

Eg

T T

Sp(4)/Z, SU(6) - SU(2) Sp(4)/Z;

\ /

SO(6) - SO(2) = U(4)

We know that E I-I has diagram Eg with multiplicity 1, hence admits a (most singu-
lar reducible) slice representation with diagram (As + A;), which leads to the above
diagram.

The last slice representation which can be read off diagram is the s-represent-
ation of Sp(4)/Sp(1) x Sp(3) which is a slice representation of the cohomogeneity one
action E II-TIV. Hence one of the multiplicities of the related A;—diagram is 11 = 8+3.
The principal isotropy group of all slice representations has to be Sp(2) - Sp(1) as for
Sp(4)/Sp(3) - Sp(1). Reducing SU(6) - SU(2) to SU(6) leads to an orbit equivalent
action (cf. [KoOLO5l Table 1]), whose principal isotropy is Sp(2) ~ Spin(5). Therefore
the second multiplicity may be either 5 or 11. Using Borel-De Siebenthal theory as in
[KoL05l Section 10.1.] shows that there exists a singular slice representation of type
SO(7)/SO(6).

Now we want to determine the affine Dynkin diagram of the action E II-III. Both
involutions are inner, so their composition has to be inner, too. We use the known slice
representions of E II-II and E III-III to obtain two most singular slice representations
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of this action, as we did for E I-II. Let us start with E II-II, which has diagram F,
with multiplicities 1 and 2. We need the slice representation with B,-diagram, i.e. the
s-representation of SO(10)/SO(4) x SO(6) and thus obtain:

Eg

T T

SU(6) - SU(2) Spin(10) - SO(2) SU(6) - SU(2)

\ /

S(U(4) x U(2)) - SU(2) =
Spin(6) - Spin(4) - SO(2)

Hence we have proven that the s-representation of SU(6)/S(U(4) x U(2)) with diagram
C5 and multiplicities (5, 2) is a most singular slice representation of E II-1II.

The action E IIT-TIT has diagram C, with multiplicities (9,6, 1), we use its reducible
slice representation with diagram (A; + A;) for the following diagram (remember that
9 = 8 + 1 belongs to a non-reduced root, hence the related slice representation is the

one stated below).
/ E

6
Spin(10) - SO(2) SU(6) - SU(2) Spin(10) - SO(2)
S(U(1) x U(5)) - SO(2) =
U(5) - SO(2)
Therefore the affine Dynkin diagram of E II-1ITis §—¢—3 .

Next we determine the diagram of E I-III, the first slice representation can be
found again with help of a slice representation of E I-I namely that with Ds-diagram.

Eq

T T

Sp(4)/Z Spin(10) - SO(2) Sp(4)/Zs

I —

Sp(2) - Sp(2) =
Spin(5) x Spin(5)

O

The s-representation Sp(4)/Sp(2) x Sp(2), whose diagram is §— 3, we found that
way, is a most singular slice representation of E I-III, its principal isotropy group is
Sp(1) x Sp(1). The other candidates for the second slice representation are therefore
§73, ¥ 4,5 9 or 9 am+3 . The principal isotropy group of the s-representation with
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diagram $—% and § 45,13 for m > 0 are larger than Sp(1) x Sp(1l), which excludes

these possibilities. For the others we check whether they fulfills the necessary condition
for the dimensions

dim G°" — 2d1m(K] N KQ) =dimG — d1m(K1 X KQ),

which is a consequence of Proposition (cf. [KoL02, page 606]). The right hand
side of the equation, which is independent of the embedding of the K, in this case is
78— (364 46) = —4. This excludes 9 , that is the s-representation of SO(8)/SO(2) x
SO(6), since the left hand side is then 28 — 2(1+15) = —2. The rank of SO(2) x SO(6)
is 4, hence it can not be enlarged by trivially acting SO(2)-factors in order to achieve
—4 on the left hand side. By similar arguments we can exclude the slice representation
1+ 1, and for this reason $=$—% is not the affine marked Dynkin diagram of E I-III.

Note that we will prove in the next chapter, that in fact there exists no isoparametric
submanifold whose diagram is §—$—% , cf. Section on page (72|

Therefore the marked affine Dynkin diagram of the action E I-11I is either §—$—%
or $—%—% , the equation above is fulfilled for any of the most singular slice representa-
tions. Note that the slice representation associated with 73§ is SO(7)xSO(3)/SO(2) x
SO(3) x SO(5) whose principal isotropy group is Sp(1) x Sp(1).

The following diagram is a combination of the above diagram, together with the

0=——=0

diagram arising from the slice representation of E III-1II with diagram 73§ :

Spin(10) - SO(2) Es Sp(4)
Spin(10) - SO(2) Sp(4)
Spin(8) - SO(2)? Spin(10) - SO(2) Spin(5) x Spin(5)

Choose a fixed root system A of eg with positive roots A. Consider the outer involution
7 with fixed point algebra sp(4), that is, 7 maps any root o to —«. On the other hand
the root system of spin(10)@®so0(2) is a subset A; of the root system of ¢5. The associated
inner involution o; is identity on the roots in A; and on the maximal torus, and —id
on the roots in A \ A;. Therefore any such o; commutes with 7. To derive the above
diagram, where all occurring involutions commute, we choose the involutions o;, with
G = Spin(10) - SO(2), such that their intersection is Spin(8) - SO(2)? (denote by thick
lines in the following picture)

— O —— O

O —— O e O s O —— O

This proves that the P(G, H)-action in the second row (whose diagram is §—9—% ),
is contained totally geodesic in E I-III, by the explicit description of the eigenspaces
in Section on page E I-III has to contain one-dimensional eigenspaces as well.
Therefore its affine marked Dynkin diagram is $—$—% .
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The only remaining Hermann action on Eg is cohomogeneity one action E ITI-1IV,
we use the rank-1 slice representation of E IV-IV with multiplicity 8 to obtain:

Eg

TN

~ 7

Spin(9)

Since the principal isotropy group of F4/Spin(9) is Spin(7) the only other possible slice
representation of E III-1V is the s-representation of SO(9)/SO(8) (with principal iso-
tropy group SO(7)), hence the affine Dynkin diagram is A; with multiplicities (15, 15)
or (15,7). With help of the description of the eigenspaces in section on page 45 and
calculation of the dimension the second possibility can be excluded in the following
way:

Let K7 = Spin(10)-SO(2) and K, = F4, embedded as for the above diagram. Then
the dimension of the spaces € N p; = spin(9), & Np2, & Np; and €& N p, are

N | & Po b))
£ |36 10|46
p | 16 16|32
> |52 26|78

The root system {\,2A} D A, fulfills
m3 +m3, < min {dim(€; N p,),dim(&; Np;)} = 10

and we already know that mj = 8 and m3, = 7. Assume that the second singular slice
representation is SO(9)/SO(8), then m2 = 8 and m2, = 7, which contradicts the above
inequality. Hence the diagram is o9, i.e. m3 = 8 and mj, = 0.

Finally we summarize the obtained slice representations of Hermann actions of type
K, # K, on Eg in the following table.

‘ Action ‘ first slice representation ‘ second slice representation ‘

[}

E I-1I Iy /5p(3) - Sp(1) Sp(4)/U(4)
ETII | Sp(d)/Sp(2) x Sp(2) | SO(7)/SO(2) x SO(5)
E L1V SU(6)/Sp(3)

E I SO(10)/U(5) SU6)/S(U@) x U(2))
EII-IV | Sp(4)/Sp(1) x Sp(3) SO(7)/SO(6)
E -1V F,/Spin(9)

4.5.2. Slice Representations of Hermann Actions on E;. The three involu-
tions on E; are all inner. From the diagram on the next page one most singular
slice representation of any of the Hermann actions E V-VI, E V-VII and E VI-VII
can be read off. (The existence of this diagram can be proven by the same methods
as were used to determine the diagram of E [-III: The action E V-VII is contained
totally geodesic in E VIII-IX, whose affine marked Dynkin diagram we will determine
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in the next subsection.)

E7 (4.2)

For a second most singular slice representation of the cohomogeneity-4 action E V—
VI we consider a rank-6 slice representation of the action E V-V, namely that with
diagram Dg C E7.

E;

i

SU(8) /2 SO'(12) - SU(2) SU(8)/Z

\ /

S(U(4) x U4)) =
(Spin(6) - Spin(6)) - SO(2)

Hence the affine marked Dynkin diagram we are looking for is §—9—9—9—3%.

Again with help of a slice representation of E V-V (with diagram FEs), we obtain
the Dynkin diagram As; with multiplicity 4 to be a subdiagram of the affine marked
Dynkin diagram of E V-VII:

Together with the subdiagram $—3—% from (4.2)), we conclude that the P(G, H)-action
E V-VII has a affine marked Dynkin diagram of type Bz with multiplicities (1, 4).
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It remains to find a second slice representation of E VI-VII, which is done by
means of E VII-VII and its slice representation of type $~§ & ¢ C " s s 3 :
E7

Es - SO(2) 30'(12) -

T

Spin(10) - SO(2) - SO(2)

Eg - SO(2)

%\
w\@/

Hence we have proven, that the marked affine Dynkin diagramm of E VI-VII is
e—3—9 . The following table contains the most singular slice representations found in
this section.

| Action | first slice represention | second slice represention |

EV-VI | E¢/SU(6) -SU2) | SU(8)/S(U{) x U4))
E VVII SO(12)/U(6) SU(8)/Sp(d)
E VI-VIL | E¢/Spin(10)-SO(2) | S

U(8)/5(U(6) x U(2))

4.5.3. Slice Representations of Hermann Actions on Eg

. The group Eg has
only two symmetric subgroups, hence we only have to consider the action E VIII-
IX. First we use the slice representation of E VIII-VIII belonging to the subdiagram
E;+ Ay of Eg, namely:

L
\

Eg

SO'(16) SU (16)

\ 1
/

SU(8) - SO(2) = U(8)

The other slice representation may be obtained from the following diagram, which
arises from the slice representation with diagram
E IX-IX:

O0O—O0——O0=—=

o]
1 1 1 8 C

O——O0——O0=—=0——-0

998 % of

/ | \
E;-SU(2 SO'(16)
\ /
)-SU(2)-SU(2) =

SO’ ( ) - Spin(4)

E,-SU(2)

Therefore the two most singular orbits of E VIII-IX are described by
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| Action | first slice represention | second slice represention |
EVILIX| B,/S0(12)-SU(2) |  Spin(16)/SU®) |

4.5.4. Slice Representations of Hermann Actions on F4. Here we have to
obtain the two multiplicities of the cohomgeneity one action F I-II. One, namely
7 = 4 + 3, might be easily read off the following diagram which is determined by the
slice representation of F I-I with Dynkin diagram C,; C F and uniform multiplicity 1:

Fy

R

Sp(3) - Sp(1) Spin(9) Sp(3) - Sp(1)

\ /

Sp(2) - Sp(1) - Sp(1)
Spin(5) - Spin(4)

It is not possible to determine the second slice representation of F I-1I with help of
the action F II-1I. But we can use the principal isotropy group Sp(1)? of the known
slice representation to obtain some restrictions: Since one of those Sp(1)-factors acts
trivially, it has to act effectively on the other eigenspaces. It might act as SO(3), then
the second multiplicity is 3, as SO(4) with multiplicity 4 or as Sp(1)(xSp(1)) then
the second multiplicity is 7. Observe that it is not possible that it acts as SU(2) by
Remark(3) on page 46} since the involutions commute.

Similar arguments as for E III-1V exclude multiplicity 3 and 4, since dim(&; Npy) =
8. By the description of the eigenspaces in Section on page m2 = 4, and the
rank of K| = 4, therefore dim(& N ps)g > 3, that is m35, = 0 or 1.

| Action | first slice represention | second slice represention |
’ F I-1I ‘ Sp(3)/Sp(2) - Sp(1) ‘ ‘

4.6. Cohomogeneity one actions

In this section we describe slice representations and Dynkin diagrams of the coho-
mogeneity one actions which are not Hermann actions.

4.6.1. Actions arising from rank-2 symmetric spaces. Let G/K be a semi-
simple symmetric space of rank two, g = €& p its Cartan decomposition and n the
dimension of p. Moreover let p : K — SO(n) be equivalent to the isotropy repre-
sentation of G/K, that is, p(K) acts with cohomogeneity two on R" and therefore
with cohomogeneity one on S™ = SO(n)/SO(n — 1), cf. [KoL0O2, Theorem A]. Lifting
this action to Hilbert space, i.e. considering P(SO(n), p(K) x SO(n — 1)) acting on
H([0,1], 50(n)), yields examples of polar actions.

The principal isotropy group is the same as for the s-representation and may be
found in Table on page Let m; and my be the (not necessarily distinct)
multiplicities of the s-representation, then the action on Hilbert space has Dynkin
diagram ?n;i?né Table on the following page lists all examples together with their
multiplicities and principal isotropy groups.
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’ action ‘ G/K ‘ my ‘ ma ‘ isotropy group ‘ hermitian
Al SU(3)/S0(3) 1 1 72
ATl SU(6)/Sp(3) 4 4 Spin(4)
ATl | SU(m +4)/S(U(2) x U(m+2)) [2m+1| 2 | SU(m) x U(1)? v
BD I | SO(m +4)/SO(2) x SO(m + 2) m 1 SO(m) v
D IIT SO(10)/U(5) 5 4 | SU(2)? x U(1) v
CII | Sp(m+4)/Sp(2) x Sp(m+2) |4m+3| 4 | Sp(m) x Spin(4)
E IIT E¢/Spin(10) - SO(2) 9 6 U(4) v
E IV E¢/F4 8 8 Spin(8)
G G2/S0(4) 1 1 72

TABLE 4.3. Multiplicities of actions arising from rank-2 symmetric spaces

REMARK. The abelian factors U(1) in the principal isotropy groups of A III and
D III may be eliminated by replacing K with K’ = SU(2) x SU(m + 2) or SU(5),
respectively. These subactions are orbit equivalent.

In case C IT it is not possible to reduce the singular slice representation of dimension
4m + 3, since the Sp(1)-factor acts non-trivially on the other eigenspace as a part of
Spin(4). For the same reason it is not possible to get rid of more than one of the two
U(1)-factors in A TII.

The four actions arising from hermitian symmetric space give rise to a second type
of cohomogeneity one action, namely after removing the abelian factor of p(K) the
group acts on S™ = SU(%)/S(U(1) x U(§ — 1)). The multiplicities stay the same, the
isotropy group is the same except for the abelian factor. We remark that if we apply
this procedure to the action given by the s-representation of BD I, viewed as the s-rep-
resentation of an hermitian symmetric space, this is precisely the Hermann action of
type AI-III.

4.6.2. Exceptional actions on simple groups. We give the complete list of
examples of these type, cf. [KOLO2| p. 46], together with the multiplicities in Table
The multiplicities may be obtained in the following way: we regard the action of K on

‘ No ‘ G ‘ K ‘ K5 ‘ my ‘ Mo ‘ isotropy group ‘
1 Go SU(3) SU(3) 5 5 SU(2)
2 Go SU(3) SO(4) 2 3 SO(2)
3 | SO(7) Gy Gy 6 6 SU(3)
4 | SO(7) Gy SO(4) x SO(3) 3 3 SU(2)
5 | SO(7) Gy U(3) 5 1 U(2)
6 | SO(16) Spin(9) SO(14) x SO(2) 7 6 U(3)
7 | SO(4n) | Sp(n)Sp(1) | SO(4n—2) x SO(2) | 4(n—2)+3 | 2 | Sp(n—2) - SO(2)?

TABLE 4.4. Multiplicities of exceptional actions on simple groups

G/ K, hence the dimension of a principal orbit is dim(G/Ks) — 1 and the dimension of
the principal isotropy group is dim(K;) — dim(G/K3) + 1. Now we describe the action
in detail.
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(1) This is an action of type K; = K, hence one of its singular slice represen-
tations is K; = SU(3) acting transitively on the sphere S°, with principal
isotropy group SU(2). Hence one of the multiplicities is 5, but since the di-
mension of a principal orbit is 5, too, this is the only multiplicity, i.e. there is
only one singular orbit type.

(2) The principal isotropy group is SO(2). As an action of SO(4) on S°® the
action (2) is orbit-equivalent to the action of SO(4) x SO(3) on S® therefore
the multiplicities are 2 and 3.

(3) Analogous to (1).

(4) The principal isotropy group is three-dimensional and its rank is at most 2,
therefore its Lie algebra is su(2) = so(3). By using an explicit description of
g2 C s50(7), it is easy to see that K; N Ky = SO(4), hence one multiplicity is 3
and so is the other. Moreover one can explicitly calculate the eigenspaces and
the associated module of two eigenspaces of “different” type and finds that
the (three-dimensional) antisymmetric module is not contained in E/(0).

This shows that the action is not orbit-equivalent to SO(5)/SO(4) x SO(4),
which has the same diagram and singular slice representations.

(5) The principal isotropy group is four-dimensional and its rank is at most 2,
therefore its Lie algebra is u(2) = s0(2) @ s0(3). As an action of U(3) on
ST it is orbit-equivalent to the action of SO(6) x SO(2) on S7 therefore the
multiplicities are 1 and 5.

(6) We consider the action of Spin(9) on the Stiefel manifold V;(RR'6) as in [KoL02,
p. 38]. Choose a vector ej, then (Spin(9).,) = Spin(7) for this is the p.i.g. of
Spin(9) acting on R'®. The orthogonal complement of e, is an R'® = R” ¢ R®
where Spin(7) acts as standard or spin representation respectively. Choosing
a vector ey from the R” gives (Spin(9))(e,,e,) = (Spin(7))e, = Spin(6) = SU(4)
as an singular isotropy group. This proves that SU(3) is the principal isotropy
of the action on the Stiefel manifold and U(3) on the Grassmannian manifold
and therefore one multiplicity is 7. The other is 6, which may be seen similar
by choosing e; € R®.

(7) As for the last action we study here again the corresponding action on V5(R*")
and determine the singular isotropy groups: If e; and e, are quaternionic linear
depended, the isotropy group is Sp(n—1)-SO(2)? (i.e. multiplicity 4(n—2)+3),
if they are quaternionic linear independent, it is Sp(n — 2) - Sp(1) - SO(2) and
the multiplicity is 2.

One of the SO(2)-factors of the isotropy group acts trivially (to be more
precise: there is an orbit-equivalent action with K/ = SO(4n — 2), where this
factor vanishes), leaving Sp(n—2) x U(1). In terms of Theorem [2.3|on page
the whole group acts nontrivially on the 4(n — 2) + 3 dimensional eigenspaces
and the U(1)-factor acts as SO(2) on the other.

4.7. Dynkin diagrams not arising from P(G, H)-actions

We compare the affine marked Dynkin diagrams of the P(G, H)-actions with the
possible Dynkin diagrams of section All the missing diagrams are of “exotic type”
in the sense that they are only possible for cohomogeneity two or three. The following
affine diagrams of type Bs do not arise

4 4
O>o:o and 0>o:o
407 4 5 407 4

4m4:3
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Moreover there are six diagrams of type Cs, who do not occur as the Dynkin diagram
of a P(G, H)-action, namely

O0=—0=—7=0 O0=—0=—7=0 O0=—0=—7=0 0=—0=—7=0 O0=—0=—7=0

0=—=0=—7=0
4 5 4 1 5 4 1 5 2 4 4m+34 6 9 6 9 6 9

Vertices marked with 5 or 9 always belong to reduced roots, i.e. the eigenspaces are
reducible modules of the isotropy representation.

In Section we will show that most of these marked Dynkin diagrams do not
occur as the diagram of any homogeneous isoparametric submanifold of Hilbert space.

4.8. Actions with equal marked affine Dynkin diagram

In this section we are interested in P(G, H)-actions whose marked Dynkin diagram
coincides. We also want to briefly explain their geometric differences, for details see
the next chapter.

4.8.1. Different slice representations. Remember that in finite dimensions
there are only two pairs of s-representation with equal Dynkin diagram. The first
pair are the adjoint representations of Sp(n) and SO(2n + 1), whose diagrams are both
5 9 5 5 5 5. The second pair arises from the first by the involution which maps
every root to its negative, namely the s-representation of the spaces Sp(n)/U(n) and
SO(2n +1)/SO(n 4+ 1) x SO(n) with diagram (77 7 °'77 3~ 7. Hence any affine
Dynkin diagram with one of these as a subdiagram allows different slice representa-
tion, any of these combinations occurs among the P(G, H)-actions. For example, an
action with diagram $— % % "9 9 9 contains two irreducible most singular slice
representations of type B and multiplicity 2 and any of three possible combinations
arises: Both singular slice representations of the P(G, A(G))-action for G = Sp(n), are
the adjoint representation of Sp(n). Similarly both singular slice representations of the
o-action of SO(2n + 2) are of type SO(2n + 1). Finally the o-action of SU(n + 1) has
both the adjoint of Sp(n) and SO(2n + 1) as a singular slice representation.

See Table on the next page for all examples with the same Dynkin diagram, but
different slice representations. To explain the geometric difference of these actions, we
have to consider only the hypersurfaces of type ¢~g and o~ , cf. Corollary on
page [7}

In the next chapter especially in Lemma/[5.10[on page [69 we will see, that it depends
on the length of the roots occurring — if there are only two different lengths (i.e. the
two most singular slice representation are equal) the rank-1 leaves are isometric to the
P(G, A(G))-action of SU(2), while if they are different there are some rank-1 leaves
isometric to the g-action of SU(3).

4.8.2. Equal slice representations. In this section we give the four examples
of pairs of P(G, H)-actions whose singular slice representations agree in Table on
the facing page. We will see in the next chapter that some of these examples are orbit-
equivalent despite the first and the last. Two different examples only occur when the
diagram admits different possibilities for the principal isotropy group — this determines
whether the rank-1 leaves have isotropy group SO(m) or SO(m) x SO(m).

Note that in any pair there is one action which is of type K; = K5 and the other
is of type K1 7£ KQ.
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4.8. ACTIONS WITH EQUAL MARKED AFFINE DYNKIN DIAGRAM
’ Action ‘ slice repr. ‘ Diagram ‘ slice repr. ‘
P(Sp(n), A(Sp(n))) Ad(Sp(n)) e Ad(Sp(n))
P(SU(2n+1), A7 (SU(2n+1))) 272000 | oGS0 (2nt1)
P(SO(2n+2), A°(SO(2n+2))) | Ad(SO(2n+1))
ol CLM) | oo arrig g [
— I(n,n + 1) et L L BD I(n,n + 1)
BD I(n,n+2)-I(n+1,n+1) | BD I(n,n+1)
CI-1I(k,n — k) Ad(Sp(k)) 6=—0 -+« 60
; A Tll(k,n—k

D I-III(k ungerade) Ad(SO(2n+1)) | 2 % 2 2An—2k)+1 (ksn = k)
A T-T1(k,n — k) C I(k) o—o:ro—o BD T(k,n — k)
BD I(k,n+1-k)- I(k+1,n—k) | BD I(k,k + 1)
P(SO(2n+1), A(SO(2n+1 2 Ad(SO(2n+1

(SO(2n+1), A(SO(2n+1))) Ad(SO(2n) (SO(2n+1))
P(SU(2n), A%(SU(2n))) 5 2 25 3 2| Ad(Sp(n))
A T-1TI(n, n) : C I(n)

BD I(n,n)

BD I(n,n + 1)-I(n,n + 1) Y9 | BDI(n,n+1)
P(F47 A(F4)) Ad(SO(Q)) g—g—gzg—g Ad(F4)
P (Eg, A?(Es)) Ad(Sp(4))
FI-1 BD I (4,5) 0—o0—0=—0—0 FI
E -1 CI(4) b ud

TABLE 4.5. P(G, H)-actions with the same affine marked Dynkin dia-

gram but different singular slice representations

’ Action ‘ Diagram ‘
P(SU(n), A(SU(n))) 2
/

A T-11(2n) 53 2% 2 2
P(Ga, A(Gy)) om0
o(Spin(8)) e
G2/SO(4) x SO(4) o oo
Dy 1T (k=1=23) b
A II-11 4
E -1V z/ \31

TABLE 4.6. P(G, H)-actions with the same affine marked Dynkin dia-
gram and the same singular slice representations



CHAPTER 5

Rigidity of isoparametric submanifolds

In this chapter we give a classification of homogeneous isoparametric submanifold
with isotropy irreducible eigenspaces, by proving that they are isometric to a principal
orbit of a P(G, H)-action. In particular we investigate for a given affine marked Dynkin
diagram how many different infinite dimensional homogeneous isoparametric submani-
folds with that diagram exist. Moreover we determine which among the Hermann
actions with the same Dynkin diagram are in fact orbit-equivalent, cf. Section on
page [60] for a complete list of these.

The strategy for solving this question is developed in Corollary on page [7] and
Theorem on page 8} Different isoparametric submanifolds have to contain at least
one rank-1 leaf that is different. Therefore we have to determine which kinds of rank-1
leaves for a given diagram are possible. Hypersurfaces in turn are determined by their
normal homogeneous structure, for a special class of them we have proven rigidity in
Chapter 3| namely for those with principal isotropy group SO(m) or SO(m;) x SO(ma).
This class is almost the same as hypersurfaces whose eigenspaces are irreducible mod-
ules of the isotropy representation.

Therefore we restrict ourselves to isoparametric submanifolds of higher codimension
whose principal isotropy group are of type SO(my)* x SO(my)* x SO(m3)*, where
the m; are the multiplicities. Note, that this implies in particular, that the slice
representation are equivalent to s-representation.

The assumption, we have possed on the class of isoparametric manifolds, we are
studying is equivalent to requiring that any slice representation has principal isotropy
group of that type, therefore one can check Table on page which affine Dynkin
diagrams from the list on page [41] belong to this class.

Throughout this chapter we denote the rank-1 leaves which may occur in the fol-
lowing way:

P(G, H)-action isotropy group | modules
S(m) BD I(1,m + 1)-I(1,m + 1) SO(m) Prop. [2.12
S(1) A T-11I(1, 2) Prop. [2.19
S(2) o(SU(3)) SO(2) Prop. [2.15
S(ml, m2) BD 1(1,7711 + mo + 1)*I(m1 + 1,m2 + 1) SO(ml) X SO(mz) Thm. [2.17]
S(1,m) A TIII(1,m + 1) SO(m) Prop. [2.19

The term S means that there are associated modules that are not subspaces of F(0).
With help of the Dynkin diagrams for the known examples and explicit calculations of
the associated modules, developed in the last chapter, we can establish which P(G, H)-
action of cohomogeneity one belongs to which kind of isoparametric hypersurface in
the above table.

Each affine marked Dynkin diagram describes an infinite reflection group, more
precisely an affine Weyl group. Any of the reflection hyperplanes

Li={a+v|veyM, (v,v(a)) =1}
62
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is associated with a curvature normal v; and therefore with an eigenspace E;(a) of the
shape operator.

Let P; = span {v;} and Lp, the reduced rank-1 leaf (cf. Theorem [1.7/on page 5| and
Definition , this associates with each vertex of the Dynkin diagram an isoparametric
hypersurface. We remark that I/pi and f/pj are isometric if there exists an element
within the affine Weyl group mapping [; to [;. This is always the case if the vertices
are joined by a single or a triple line, therefore there are at most two different kinds of
hypersurfaces within an isoparametric submanifold of higher codimension with diagram
B, C, and F, and only one for the others. More precisely a submanifold with Dynkin
diagram B,, or Fy and multiplicities m; and ms contains two rank-1 leaves with diagram
7%;%1,, while for C, (oor oma s ma m ms) it contains 7%1*;;13 and %2*7%2, since if one
considers a reflection hyperplane marked by m, the multiplicities m, and mg alternate
within the family of parallel hyperplanes.

We start with rigidity of isoparametric submanifolds with uniform multiplicity 2,
among the P(G, H)-action only o-actions are of that type. This class is especially in-
teresting for we have seen at the end of the last chapter, that many examples admitting
the same Dynkin diagram are of this class.

5.1. Uniform multiplicity 2

In Chapters [2| and [3| we have proven that there exist three different infinite di-
mensional isoparametric hypersurfaces with affine Dynkin diagram g~ , in the last
chapter we have seen that those are the principal orbits of the following P (G, H)-
actions

‘ G ‘ H ‘ isotropy group ‘ modules described by
S(2) |SU(2) A(SU(2)) SO(2) Proposition [2.12 on page [22
S(2) [SU(3) | A7(SU(3)) SO(2) Proposition [2.15/ on page

S(2,2) | SU4) | SO(4) x Sp(2) | SO(2) x SO(2) | Theorem [2.17| on page
We remark that there are other descriptions of the first and third action, namely
the first is orbit-equivalent to the lift of the adjoint action of SO(3), to the o-action of
SO(4) and to the action G = SO(4), H = SO(3) x SO(3), while the third to G = SO(6),

= (SO(3) x SO(3)) x SO(5).

In this section we use Corollary on page [7] to determine all isoparametric sub-
manifold with uniform multiplicity 2. Therefore we have to determine for a given affine
Dynkin diagram which isotropy groups the hypersurfaces may admit and if it admits
hypersurfaces with isotropy group SO(2) whether it is possible that the corresponding
hypersurface is of type S(2). This point is solved by the following criterion.

PROPOSITION 5.1. Let S = Lp be a hypersurface within an isoparametric submani-
fold M of higher codimension with uniform multiplicity 2, where P is the span of some
curvature normal. Assume that the effective part of the isotropy group acting on T'S is
SO(2), and let {v; | i € Z} be the curvature normals in P.

Then S is isometric to S(2) if there is an element « in the affine Weyl group of M
such that «|p is the translation l; — 111, where l; is the reflection hyperplane associated
with v;.

PROOF. We only have to exclude that S is isometric to S(2). In Proposition m
we have seen, that Vi,i0.4m O Eopyoms1 while Voyi omi1 C E(0). If aE;) = Ei4y this
is a contradiction for o does not commute with ) = VA. O
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REMARK. Such an element « as in the Proposition exists for any family of eigen-
space except the ones belonging to the vertices marked in black in C-diagrams

oot oo (5.1)

that is the black vertices represent the only hypersurfaces contained in an isoparametric
submanifold of higher codimension which might be of type S(2).

We note for later use, that this argument holds for the other S-hypersurfaces as
well.

Throughout the rest of the section let M = G - a be an isoparametric submanifold
of Hilbert space, with cohomogeneity greater than one and uniform multiplicity two.

PROPOSITION 5.2. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram A,. Then the principal isotropy group is either
SO(2)" or SO(2)"t1. In the first case any rank-1 leaf Lp contained in M is of type
S(2), while in the second case it is of type S(2,2).

The manifold M is isometric to a principal orbit the P(G, H)-action with G =
SU(n+1), H=A(SU(n+ 1)) in the first case and to A I-1I in the second.

Proor. First we determine the possible principal isotropy groups G,. Associated
with each vertex in the affine Dynkin diagram is curvature normal together with an
eigenspace and therefore a factor of (G, which acts effectively on that eigenspace.

Any most singular slice representation is the adjoint representation of SU(n + 1)
whose principal isotropy group is the maximal torus SO(2)". Let G;; be the group
of diagonal matrices in SU(n + 1) where the i-th entry is § € S' and the j-th 6.
One sees easily that on each of the @ eigenspaces of the adjoint representation of
SU(n 4 1) one of these groups acts effectively. We mark each reflection hyperplane in
the affine Weyl group with the factor of the isotropy group acting effectively on the
corresponding eigenspace, see the figure for SU(3), where the same is also done for the
Dynkin diagram.

—> [e] (e]
Gis Gi2 G2z

For arbitrary rank in the affine Dynkin diagram this looks like

o—O0—20 "+ :0—0—0
G1,2 G23G34 Gn,n+1

We have to determine the group acting effectively on the family of eigenspaces cor-
responding to the black vertex. Since for two orthogonal curvature normals the cor-
responding groups are orthogonal as well, it has to be orthogonal to Ga3,...,Gp_1p,
since not joined by a line to any of these.

There are two possibilities: either it is the group Gi,41 or it is a new SO(2)-
factor isomorphic to Gy ,41 (first and last entry @) both is compatible with the slice
representations. For this purpose we look at the slice representation corresponding to
the black vertex and the one marked with G 2, which is the adjoint representation of
SU(3). On the third family of eigenspaces, that is on the one not represented by a
vertex in the diagram, the effective acting part of the isotropy group is either Gy ,44
or é27n+1. This proves, that the principal isotropy group of M is SO(2)™ in the first
case and SO(2)""! in the second.
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At a most singular point in the affine Weyl group meet @ reflection hyper-
planes whose effective isotropy group, that is acting effectively on the corresponding
eigenspace, are different. For the case n = 2 see the figure above.

Assume the principal isotropy group is G, = SO(2)", containing ==— subgroups
of type G;;. Since a reflection hyperplane in the affine Weyl group meets any non
parallel hyperplane at some point, that means only parallel hyperplanes correspond to
the same SO(2)-factor within G,. Hence any rank-1 leaf has effective isotropy group
of type SO(2) and by the last proposition is isometric to S(2).

Finally assume G, = SO(2)*Y. Since there are @ different rank-1 leaves,

but more groups of type G;; or @ij, which are all effective isotropy groups of some
eigenspace, there has to be at least one rank-1 leaf with effective isotropy group SO(2) x
SO(2). For the affine Weyl group maps any rank-1 leaf to any other, all have to be of
the same type, that is isometric to S(2, 2).

There are two examples among the P(G, H)-actions fulfilling the conditions of the
proposition and it is not difficult to determine their isotropy groups: It is SO(2)"
where r is the rank of K N Ky, which is SU(n+1) for P(SU(n+1), A(SU(n+1)) and
Sp(n +1)NSO(2n+ 1) = U(n + 1) for A I-I1. This proves the last statement. O

n(n+1)

REMARK. The part of isotropy group acting effectively on a family of eigenspaces
corresponds to the root system of the Lie algebra associated with the (non affine)
Dynkin diagram. Let G, = SO(2)" = G; x --- X G,, and choose the factors G; such
that for a basis of the roots system {ej,...e,} the factor G; acts trivially on e; for
i # j. Then the groups G;; from the last proof correspond to the roots e; — e;. That
way it is not difficult to determine the factor acting effectively on a certain eigenspace.

The new vertex corresponds to the highest root, hence the effectively acting group
may always correspond to that root, e.g. G141 =~ €,41 — €1 in the fln—case. We have
to investigate whether there are other possibilities, e.g. él’nﬂ ~ e,11 + €7 in the above
example.

PROPOSITION 5.3. Let M = G - a be an infinite dimensional isoparametric sub-
manifold of rank n > 3 with affine Dynkin diagram B,. Then the principal isotropy
group is SO(2)" and the rank-1 leaves are of type S(2).

The manifold M is isometric to a principal orbit of the P(G, H)-action with G =
SO(n+1), H=A(SO(2n + 1)) or G = SU(2n), H = A%(SU(2n)), these action are

orbit-equivalent.

PROOF. The n vertices on the left side (forming a D,-diagram) represent a most
singular slice representation which is the adjoint representation of SO(2n) with prin-
cipal isotropy group the maximal torus SO(2)" = G; x --- x G, of SO(2n). Denote
by A = A*(G,G;) = {g- ¢*'(g) | g € G;} for a Lie group isomorphism ¢ between
G; and G, then the effectively acting parts correspond to the vertices in the following
way, which may be seen by an easy calculation:

Al
|
0—0——0+ + :0—0—0
+ At +
Afy Bog Ap_1,nCGn

The right boundary vertex has to by marked by G, since the adjoint action of SO(5)

has effectively isotropy groups:
Gy Atz

O=——=0
y G1 Aitz
% Gy ,
A

1,2
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Hence we have proven that G, = SO(2)" for affine Dynkin diagram B,,. By the same
argument as in the last proposition (each reflection hyperplane meets any other, which
is not parallel, in some point) any rank-1 leaf has isotropy group SO(2). Checking the
known examples finishes the proof. O

PROPOSITION 5.4. Let M = G - a be an infinite dimensional isoparametric sub-
manifold of rank n > 2 with affine Dynkin diagram C,. Then the principal isotropy
group is SO(2)". The rank-1 leaves corresponding to white vertices in are of type
S(2), while the black ones are either of type S(2) or S(2).

The manifold M is isometric to a principal orbit of the P(G, H)-action with G =
Sp(n), H = A(Sp(n)) or G = SO(2n+2), H = A?(SO(2n+2)) in the first case (those
actions are orbit-equivalent) and G = SU(2n+1), H = A7(SU(2n+ 1)) in the second.

PRrROOF. In a similar manner as in the last propositions, by checking effectively
acting parts of the isotropy group of the slice representations, one derives the following
diagram as the only possibility.

e=——0—0" - -0——0=——6
G Atz A;’:s At Gn

n—1,n

The black vertices are mapped onto each other by an appropriate element of the affine
Weyl group, therefore either both are of type S(2) or both are of type S(2). O

PROPOSITION 5.5. Let M = G-a be an infinite dimensional isoparametric submani-
fold of rank n > 4 with affine Dynkin diagram D,, or with diagram E,, forn € {6,7,8}.
Then the principal isotropy group is SO(2)™ and the rank-1 leaves are of type S(2).

The manifold M is isometric to a principal orbit of the P(G, H)-action with G =
SO(2n), H = A(SO(2n)) for Dy-diagram and with G = E,, H = A(E,) for E,
diagram.

PROOF. In the D-case the only possibility for the effectively acting part of the

isotropy group is A A

n—1,n

1,2
T T
0—O0—=0++«+:0—O0——0 ,
+ At + +
A1,2 A2,3 An—2,n—1An—l,n

therefore the principal isotropy group is SO(2)™. Again any rank-1 leaf is of type S(2)
as in the last propositions.

For the manifolds with E,-diagrams, we only have to remark that they contain
rank-5 leaves with diagram Ds, therefore any rank-1 leaf is of type S(2) and the iso-
tropy group is SO(2)". O

PROPOSITION 5.6. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram Fy or Gy. Then the principal isotropy group is
SO(2)* or SO(2)? respectively and the rank-1 leaves are of type S(2).

The manifold M is isometric to a principal orbit of the P(G, H)-action with G =
Fy, H = A(Fy) or G = Eg, H = A%(Es) in the first case (these actions are orbit-
equivalent), and G = Go, H = A(Gy) or G = Spin(8), H = A7(Spin(8)) (these
actions are orbit-equivalent) in the second.

PROOF. An isoparametric submanifold with diagram F}; contains a rank-3 leaf with
diagram Bs and effectively isotropy group SO(2)3, therefore any rank-1 leaf is of type
S(2), the isotropy group is SO(2)*.

Let the diagram be Gs, then the only possibilities are
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o o} o o
2eg—e]—eg —2ejtegtes er—e2 ez —e2 e;—e2 —2eq1+egteg

Thereby we have used that for a rank-1 leaf with effective isotropy group SO(2)?, the
two factors have to be orthogonal, excluding possibilities as 2e3 — e; — ey + e4 for the
new vertex. In both cases the isotropy group is SO(2)? and by Proposition on
page [63| rank-1 leaves are of type S(2). O

REMARK. We have seen, that in the B, C,, F, and G5 case there are two orbit-
equivalent examples among the o-actions. This may be seen geometrically in the
following way:

The root systems of ¢y, 4 and gy consist of roots of differ-
ent lengths and the number of short roots equals the number of
long roots. The length corresponds to different distances between
reflection hyperplane within the affine Weyl group. Taking all
families of reflection hyperplanes with the greater distance and
bisecting the distance, that is put a new one in between any of the
old, gives the same affine Weyl group with interchanged roles of
the short and long roots. The adjoining figure shows the situation for C,, where thin
lines denote the new reflection hyperplanes.

Consider for example the lift of the adjoint action of F4 and the o-action of Eg.
The latter has two different types of eigenspaces cf. [TER9S]: Let ¢s = f4 & h be the
Cartan-decomposition, a a maximal abelian subalgebra of ¢g, and A and A resp. the
set of roots with respect to a of f; and b respectively. Both root systems give rise to
eigenspaces, those belonging to f, are also eigenspaces of the adjoint action of F,. Those
belonging to A bisect the distance of the longer roots as described above, but this does
not change the geometry of the manifold. Observe that dim(h) = 2+2-12, therefore 12
families of new eigenspaces arise from A. The two supernumerous dimensions belong to
a maximal abelian subalgebra of Eg containing a, therefore belong to E(0) and provide
the new tr- and A-modules associated with the eigenspaces of A.

For diagrams B, and C, despite n = 2, this description does not hold, Sp(n) is not
the fixed point set under the diagram automorphism of SO(2n + 2), nevertheless it is
possible to explicate the orbit-equivalence, which we will omit here.

5.2. Uniform multiplicity 1, 4 and 8

The rigidity of isoparametric submanifold with uniform multiplicity 1 works similar
to the case of uniform multiplicity 2. The two hypersurfaces are

G | H | modules o
S(1) | SU(2) SO(2) x SO(2) Proposition [2.12| on page |22
S(1) | SU(3) | SO(3) x S(U(1) x U(2)) | Proposition [2.19|on page

We recall that there is no analogue for S(1,1) by the discussion in Subsection [2.4.3]
The natural candidate for an action of this type is the P(G, H)-action with G = SO(4)
and H = SO(3) x (SO(2) x SO(2)), since the P(G, H)-action with G = SO(2m + 2)
and H = SO(2m + 1) x (SO(m + 1) x SO(m + 1)) is of type S(m,m). It is not
difficult to prove that for m = 1 it is orbit-equivalent to S(1). Moreover we remark
that S(1) = S(1,1).

Since Proposition stays valid for uniform multiplicity 1, we are done with the
classification, which we will summarize in Table [5.1] on the following page.
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’ Diagram ‘ G ‘ K, ‘ K, ‘ w-equiv. ‘
A, | sum) | SO(n) | SO(n) | |
3 SU(2n) SO(2n) S(U(n) x U(n)) v
" 1S0(2n+1)|S0(n) x SO(n—+1)| SO(n) x SO(n+ 1) v
i Sp(n) U(n) U(n) v
Cn SO(2n +2) | SO(n) x SO(n+2) | SO(n+ 1) x SO(n + 1) v
SU(2n + 1) SO(2n + 1) S(U(n) x U(n + 1))
| D, | SO(@2n) | SO(m)xSO(m) | SO(m)xSO(m) | |
A O R U
B | B SU(8) | SU(8) | |
| B | By | Spin(16) | Spin(16) | |
7 Fy Sp(3) - Sp(1) Sp(3) - Sp(1) v

Es Sp(4) SU(6) - SU(2) v
‘) Gy SO(4) SO(4) v
Spin(8) Spin(3) x Spin(5) | 7(Spin(3) x Spin(5)) v

TABLE 5.1. Isoparametric submanifolds with uniform multiplicity one

Any of the isoparametric submanifolds with uniform multiplicity 2 has its analogue
among these examples. The only exception is A I-1I, whose rank-1 leaves are of type
S(2,2), the reason is that there is no hypersurface of type S(1,1).

Finally we study uniform multiplicities 4 and 8, which occur only if the diagram is
of type A,,.

PROPOSITION 5.7. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram As and multiplicity 8. Then the principal isotropy
group is Spin(8).

The manifold M s isometric to a principal orbit of the P(G, H)-action E IV-IV.

PROOF. Any singular slice representation is the s-representation of Eq/F,, whose
principal isotropy group is Spin(8) (cf. Table on page B1)); therefore G, = Spin(8)
and any rank-1 leaf is isometric to a principal orbit of the P(G, H)-action with G =
SO(10), H = SO(9) x SO(9), that is S(9). O

PROPOSITION 5.8. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram A,, and multiplicity 4. Then the principal isotropy
group is SO(3)"*t forn > 2. If n = 2 then the principal isotropy group is either SO(3)?
or SO(3)1.

The manifold M is isometric to a principal orbit of the P(G, H)-action A II-II or,
if n =2 and G, = SO(3)*, of the action E I-IV.

PRroOOF. The singular slice representation of rank n is the s-representation of type
A 1I(n), whose principal isotropy group is SO(3)"™!' = G} x -++ x G,,,. Drawing the
diagram together with the effectively acting factors, yields
G1>.<Gn+1 g;ZXG4
/ o\o 0/7\0

fe} O v
G1XGy GoxGg GnXGpiq G1xGa Gox Gy
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We have to determine the effective group associated with the black vertex and observe
that it has to have one common factor with both adjacent vertices and none with the
other, which leaves G; x G,,11 as only possibility. If n = 2 there is another possibility
namely Gy X Gy4.

In the general case (i.e. G, = SO(3)"™) any rank-1 leaf has effectively acting
isotropy group SO(4) hence is isometric to S(4), that is a principal orbit of A 1I(2) =
BD I(1,5)-1(1,5). In the case n = 2 and G, = SO(4)?, the rank-1 leaves are of type
S(4,4), that is principal orbits of BD I(1,9)-1(5,5). O

5.3. Nonuniform multiplicities

In this section we deal with isoparametric submanifolds whose eigenspaces are irre-
ducible modules with at least two different multiplicities. Therefore the affine Dynkin
diagram is of type B,, C, or Fj.

PROPOSITION 5.9. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram B, with multiplicities my # ms.

mi
o

0—O0—0+ + :0—0=—0
mi1 my1 mp mip mip ma2

If n > 3 then either my = 1, my arbitrary or my = 2, mo = 1, if n = 3 additionally
my =4, my =1 is possible. The rank-1 leaves are of type S(my) or S(my), respectively.

The manifold M is isometric to a principal orbit of the P(G, H)-action BD I-
I(k = 1) in the first case, D I—III(k even, n = k) in the second and E V-VII in the

case with diagram Bs3(4,1).

PRrOOF. Since the diagram is of type B, associated modules are contained in in
E(0), excluding S(1) and S(2) as rank-1 leaves. Hence we only have to check whether
the rank-1 leaves whose multiplicity is not equal to one is of type S(m,m) or S(m). Ob-
serve that the distance of the families of parallel reflection hyperplanes associated with
my is less then those of my. That is, there is a rank-2 leaf whose diagram is g—=o—=° .
therefore S(ms) is the only possibility for the rank-1 leaf by Proposition [5.1jon page
This solves the case m; = 1.

The principal isotropy group is the principle isotropy group of the most singular
slice representation with diagram D,, or A3, for adding the my-vertex (ms = 1) does not
extend the isotropy group. Therefore it is SO(2)" for m; = 2 and SO(3)* for m; = 4.
The same arguments as for A-diagrams (cf. proposition prove, by considering
rank-2 leaves with diagram A,, that the remaining rank-1 leaves are of type S(my). O

For the case of C-diagrams we start with a lemma connecting the irreducible slice
representations of rank 2 with the associated modules V A:

LEMMA 5.10. Let G - a be an isoparametric submanifold with affine Dynkin dia-
gram o=9=° . Then the rank 1-leaf is S(my, m3) when °=°<=0 or o<o=>° gnd

7, m1 m2 ms3 mi1 m2 ms3 m1 m2 ms3
S(my,m3), when oS>0, where the arrows denote the length of the roots in the

rank-2 slice representation.

PROOF. Let ¢ be a singular point such that slice representation at ¢ is of type
i ms- Remember that the eigenspaces of the s-representation of G/K are given by
px, the eigenspaces of ad(a)?, when a € a is a maximal abelian subalgebra of p, cf.

Subsection In the rank-2 case the roots A are always of the form ey, es, €1 + €5
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and e; — ey, where a = span {eq, e5}. Denote by ® an equivariant map between the slice
representation at the point ¢ and the corresponding s-representation. Then v,(G-q) =
Vo(G-a) @B Ee, ® Eey, ® Ee e, ® Ee, ¢,, where a = &(v,G - a) and py = ®(E)).

For K-invariant vector fields in K -a holds Vy p,, C iy, therefore Vg, F, o, =
0, whereas VE61 Ee, C Ee e, Fe, ,. In that way the slice representation determines
the behavior of associated modules.

In the adjoining figure we denote by thick lines reflection hyper-
planes belonging to long roots, with thin lines hyperplanes belong-
ing to short root, i.e. the Weyl group associated with o<5o=>c .
The diagram o—=o<=c is the same with interchanged thick and
thin lines. Thereby the hatched triangle represents the three ver-
tices of the affine Dynkin diagram. In any family of parallel re-
flection hyperplanes the length of the root is constant. We proof
that this implies that associated modules of the corresponding family of eigenspaces
are subspaces of £/(0). We denote eigenspaces by £y ;) where A is a root of any singular
slice representation containing E(y;. It is obvious that for G-invariant vector fields
VEan B C BrezEazur) for A # p, since any two reflection hyperplanes which are
not parallel intersect in some point. By the Gaufl-equation the same holds for A = p

and therefore Vi, , E ;) C E(0).

The Weyl group for the Dynkin diagram g=>o->c "is shown on
the side, where roots of length 1 are denote by thin lines, of length
V2 by thick lines and of length 2 by dotted lines. Within the
families of hyperplanes with the smaller distance roots of length 1
and 2 alternate. In the same manner as in the last case it is proven
that associated modules then do not have to be contained in E(0),

more precisely do have to contain a certain eigenspace as described in Proposmons 2.15

and 2.19 O

REMARK. The last proposition is valid for any multiplicities, e.g. for uniform multi-
plicity 2, where all examples o=so<—o | o<=o—=>0 and o—o—>c arise among the o-actions.
This illustrates once more that the lift of the adjoint action of Sp(n) and the o-action
of SO(2n + 2) are orbit-equivalent, even though, that they have different slice repre-

sentations, cf. Section [4.8] on page

PROPOSITION 5.11. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram C, with multiplicities my, ms # ms. The possible
multiplicities, together with the rank-1 leaves and examples among the P(G, H)-actions
are given in Table on the facing page.

ProoFr. By Proposition on page it is proven that the rank-1 leaf associated
with the vertex in the middle is either S(msy) or S(mg, my), if my = 1 it is S(1). Hence
case (1) is solved for m; # mg. If m = m; = mj the isotropy group is SO(m) x SO(m),
since there is a reducible rank-1 leaf with diagram 7, ® 7, and therefore the infinite
dimensional rank-1 leaves are of type S(m,m). For m; = 1, i.e. case (2), additionally
S(1,ms) occurs.

In case (3) the principal isotropy group is SO(2)"~!, the additional families with
multiplicity one do not extend the isotropy group. Therefore the rank-1 leaf associated
with a vertex in the middle is S(2) as in the A,-case (cf. Proposition .
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| \ Diagram | rank-1 | rank-1 | w-equivalent P(G, H)-action |
(D) | 7T 9T 9 ms| S() | S(mq,m3) | BD I(1,m1+mao+1)-T(m1+1,mo+1)
2) | = T | S(1) | S(1,ms) A T-1IL(2, ms3 + 2)
3) | Ty %851 | S?2) S5(1) A TIN(E, §)-111(5, 3)
S(2,2) ] S(1,2) C Ik =1%)

S5(2,2) | S(1,2) D I(2n + 1,2n 4 1)-11I
G) | T YT T SH S(1) D III -1II(2n) or D III-1II’(2n + 1)
6) | 7% % T % | S S(1,3) A TI-111(2n, 2n)
(159 % 7T 9% | S S(3) CII(%, 2)-11(%, 2)
(8) T8 s 1 S(8) S(1) E VII-VII
9) T o 1 S(ms) S(1) BD I(2,my + 2)-1(2,mq + 2)
(10) Y does not exist
(11) O S(3) | S(1,4) E I-1II

TABLE 5.2. Actions with Diagram C and nonuniform multiplicity

The principal isotropy group in case (4) for rank 2 (which

. proves the assertion for higher rank as well) is SO(2) x SO(2).
N Associated with each line in the affine Weyl group is a curvature
—% normal and therefore an eigenspace together with the factor of

S N the principal isotropy group acting effectively on this eigenspace.

. Thick lines in the figure stand for a two-dimensional eigenspace.

The vertex marked black in the figure represents a singular slice
representation of type $—3, where we indicate the different SO(2)-factors by dotted
and dashed lines respectively. Then the singular slice representation of the circled
vertex is of type $7 3, and only dotted lines pass through this vertex (the principal
isotropy group of the s-representation of SO(6)/SO(2) x SO(4) is SO(2)). Therefore in
the family of eigenspaces associated with diagonal lines in the affine Weyl group the
effectively acting factors of the isotropy group alternate, that is the hypersurface is of
type S(2,2).

By similar arguments it is easy to determine the hypersurfaces associated with the
vertex msy in the other cases. It remains to analyze whether it is possible for the
occurring rank-1 leaves to be of type S. We use Lemma on page therefore we
need the lengths of the roots of the slice representations, which are $=° and $<=3.

For case (10) see the next section.

REMARK. By our methods we can not exclude the affine Dynkin diagram ¢—$%—% ,
but among the known examples there is no isoparametric submanifold with those dia-
gram.

PROPOSITION 5.12. Let M = G - a be an infinite dimensional isoparametric sub-
manifold with affine Dynkin diagram Fy with multiplicities my # ma.

0——0——0=—=0—0
mi1 my1 mip m2 ma
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| Diagram | isotropy | rank-1 | w-equivalent P(G, H)-action |

SIS | SO(2)* | 5(2,2) E V-V
S99 | SOB3)! | S(4) E VIII-IX
$8 899 | SO(2)2 | 5(2) E II-1I
T8 | SOB)? | S(4) E VII-VII
$ % | Spin(8)* | S(8) E IX-IX

TABLE 5.3. Actions with Diagram F, and nonuniform multiplicity

Any rank-1 leaf is of type S(m;) except in the case my = 2, my = 1, where the rank-1
leaves are S(2,2) and S(1). The possible multiplicities, together with the rank-1 leaves
and examples among the P(G, H)-actions are given in Table

PROOF. Since the diagram is of type Fy, associated modules are subset of E(0),
excluding S(1), S(2) and S(1,m) as a rank-1 leaves.

The principal isotropy group is the principle isotropy group of the most singular
slice representation with diagram F, or C,, that occurs by omitting the boundary
vertex of multiplicity one and may be read off from Table

Any such manifold contains either a leaf with diagram A, or A; with multiplicity
2, 4 or 8. Using Propositions and [5.8] together with the information about the

isotropy group yields the rank-1 leaves. ([

5.4. Exclusion of some Dynkin Diagrams

We exclude in this section some of the marked Dynkin diagrams who do not arise
among P(G, H)-actions.

PROPOSITION 5.13. There is no isoparametric submanifold whose marked Dynkin

diagram 1s one of:
4o> 4o>
O0=—=0 O0=—=0
40”7 4 4m+43 407 4 5

O=—0=—7=0 O=—0=—7=0 O=—0=—7=0 O0=—0=—7=0

4 4m+3 4 6 9 6 9 6 9 4 5 4 -

PrOOF. We start with the diagrams §=g=—g (the diagram ¢=g=g does not
exist by the same arguments).

There are two different types of most singular slice represen-
tations: the principal isotropy group of the s—representation with
diagram 8§ is U(4) (vertices marked black in the adjoining fig-
ure), while the one with diagram §& § is U(4) x U(4). Therefore
the principal isotropy group of the manifold is U(4) x U(4). In
black vertices only eigenspaces meet whose effectively acting fac-
tor is the same, while in the others two different meet. One sees
immediately that this is not possible, since any two non parallel and non orthogonal
hyperplanes do meet in some black vertex.

We remark, that the same holds if the slice representation is not the s-representation

of E III, but its orbit-equivalent subaction with principal isotropy group SU(4).
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Next we exclude the diagram $7;075% , which also excludes G1xGy  Sp(m)xGy
the Bg—diagram with multiplicities 4 and 4m+3. The principal iso-
tropy group of the s-representation §— 4,43 is Sp(m) x SO(3) x G1xGy
SO(3), we denote the two SO(3)-factors by Gy and G5. Then in
a black vertex the effectively acting parts are as the figure shows. Sp(m)x Gy

Again this provides a contradiction: for the line marked Sp(m) x G intersects any
vertical line, any of those has to contain the factor GG;. This contradicts the fact that
in singular point of type 2 ® § the lines have non effectively acting factor in common.

The exclusion of §$=g=% works by the same arguments, replacing Sp(m) by U(1).
Remark that the U(1)-factor is not essentially for the contradiction, that is, the argu-

ment does work if the slice representation of type §—4 is the isotropy representation

of G/K' = SO(10)/SU(5). 0

OPEN PROBLEM 5.14. Comparing the last proposition with the possible affine Dyn-
kin diagrams, who do not arise among the P(G, H)-action (cf. section on page @),
leads to the following question:

Is it possible to have an infinite dimensional isoparametric submanifold, whose affine
Dynkin diagram is either

0=—0=—=0 0=—0=—0 ¥

1 5 4 1 5 2

Note that these examples have to have slice representations that are not s-represent-
ations.

5.5. Some remarks on slice representations, that are not s-representations

We have listed the actions, which are transitive on spheres in Section [2.2on page
most exceptional cohomogeneity one examples (cf. Subsection have slice repre-
sentations of that type. For cohomogeneity greater than one there is a short list of
polar representation, that are not s-representation, cf. [EH99]. In Table we have

| Range | G \ K | isotr. | K’ | isotr. |
SO(9) SO(2) x SO(7) SO(5) SO(2) x G SU(2)
SO(10) SO(2) x SO(8) SO(6) SO(2) x Spin(7) | SU(3)
SO(11) | SO(3) x SO(8) SO(3) | SO(3) x Spin(7) | SU(2)
m # 0 | SU(m~+2k) | S(U(k) x U(m+k)) U(m) SU(k)xSU(m+k) | SU(m)
nodd | SO(2n) U(n) SU(2)™U(1) SU(n) SU(2)™
Es SO(2) - Spin(10) U(4) Spin(10) SU(4)

TABLE 5.4. Orbit equivalent subactions of polar representations

listed these examples, which arise from an s-representation by restricting the symmetric
subgroup K to a group K' C K, together with their principal isotropy groups. Note
that only in the second example the eigenspaces remain to be irreducible modules of the
eigenspaces. Hence our assumption, that the slice representation is an s-representation
for irreducible eigenspaces is not very restrictive.

In [KorL05, Table 1] Kollross gave a list of orbit-equivalent actions of Hermann
actions of a group H action on a symmetric space G/K whose rank is greater than
one. Assume we have a Hermann action with a most singular slice representation that
is an s-representation which admits a orbit-equivalent subrepresentation. Then in most
cases the list in [KOL05] shows that one can restrict one of the groups K; to a subgroup
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K], and thus restrict the most singular slice representation as described in Table
The only exceptions of codimension at least 2 are the actions A I-III with diagram
e—¢—% and D III-III for odd n.

There are no examples of codimension greater than one known with slice repre-
sentations that are not s-representations, which are not orbit-equivalent to Hermann
examples.

It is a priori not clear whether orbit-equivalence of the Hermann actions yields
orbit-equivalence of the P(G, H)-action. In fact this is not true for some examples
of cohomogeneity one. We will briefly explain this by an example with irreducible
eigenspaces:

Consider the P(G, H)-action with G = Spin(7) and H = Gg x Gz, whose diagram
is gﬁg . Let s0(7) = g2 @ p be the orthogonal decomposition, although this is not
a Cartan decomposition, the eigenspaces may be derived quite similar as described in
Section [4.2] The Lie algebra g, has dimension 14, 6 belong to eigenspaces FE,, which
leaves an 8-dimensional subspace h, commuting with the section a C p. The eigenspace
E(0) = L*(h®a) (respecting the boundary values) and the associated modules are one-
and 8-dimensional: the isotropy representation on eigenspaces is the 6-dimensional
representation of SU(3) (acting as a subgroup of SO(6)). Remember that the modules
on E(0) arise as irreducibles modules of the tensor product decomposition. If SO(6) is
restricted to SU(3), then the A?(6)-module, which is 15-dimensional, decomposes into
a 7- and a 8-dimensional irreducible module. The 7-dimensional has to vanish here,
vaguely speaking since there is no space left for them in L?(h & a).

On the other hand the P(G, H) action with G = SO(8) and H = SO(7) x SO(7) has
the same diagram, but its irreducible modules in E(0) are one- and 15-dimensional.
Moreover the difference of the dimensions of SO(8) and Spin(7) is 7, these contain
precisely the part of E(0), that is missing in the other case.

The orbit-equivalent subactions of Hermann type of higher codimension are dif-
ferent, here the group G stays always the same. Consider for example G = SO(n),
K; = SO(2) x SO(n — 2) and Ky = SO(8) x SO(n — 8), then the action with
K} = Spin(7) x SO(n — 8) is orbit-equivalent. The description of the eigenspaces
of the lifted action bases upon the decomposition of the Lie algebra

=P =0LOp=>ENLEP NP) D (L NP dp NE),

cf. Section on page Replacing K, by K changes the dimensions of these:
Those involving £, are decreased by 7 dimension, while the other are increased by 7
dimensions. This does not change the eigenspaces, since the multiplicities stay the
same, but alternates E(0) in the sense that some basis vectors of the form sin 2ndK;
are replaced by cos 2niK;. Although the 15-dimensional modules of the original action
decompose into a 7- and a 8-dimensional one, E(0) provides enough space for both of
them. I conjecture that this does not change the geometry of the action.

CONJECTURE. Any polar representation on a Hilbert space with cohomogeneity
at least two, whose singular slice representations are not necessarily s-representations
is orbit-equivalent to a polar representation whose singular slice representations are
s-representations, in fact to a P(G, H)-action.

In particular there exists no isoparametric submanifold whose marked affine Dynkin
diagram is either ¢—g—% or $—¢—% .

The proof of this conjecture is twofold: First it is necessary to study isoparamet-
ric submanifold of Hilbert space, whose eigenspace are not irreducible modules of the
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isotropy representation, but whose slice representations are s-representations. This
could be done along the same line as for the isotropy irreducible case, by first studying
hypersurfaces (Chapters 2| and |3) and then investigate the rank-1 leaves of isoparamet-
ric submanifolds of higher codimension (where only 11 different affine marked Dynkin
diagram are possible, cf. Table on page . This would prove that in fact any iso-
parametric submanifold with cohomogeneity greater than one is isometric to a principal
orbit of some P(G, H)-action.

Moreover it would be interesting to investigate homogeneous isoparametric sub-
manifolds whose slice representations are not s-representations. If the above conjecture
is true, it remains to classify the polar infinite dimensional cohomogeneity one actions.
Most likely these will turn out to be the principal orbits of exceptional cohomogeneity
one actions of P(G, H)-type.



APPENDIX

Tables

In this appendix we collect the geometric data of Hermann-actions developed in
Chapter {4l Table contains the affine marked Dynkin diagrams of P(G, H)-action
for classical Lie groups SO(n), SU(n) and Sp(n). D IIT’ denotes SO(2n)/a(SU(n))
where « is the non-trivial diagram automorphism of SO(2n) and Dy I' denotes the
symmetric space Spin(8)/7(Spin(l) x Spin(8 — 1)), with 7 the diagram automorphism
of order three of Spin(8).

Multiplicities of the form 2n + 1, 4m 4+ 3 or 5 do always belong to reducible
eigenspaces, that is the effectively acting factor of the principal isotropy group is U(m),
Sp(m) or U(2) respectively, cf. also table[A.2] where the (effectivized) irreducible most
singular slice representation are listed. Note that if the column “second slice represen-
tation” is left empty, there is only one most singular orbit type.

In Table and the same is done for Hermann-actions on the exceptional Lie
groups.

Table contains Dynkin diagrams and principal isotropy groups of s-representa-
tions, taken from [HHT0]. We remark that SO'(2n) denotes the image of a half-spin
representation of Spin(2n). The rank of the examples on classical groups is always n.
There is only stated the isomorphism class of the connected component of the principal
isotropy group, if it is not finite.
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TABLES

Action ‘

first slice represention

second slice represention

AT1

SU(n 4+ 1)/SO(n+1)

ATl | SU(n—1)xSU(n—1)/SU(n —1)

A LI SO(n)/SO(k) x SO(n — k) Sp(k)/U(k)
A TI-11 SU(2n)/Sp(n)
A TI-T11 Sp(n + k)/Sp(n) x Sp(k) SO(2k)/SU(k)

AT | SU(n+k —1)/S(U(K) x U(n — 1))

(k+1)/S(U(k) x U(1))
SO(k +1)/SO(k) x SO(1)

BD 11 SO(n+k:—l)/SO( ) % SO(n — 1)
D LI | SU(n—5+[§])/S(U(5)xU—[5]) | SO([§]) x SO(|5])/S0([5])
D II-1I1 SO(Qn)/U(n) SO(2n —2)/U(n —1) if n odd
D IIL-IIT SO(2n — 2)/U(n — 1)

DT Ca/SO(4) SU(3)/S0(3)

C I Sp(n)/U(n)

CII SU(n)/S(U(k) x U(n—k)) SO(2k+1)xSO(2k+1)/SO(2k+1)

Sp(k +1)/Sp(k) x Sp(l)

C II-11

Sp(n+ k& —1)/Sp(k) x Sp(n — 1)

the clas

sical Lie groups

TABLE A.2. Most singular slice representations of Hermann-actions on



TABLES

Action ‘ G ‘ K, ‘ Ky ‘ Diagram ‘ my ‘ m ‘ Mo ‘
E I Ee | Sp(4)/Z, Sp(4)/Zs Es 1

E I-11 Es Sp(4)/Z, SU(6) - SU(2) Fy 1 1
E I-1II Eq Sp(4)/Z, Spin(10) - SO(2) | C, 1134
ET-1V Es Sp(4)/Z, F, A, 4

E II-11 E¢ | SU(6)-SU(2) | SU(6)-SU(2) F, 1 2
E II-11I E¢ | SU(6)-SU(2) |Spin(10)-SO(2)| Cs 2 |5 4
E -1V Eq | SU(6)-SU(2) F, A, 11 5
E III-111 Es | Spin(10) - SO(2) | Spin(10) - SO(2) | s 9 16| 1
E IIT-1V Eg | Spin(10) - SO(2) F, A 15 15
EIV-1V Eq F, F, Ay 8
EV-V E; SU(8)/Z; SU(8)/Z; E; 1

E V-VI E; SU(8)/Z; Spin(12) - SU(2) F 2 1
E V-VII E; SU(8)/Z; Ee - SU(2) Bs 1 4
E VI-VI E; | SO'(12) - SU(2) | SO'(12) - SU(2) F 1 4
E VI-VII | E; | SO'(12)-SU(2) Es - SO(2) Cy 6 9] 2
EVII-VII |E;| Eg¢-SO(2) Es - SO(2) Cy 181
E VITT-VIIT | Eq SO'(16) SO'(16) Fy 1

E VIII-IX | Eq SO'(16)) E; - SU(2) F 4 1
E IX-TX Es | E;-SU(2) E;-SU(2) Fy 1 8
FII Fy | Sp(3)-Sp(1) Sp(3) - Sp(1) F, 1 1
F 11 Fs | Sp(3)-Sp(1) Spin(9) A 7 7
F II-11I F, Spin(9) Spin(9) A 15 7
GII G| sow) | sow | G | 1]

TABLE A.3. Affine marked Dynkin diagrams of Hermann-actions on the

exceptional Lie groups
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TABLES

‘ first slice represention ‘ second slice represention ‘ third slice rep.

Action
E -1 Ee/(Sp(4)/Z>)
E I-11 F./Sp(3) - Sp(1) Sp(4)/U(4)
ET-IIL | Sp(4)/Sp(2) x Sp(2) | SO(7)/SO(2) x SO(5)
E -1V SU(6)/Sp(3)
E II-11 Eg/SU(6) - SU(2) | SO(10)/SO(4) x SO(6)
E 1I-111 SO(10)/U(5) SU(6)/S(U(4) x U(2))
EII-IV | Sp(4)/Sp(1) x Sp(3) 50(7)/S0(6)
E III-III | Eg/Spin(10) - SO(2) | SO(10)/SO(2) x SO(8)
E 11V F,/Spin(9)
E IV-1V Eg/F4
E V-V E;/(SU(8)/Z,) SU(8)/SO(8)
E V-VI Eg/SU(6)-SU(2) | SU(8)/S(U(4) x U(4))
E V-VII S0O(12)/U(6) SU(8)/Sp(4)
EVI-VI | E;/SO'(12)-SU(2) | SO(12)/SO(4) x SO(8)
E VI-VII | Eg/Spin(10)-SO(2) | SU(8)/S(U(6) x U(2))
E VII-VII E;/E - SO(2)
E VIII-VIII Eg/SO'(16) SO(16)/SO(8) x SO(8) | SU(9)/SO(9)
E VIIFIX | E;/SO'(12)-SU(2) SO(16)/SU(8)
B IX-IX Es/E7 - SU(2) SO(16)/SO(4) x SO(12)
F I F4/Sp(3) - Sp(1) 50(9)/SO(4) x SO(5)
F I-11 Sp(3)/Sp(2) - Sp(1)
F II-11 F./Spin(9) 50(9)/SO(1) x SO(8)
G-I G2/SO(4) | SO(5)/S0(2) x SO(3) |

|

TABLE A.4. Most singular slice representations of Hermann-actions on

the exceptional Lie groups



TABLES 81
’ Type ‘ G/K ‘ Diagram Isotropy ‘
Al SU(n+1)/SO(n + 1) T TS 7y
ATl SU(2n 4+ 2)/Sp(n + 1) 11 4T T2 Sp(l)"Jrl
AT [SU@n+m)/SUMm) x Un+m)) | 553 55 Smer| SU(M) - U(1)"
BDI | SO(2n+ m)/SO(n) x SO(n + m) 1 17T SO(m)
1
BD I 0(2n)/SO(n) x SO(n) I zn
T T
D I SO(4n)/U(2n) I SU(2)"
D I1I (4n +2)/U(2n + 1) 14 47 1 s SU(2)" - U(1)
Cl Sp(n)/U(n) R S Z
CII Sp(2n +m)/Sp(n) x Sp(n + m) 11 4 0 1 dmys|Sp(m)-Sp(1)"
1
El Eo/ (Sp(4)/ {£1}) 1 8
1 1 1 1 1
E I Eq/SU(6) - SU(2) o—o=g—29 73 x SO(2)
E 11 Ee/Spin(10) - SO(2) 52 U(4)
E IV E¢/F4 o—o Spin(8)
1
BV Er/ (SU(8)/ {1}) I z
11111
E VI E;/SO'(12) - SU(2) o—o—o—0 73 x Sp(1)
E VII E;/Eq - SO(2) S8 3 Spin(8)
1
E VIII Eg/SO'(16) I Vi
T T T T
E IX Es/E; - SU(2) o g9 0 Z3 x Spin(8)
F 1 F,/Sp(3) - Sp(1) T z,
F 11 F4/Spin(9) 15 Spin(7)
G G2/S0(4) i1 7;

TABLE A.5. Dynkin diagrams and principal isotropy groups of s-representations
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