
Runtime model-based safety analysis of self-organizing
systems with S

Axel Habermaier, Benedikt Eberhardinger, Hella Seebach, Johannes Leupolz,
Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Habermaier, Axel, Benedikt Eberhardinger, Hella Seebach, Johannes Leupolz, and
Wolfgang Reif. 2015. “Runtime model-based safety analysis of self-organizing systems
with S#.” In 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, 21-25 September 2015, Cambridge, MA, USA, edited by Gerrit Anders, Jean Botev,
and Markus Esch, 128–33. Piscataway, NJ: IEEE. https://doi.org/10.1109/sasow.2015.26.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1109/sasow.2015.26
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Runtime Model-Based Safety Analysis of
Self-Organizing Systems with S#

Axel Habermaier, Benedikt Eberhardinger, Hella Seebach, Johannes Leupolz, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

E-Mail: {habermaier, eberhardinger, seebach, leupolz, reif}@isse.de

Abstract—Self-organizing systems present a challenge for
model-based safety analysis techniques: At design time, the
potential system configurations are unknown, making it necessary
to postpone the safety analyses to runtime. At runtime, however,
model checking based safety analysis techniques are often too
time-consuming because of the large state spaces that have to
be analyzed. Based on the S# framework’s support for runtime
model adaptation, we modularize runtime safety analyses by
splitting them into two parts, modeling and analyzing the self-
organizing and non-self-organizing parts separately. With some
additional heuristics, the resulting state space reduction facilitates
the use of model checking based safety analysis techniques to
analyze the safety of self-organizing systems. We outline this
approach on a self-organizing production cell, assessing the self-
organization’s impact on the overall safety of the system.

Keywords—safety analysis, formal methods, model checking,
self-organizing systems, models at runtime

I. INTRODUCTION

Model-based safety analysis techniques are able to au-
tomatically compute all minimal cut sets of a system [1].
These sets represent combinations of component faults that
can potentially cause the occurrences of safety hazards, i.e.,
situations in which a system can cause environmental damage,
injuries, or loss of lives. Safety-critical self-organizing systems
dynamically adapt their behavior and structure to changes in
their environment, in particular to occurrences of component
faults, resulting in system configurations that often cannot
be predicted at design time. It is therefore necessary to
postpone model-based safety analyses to runtime when more
information about the actual configurations of the systems is
available. Runtime adaptation of the models in accordance with
the systems’ self-organization [2] enables the use of model-
based safety analysis techniques for self-organizing systems,
but the large state spaces of these models make the analyses
time-consuming. Consequently, fully automated runtime safety
analyses of self-organizing systems with integrated tool sup-
port are still an open research question [3]–[6].

This position paper introduces a systematic model-based
safety analysis approach for self-organizing systems that is
conducted at runtime. It is based on our S# modeling and
analysis framework, originally envisioned for design time
safety analyses of non-self-organizing systems [7]. We outline
how S#’s modular and configurable models also allow for
formal safety analyses at runtime, sharing the development and
runtime models of the systems [8]. We discuss some ideas to
lessen the combinatorial state space explosion problem when
analyzing self-organizing systems using our model checking
based safety analysis technique Deductive Cause-Consequence

Analysis (DCCA) [1]. In particular, we propose to classify com-
ponent faults as either tolerable or intolerable [9], depending
on whether the system’s self-organization mechanism is able
to compensate their occurrences. Based on this classification,
we modularize the safety analyses by examining tolerable
and intolerable faults separately, with the combination of
the individual results being equivalent to a non-modularized
DCCA. The resulting reduction in analysis times allows us to
conduct safety analyses of self-organizing systems at runtime.
Additionally, our approach can also be used to identify the
limits of self-organization mechanisms, which usually cannot
be designed in a way such that all possible safety hazards are
prevented. We outline all of these ideas using a well-known
case study: a self-organizing production cell [10].

The paper is organized as follows: The next section intro-
duces the case study, followed by Section III with an overview
of our S# framework for modeling and analyzing safety-critical
systems. Sections IV and V outline how S# can be used
to model and analyze the safety aspects of self-organizing
systems and the case study in particular. We consider related
work in Section VI and conclude with Section VII, briefly
discussing some ideas for future work.

II. THE SELF-ORGANIZING PRODUCTION CELL

Our running example is a self-organizing production cell
consisting of robots and carts [10]. The carts transport work-
pieces between the robots, which have several switchable tools
such as drills and screwdrivers that they use on the workpieces.
Figure 1 shows a simple configuration of a production cell
consisting of three robots and two carts connecting them.
The robots and carts are responsible for processing incoming
workpieces in a given sequence of tool applications; in our
case study, the processing sequence is to drill a hole, insert a
screw, and then tighten the screw. Robot R1, for instance, is
responsible for drilling a hole into a workpiece and transferring
it to cart C1 afterwards. The cart then transports the workpiece
to robot R2, which inserts the screw into the previously drilled
hole, and so on.

The production cell is self-organizing as it can reconfigure
itself to compensate for broken tools or to incorporate new
tools, robots, or carts, for instance. Such reconfigurations
are initiated and coordinated either by a central observer/-
controller [11] or by the leader of a local coalition [12],
which determine new paths for the carts as well as the set
of tools to be used by the individual robots. The central
observer/controller stops the entire system in order to calculate
new configurations and to assign them to the robots and carts.
Coalitions, on the other hand, are (potentially small) groups

128128128

R1 R3

R2

C2C1

Figure 1. A simple configuration of the self-organizing production cell with
three robots and two carts connecting them. Adjacent to each robot are the
tools it can use, with the currently active one being marked by an arrow head.

of robots and carts that can locally react to the event or
situation that triggered the reconfiguration. Once the coalition
has been formed, its leader acts like a local observer/controller,
using a constraint solver or a genetic algorithm to compute
a new configuration; note that the latter might fail to find
any valid configurations even though there actually are some.
Subsequently, the newly computed configurations are checked
by a result checker to ensure their validity.

In this paper, we do not consider the inner workings of
the robots and the carts. In particular, we are not interested in
trajectory planning for the robots, the robots’ tool switching
mechanisms, or the carts’ position tracking system. Intolerable
component faults that we intend to analyze are: Sensors do
not detect the arrival of a workpiece, carts move to the wrong
robot, and robots and carts receive no reconfiguration infor-
mation due to, for instance, networking problems. Tolerable
component faults, on the other hand, are broken tools, robots
that can no longer switch tools, robots that are no longer
working at all, and carts whose assigned paths are blocked.

III. OVERVIEW OF S#

S# is an integrated, tool-supported approach for modeling
and analyzing safety-critical systems. S# models are exe-
cutable, allowing them to be simulated, tested, visualized, and
debugged in addition to using formal analysis techniques [7].
Safety analyses make use of our model checking based DCCA

to rigorously assess the safety of a system by automatically
computing the minimal cut sets of the safety hazards [1].
The underlying model of computation is a series of discrete
system steps, where each step takes the same amount of time.
Structural and behavioral design variants can be modeled using
the modularity and composability concepts of S#’s modeling
language, which is most useful when exploring the design
space of safety-critical systems early in their development or
when developing safety-critical product lines [13].

A. The S# Modeling Language

S# provides a component-oriented domain specific lan-
guage embedded into the C# programming language. In other
words, S# models are represented as C# programs; conceptu-
ally, however, these programs are still models of the safety-
critical systems to be analyzed. In particular, some parts of
those programs represent the physical environment, hardware
components, hydraulic or electrical subsystems, etc., none of
which are software-based in the real system. Even those parts
of S# models that do in fact represent software components

are not intended to be used as the actual implementations of
the real software: The models are usually an abstraction of the
real software’s behavior in order to reduce the state space for
model checking based analysis techniques.

S# inherits all of C#’s language features and expressive-
ness. Every .NET library and tool can be used, including all
state-of-the-art code editing and debugging features provided
by the Visual Studio development environment. However,
some restrictions apply to those parts of a S# model that
are to be model checked: Recursion, loops, arbitrary object
construction, amongst others, are disallowed. The remaining
parts of the models are completely unrestricted, including, for
instance, the code that adapts a model at runtime in accordance
with a reconfiguration of a self-organizing system.

B. Systematic Modeling of Safety-Critical Systems

Adequate models of the systems to be analyzed are a
prerequisite for any model-based safety analysis technique.
Consequently, S# provides specifically tailored modeling lan-
guage concepts as well as a systematic modeling methodology
that help to improve the adequacy of the models. In particular,
S# requires the modeling of relevant component faults and
the physical environment of safety-critical systems. The model
of the intended system behavior must be extended with the
occurrence patterns of faults as well as their local effects on the
affected components. Subsequently, formal analysis techniques
are able to reason about the system’s global behavior in
degraded situations. The physical environment of a system
represents those parts of the physical world that are indirectly
influenced or observed by the system (usually via actuators and
sensors), such as the workpieces of the production cell. The
physical environment is required for the correct specification of
safety hazards, as hazards typically result from a discrepancy
between the physical environment’s actual state and its state
as it is perceived by the system. In turn, these discrepancies
occur either because of systematic design errors, that is, the
system is functionally incorrect, or because of occurrences of
one or more component faults.

When modeling safety-critical systems, S#’s modeling
methodology suggests to first identify the physical environment
that the system is intended to indirectly observe and influence.
In particular, it must be possible to express the safety hazards
that are to be analyzed (typically exclusively) in terms of
the physical environment model. The next step consists of
determining the sensors and actuators that are available to the
system. Only then should the actual controller components of
the system be modeled, which can be comprised of multiple
subsystems of various kinds such as software components,
hydraulic components, pneumatic components, etc. Compo-
nent faults are either modeled together with the individual
components or they are added later in a separate step.

Figure 2 shows an overview of the components consti-
tuting the model of the case study. The case study’s physical
environment consists of the workpieces that are modified by
the tools attached to the robots. Consequently, the tools take
on the roles of actuators, just like the carts are actuators that
can move the workpieces around. Each robot has a sensor
that detects whether a workpiece is positioned in front of it,
allowing the robot to use its tool on the workpiece. The model

129129129

O/C

Cart

WorkpieceWorkpieceWorkpiece

Workpie
ce

Workpie
ceRobot

Tool

Detector

Env

Actuator

Actuator

Sensor

Controller

Controller

Figure 2. Overview of the components constituting the model of the case
study. Each component represents some part of the physical environment, a
sensor, an actuator, or a controller. The connections between the components
indicate the information flow within the model. The dashed line in the center
separates the physical environment on the left from the system’s controller
components on the right. The system’s sensors and actuators are drawn on
top of the line because they connect the two parts of the model.

contains multiple workpieces, robots, sensors, tools, and carts,
but there is only one observer/controller (O/C) that monitors
the carts and robots for faults, trying to reorganize the system
to work around their occurrences. The distinction between
local and global reconfiguration mechanisms is irrelevant for
the model, as the safety analyses only have to distinguish
between successful and failed reconfigurations.

C. Deductive Cause-Consequence Analysis

DCCA is S#’s fully automated, model checking based
safety analysis technique. For a safety hazard H , DCCA

computes all minimal cut sets by individually checking all
combinations of component faults Γ, determining whether such
a set Γ does or does not have the potential to cause an
occurrence of H . For instance, the fault of cart C1 in Fig. 1 that
causes it to transport a workpiece to robot R3 instead of R2

is a minimal cut set for the hazard of damaging a workpiece,
as the use of the screwdriver before a screw has been inserted
might result in scratches. Formally, for a system model S with
a set of component faults Δ, S# uses a Computation Tree Logic
formula to check whether Γ ⊆ Δ is a cut set for H [1], [14]:

Definition (Minimal Cut Sets). A set of component faults Γ ⊆
Δ is a cut set for hazard H iff S |= onlyΔ(Γ)EUH , where
onlyΔ(Γ) :⇔

∧
δ∈Δ\Γ ¬δ. A cut set Γ is minimal if no proper

subset Γ′ ⊂ Γ is a cut set.

The formula characterizes a cause-consequence relation-
ship between the component faults (the causes) and the hazard
(the consequence): A set of component faults Γ is a cut set for
a hazard H if and only if there is the possibility that H occurs
and before that, at most the faults in Γ have occurred. DCCA

has exponential complexity as it has to check all combinations
of component faults. In practice, however, the number of
required checks usually is significantly lower, as the cut set
property is monotonic with respect to set inclusion, that is,
once a set of component faults Γ is known to be a cut set, all
supersets Γ′ with Γ ⊆ Γ′ are cut sets as well.

IV. MODELING SELF-ORGANIZING SYSTEMS WITH S#

In S#, components of safety-critical systems can be mod-
eled with different levels of abstraction. During the early
phases of development as well as for model-based safety
analysis purposes, the abstraction level is typically rather high.

Subsequently, the abstract component behavior and system
structure can be refined to include more details for fine-grained
simulation-only models, or different parts of the more detailed
model can be extracted and formally analyzed individually.
In particular, safety analyses are often decomposed such that
off-the-shelf components are not analyzed in detail: For these
components, the respective vendors already determined the
hazards using some safety analysis techniques. The identified
hazards take on the role of component faults in the safety
analyses of the systems that integrate these components [9].
This is a time-tested practice with a long tradition in Fault
Tree Analysis, for instance [15]. Model-based safety analysis
techniques can make use of the same principles to reduce
the complexities and state spaces of the models, focusing on
the safety hazards that result from the composition of the
components rather than getting lost in the details of the fault
behaviors of the individual components.

We extend this decomposition approach to self-organizing
systems in order to modularize both the models as well
as the safety analyses [16]: We manually separate tolerable
faults (such as broken tools) from intolerable ones (such as
failures of workpiece sensors), depending on whether the sys-
tem can tolerate their occurrences due to its self-organization
mechanism. Tolerable faults are those faults the system can
compensate, continuing correct and safe operation after a
reconfiguration. Self-organization can therefore be seen as a
safety mechanism that increases the system’s fault tolerance
in order to prevent safety hazards for as long as possible [9].
However, self-organization cannot cope with all faults that
occur during the lifetime of a system: Intolerable faults are
outside of its reach, either because their occurrences cannot be
detected or there is no possible way to react to their occurrence.
In particular, a fault discovery mechanism might be missing
due to a deliberate design decision in order to reduce costs
or because the discovery is physically impossible for some
reason. Additionally, at some point, there is not enough redun-
dancy left in the system to continue operating safely after the
occurrence of a tolerable fault, in which case a reconfiguration
failure occurs. In the case study, reconfiguration fails, for
instance, when all tools of the same kind no longer work.

A. Modeling the Case Study

Listing 1 shows a partial S# component representing a
robot of the production cell. S# component types are rep-
resented by C# classes derived from Component, whereas
S# component instances are represented by .NET objects of
the corresponding C# class. Provided and required ports of
the components are represented by methods, with required
ports having no body and being marked with the extern
keyword (not shown in Listing 1). The Robot component
is configurable as the tools it has available are set via the
constructor, allowing the creation of Robot instances with
different sets of tools. The observer/controller uses the pro-
vided port Reconfigure to set the sequence of tools the robot
should use, with the _currentTool field indicating which
tool is currently being used by the robot.

In S#, faults are modeled by adding nested classes de-
rived from Fault to a component, using attributes to spec-
ify the occurrence patterns of the faults. In Listing 1, the
MissedReconfiguration fault is transient, indicating that

130130130

class Robot : Component {
Tool[] _tools; int[] _toolsToUse; int _currentTool;

public Robot(Tool[] tools) { _tools = tools; /* ... */ }

private void UseCurrentTool()
{ _tools[_toolsToUse[_currentTool]].Use(); }

private void SwitchToNextTool() { ++_currentTool; }

public void Reconfigure(int[] toolsToUse)
{ _toolsToUse = toolsToUse; _currentTool = 0; }

[Transient] class MissedReconfiguration : Fault {
public void Reconfigure(int[] toolsToUse) { }

}

[Persistent] class CannotUseAnyTools : Fault {
public void UseCurrentTool() { }

}

[Persistent] class CannotSwitchTools : Fault {
public void SwitchToNextTool() { }

}

/* ... */
}

Listing 1. Partial S# component representing a robot of the production cell,
showing some of the internal state, three provided ports, and three of the
robot’s faults. Other internal state, the subcomponents, and the state machine
describing the robot’s behavior are omitted due to space restrictions.

the fault randomly occurs for some time, whereas the other two
faults are persistent, i.e., once they occur, they never disappear
again. The faults’ methods represent their fault effects; for
instance, the fault effect of the MissedReconfiguration
fault replaces the implementation of the component’s provided
port Reconfigure with a do-nothing instruction whenever the
fault occurs [1], [7].

B. Abstract Specification of the Observer/Controller

We closely follow the approach outlined by Güdemann to
specify the behavior of the observer/controller [17]. Nafz et
al. formally verified the correctness of the result checker [10],
allowing us to assume that the observer/controller either returns
a valid configuration or none at all. We abstractly specify
this behavior by allowing the model of the observer/controller
to assign any configuration; we then filter out invalid ones
by instructing the model checker to ignore all traces with
invalid configurations when performing the DCCA. Such a
specification of the observer/controller supports all kinds of
reconfiguration mechanisms, ranging from global constraint
solving approaches to local coalition formations.

V. ANALYZING SELF-ORGANIZING SYSTEMS WITH S#

S#’s support for parameterized component instantiation
and model adaptation allows for runtime safety analyses of
different configurations of self-organizing systems. In par-
ticular, it is possible to instantiate only certain parts of a
model in order to check the limits of the reconfiguration
mechanisms independently from the overall system safety. This
decomposition approach reduces the combinatorial state space
explosion problem: The reachable state space of a model of
a self-organizing system is already very large because of the
high redundancy required for fault tolerance. Additional states
are introduced by the occurrence patterns of faults, as S# has
to add at least one Boolean variable to the model for each
fault. Therefore, the state space increases by a factor of 2n

when a set of component faults with cardinality n is checked,
which obviously does not scale.

O/C

Workpie
ce

Workpie
ceRobot

Workpie
ce

Workpie
ceCart

Controller

Env

Env

Tool
Env

Figure 3. Overview of the pruned model focusing on the production cell’s
local or global self-organization mechanism. All states introduced by the
workpieces and the workpiece detectors are gone and S# or the model checker
can optimize out most of the now unreachable states of the robots and carts.

All safety-critical systems suffer from this problem, but
it is even worse for self-organizing ones: Typically, non-
self-organizing systems have rather small minimal cut sets,
often containing only very few faults. Even if there are
larger ones, they might not have to be computed explicitly,
as the contribution to the overall occurrence probability of a
hazard decreases the more faults a cut set contains [15]. For
self-organizing systems, on the other hand, minimal cut sets
containing tolerable faults become quite large, yet we have
to compute them anyway in order to determine the limits
of the reconfiguration mechanism. We mitigate the situation
by separating the safety analyses for tolerable and intolerable
faults into two parts, using runtime model adaptation and some
additional heuristics to conduct the analyses more efficiently.

A. Analyzing Tolerable Faults

We analyze the tolerable faults of a self-organizing system
to determine the limits of its self-organization mechanism, that
is, we compute the minimal cut sets of tolerable faults that
prevent the system from further self-organization. The minimal
cut sets have to be recomputed after each reconfiguration of the
system, as they can change in various ways when, for instance,
robots are removed from or added to the system. The analyses
exclusively focus on the self-organizing aspects of the system
model, considerably reducing its state space. For the case
study, for instance, we take the point of view that the robots,
the tools, and the carts constitute the physical environment
that the observer/controller monitors and influences. Figure 3
gives an overview of such a pruned model consisting of the
aforementioned components only; while the components of the
full model can be reused, the instantiation of the pruned model
has to be performed manually. Yet there are still two sources of
exponential complexity: DCCA has to check all combinations
of tolerable faults and the model checker has to enumerate all
possible configurations every time some tolerable faults trigger
a reconfiguration. In other words, we have an exponential
amount of formulas to check on a model that still includes
the occurrence states of all analyzed faults and that branches
exponentially after every reconfiguration.

To lessen the first problem, we no longer check for cut sets
by increasing cardinality, instead relying on a binary search
with respect to the size of the potential cut sets; that way,
larger minimal cut sets are found more quickly in the average
case. The monotonicity of the cut set property then allows us
to efficiently rule out large numbers of potential cut sets, as we
no longer have to check those explicitly: If a set of component
faults Γ is a cut set, we do not have to check any supersets
that contain Γ, whereas if Γ is not a cut set, we do not have
to check any of its subsets.

131131131

To mitigate the second problem, we exploit some additional
knowledge about the way the reconfiguration mechanism is
modeled: Only the occurrences of tolerable faults trigger
reconfigurations and we only want to determine whether,
given a set of tolerable faults, there still is a valid successor
configuration. Consequently, S# can automatically adapt the
model so that the analyzed faults Γ already occur in the initial
state and never disappear, effectively making all tolerable faults
in Γ persistently occurring. As a result, the reachable state
space of the adapted model is reduced by a factor of 2|Γ|, as the
occurrence states of those faults no longer have to be tracked
explicitly; they are built into the model. Assuming a system
configuration as the one shown in Fig. 1, for example, the
system can no longer reconfigure itself once both screwdrivers
are broken. It is irrelevant, however, if R1’s or R3’s screwdriver
breaks first, or whether R2’s drill, for instance, breaks in-
between as well. Consequently, when S# adapts the case study
model such that both screwdrivers are persistently broken, the
model checker can determine more efficiently that these two
faults represent a cut set. Additionally, we can simplify the
DCCA formula to EXH for the adapted models, checking
only whether the next reconfiguration can still find a valid
successor configuration. The model’s built-in tolerable faults
Γ are a cut set if and only if the formula holds.

With these two ideas, we now only check, on average,
a non-exponential number of adapted models with further
reduced state spaces, and each check only considers one re-
configuration instead of possibly many. Our approach therefore
reduces the runtime of a DCCA; however, we have not yet
systematically evaluated the achieved speedups. Additionally,
the longer a system is running, the more tolerable faults have
already occurred, further decreasing the analysis times as the
numbers and sizes of cut set candidates decrease as well. Over
time, however, the numbers and sizes of the minimal cut sets
can also increase again, namely when new robots are added to
the system or broken tools are replaced, for instance.

B. Analyzing Intolerable Faults

To assess the overall safety of a self-organizing system such
as the production cell, we have to compute the minimal cut sets
containing the system’s intolerable faults. We define a general
reconfiguration failure that subsumes all tolerable faults and
accounts for the fact that the reconfiguration mechanism might
be unable to find a valid configuration even though one
still exists. The minimal cut sets therefore become smaller
and can be found more quickly as they contain at most
the reconfiguration failure, but no tolerable faults anymore.
Whenever a cut set for a hazard H contains the reconfiguration
failure, the self-organization mechanism has the potential to
delay the occurrence of H . It is especially important to check
whether there are any other minimal cut sets for H that
do not contain the reconfiguration failure; in that case, the
system’s reconfiguration mechanism can be bypassed by other
intolerable faults, which is problematic particularly if there are
any singleton cut sets for H . On the other hand, the system is
likely to have hazards for which no minimal cut sets contain
the reconfiguration failure, showing that the self-organization
mechanism was not designed to cope with these hazards. The
minimal cut sets therefore show the limits of the system’s
self-organization mechanism and give hints as to where the
system’s design could be improved. For instance, additional

fault discovery mechanisms could broaden the reach of the
self-organization mechanism, effectively turning some of the
intolerable faults into tolerable ones.

There are two safety hazards that are most relevant for
the case study: The first hazard occurs when a workpiece is
damaged, that is, a workpiece is processed in an incorrect
order. Its minimal cut sets are missed reconfiguration updates
for each robot and cart as well as carts that move to the wrong
robots. The reconfiguration failure, on the other hand, does not
occur in any of the minimal cut sets, showing that the system is
not designed to reduce the first hazard’s likelihood. The second
hazard occurs when some workpiece is never finished, i.e., not
processed any further. The reconfiguration failure is one of the
hazard’s minimal cut sets, as no further processing is done
on any workpiece once a reconfiguration failed. Additional
minimal cut sets of the second hazard are malfunctioning
sensors that no longer detect the arrival of a workpiece, stalling
any further processing. All of the minimal cut sets of both
hazards are singletons, showing the weak points of the self-
organizing production cell from a safety point of view.

VI. RELATED WORK

There are various academic and commercial tools available
for modeling and analyzing safety-critical systems such as
MODELICA, SCADE, the COMPASS TOOLKIT, HIP-HOPS, the
SAML tool, and many others [17]–[21]. Generally, all of these
tools could be used with the approach presented in this paper;
compared to S#, however, their lack of a built-in runtime model
adaptation mechanism would have to be compensated with
additional tools. In particular, Güdemann performed a DCCA of
our case study modeled with SAML [17]. A full version of the
system such as the one depicted in Fig. 2 was used to determine
the limits of the self-organization mechanism, increasing the
model checking time needlessly by considering irrelevant
state information of the robots, carts, and workpieces. The
convoluted specification of the hazard (the hazard has to occur
multiple times before it is actually considered to be a hazard)
necessitated a more complex DCCA variant which our more
systematic modeling and analysis approach does not require.

Runtime models have already been used to analyze adap-
tive systems for functional correctness and various quality
attributes. However, a systematic approach for runtime safety
analyses still seems to be an open research question [2]. S#
contributes a new idea in this area through its unconventional
decision to use the .NET runtime and type system as its
meta-metamodel. The choice seems justified, however, as .NET

was specifically designed for efficient program execution and
runtime object composition, both of which form the basis
of S#’s support for runtime model adaptation. But as S#
was initially not conceived for runtime safety analyses, it
would certainly benefit from incorporating more ideas from the
runtime modeling and analysis communities. More research in
the area of runtime modeling has been done on runtime safety
certification [6], [22], which we currently do not focus on. A
completely different approach takes ideas from control theory
to dynamically reduce the failure probabilities of adaptive
systems [23]. We are not sure if this approach can be applied
to self-organizing systems, considering that their possible
configurations typically cannot be enumerated in advance.

132132132

The work by Gerasimou et al. [24] on increasing the
efficiency of runtime analyses appears to be particularly well
suited for integration with our approach: A caching strategy
could be used to recompute cut sets more efficiently after the
occurrences of faults by reusing previously computed cut sets
as likely candidates for the new ones. A lookahead strategy
could precompute the cut sets for the most likely successor
configurations before the next reconfiguration has even started.
Statistical model checking would only try to compute the
most problematic minimal cut sets instead of conducting a
complete analysis, which might be an acceptable tradeoff
in order to noticeably increase analysis efficiency. Another
approach suggests to split runtime analyses of adaptive systems
into two steps [25]: Design time only model checking is used
to precompute parameterized expressions that can subsequently
be evaluated more efficiently at runtime when the concrete
parameter values are known. The expressions can also be used
for sensitivity analyses, allowing the system to reason about
the impact that changes to the parameters have on the overall
system. It is an open question, however, whether large changes
to the structure of a self-organizing system require runtime
recomputations of the parameterized expressions, which would
make the approach less effective.

VII. CONCLUSION AND FUTURE WORK

The need for integrated tools that allow for runtime safety
analyses of self-organizing systems is well recognized [3]–
[6]. This position paper presents first steps towards a solution
based on S#’s support for runtime model adaptation. For the
future, we plan to systematically evaluate the analysis speedups
of our approach and its applicability to other self-organizing
systems. Additionally, we want to investigate the possible
benefits of runtime safety analyses for the Restore Invariant
Approach [26]: The minimal cut sets characterize the corridor
of correct behavior within which a self-organizing system can
reconfigure itself; occurrences of minimal cut sets represent
an irrevocable violation of that corridor. We intent to generate
soft constraints [27] from the minimal cut sets that help the
system to reconfigure more “smartly”, possibly increasing the
time to the eventual violation of the corridor. Conversely, when
testing self-organizing systems [28], the knowledge of the cut
sets can be used to generate boundary test cases that force the
system to reconfigure in more difficult situations, potentially
exposing more implementation bugs in the form of unjustified
and unexpected violations of the corridor.

REFERENCES

[1] A. Habermaier, M. Güdemann, F. Ortmeier, W. Reif, and G. Schellhorn,
“The ForMoSA Approach to Qualitative and Quantitative Model-Based
Safety Analysis,” in Railway Safety, Reliability, and Security. IGI
Global, 2012, pp. 65–114.

[2] A. Bennaceur et al., “Mechanisms for Leveraging Models at Runtime
in Self-adaptive Software,” in Models@run.time. Springer, 2014, pp.
19–46.

[3] D. Weyns, M. Iftikhar, D. de la Iglesia, and T. Ahmad, “A Survey of
Formal Methods in Self-Adaptive Systems,” in Proc. of C3S2E. ACM,
2012, pp. 67–79.

[4] D. Weyns, “Towards an Integrated Approach for Validating Qualities of
Self-adaptive Systems,” in Proc. of WODA. ACM, 2012, pp. 24–29.

[5] R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[6] M. Trapp and D. Schneider, “Safety Assurance of Open Adaptive
Systems – A Survey,” in Models@run.time. Springer, 2014, pp. 279–
318.

[7] A. Habermaier, J. Leupolz, and W. Reif, “Executable Specifications of
Safety-Critical Systems with S#,” in Proc. of DCDS. IFAC, 2015, pp.
60–65.

[8] T. Vogel and H. Giese, “On Unifying Development Models and Runtime
Models,” in Proc. of MoDELS. CEUR-WS.org, 2014, pp. 5–10.

[9] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” De-
pendable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan 2004.

[10] F. Nafz, J.-P. Steghöfer, H. Seebach, and W. Reif, “Formal Modeling
and Verification of Self-* Systems Based on Observer/Controller-
Architectures,” in Assurances for Self-Adaptive Systems. Springer,
2013, pp. 80–111.

[11] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck,
“Towards a generic observer/controller architecture for Organic Com-
puting,” GI Jahrestagung, vol. 93, pp. 112–119, 2006.

[12] G. Anders, H. Seebach, F. Nafz, J.-P. Steghöfer, and W. Reif, “Decen-
tralized Reconfiguration for Self-Organizing Resource-Flow Systems
Based on Local Knowledge,” in Proc. of EASe. IEEE, 2011, pp.
20–31.

[13] M. Becker, S. Kemmann, and K. C. Shashidhar, “Integrating Software
Safety and Product Line Engineering using Formal Methods: Challenges
and Opportunities,” in Proc. of SPLC, vol. 2, 2010, pp. 129–136.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[15] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback, “Fault Tree
Handbook with Aerospace Applications,” NASA, Tech. Rep., 2002.

[16] J. Zhang and B. Cheng, “Model-based Development of Dynamically
Adaptive Software,” in Proc. of ICSE. ACM, 2006, pp. 371–380.

[17] M. Güdemann, Qualitative and Quantitative Formal Model-Based
Safety Analysis. Magdeburg, Univ., 2011.

[18] Modelica Association, Modelica – A Unified Object-Oriented Language
for Systems Modeling, Language Specification, Version 3.3, 2014.

[19] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren, and O. Åkerlund,
“Designing Safe, Reliable Systems Using Scade,” in Leveraging Appli-
cations of Formal Methods. Springer, 2006, pp. 115–129.

[20] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and
M. Roveri, “The COMPASS Approach: Correctness, Modelling and
Performability of Aerospace Systems,” in Computer Safety, Reliability,
and Security. Springer, 2009, pp. 173–186.

[21] S. Sharvia and Y. Papadopoulos, “Integrating model checking with
HiP-HOPS in model-based safety analysis,” Reliability Engineering &
System Safety, vol. 135, pp. 64–80, 2015.

[22] D. Schneider and M. Trapp, “Conditional Safety Certification of Open
Adaptive Systems,” ACM TAAS, vol. 8, no. 2, pp. 1–20, 2013.

[23] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-Adaptive Software
Meets Control Theory: A Preliminary Approach Supporting Reliability
Requirements,” in Proc. of ASE, 2011, pp. 283–292.

[24] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient Runtime Quan-
titative Verification Using Caching, Lookahead, and Nearly-optimal
Reconfiguration,” in Proc. of SEAMS. ACM, 2014, pp. 115–124.

[25] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting Self-adaptation
via Quantitative Verification and Sensitivity Analysis at Run Time,”
IEEE Transactions on Software Engineering, no. 99, 2015.

[26] M. Güdemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif, “A Spec-
ification and Construction Paradigm for Organic Computing Systems,”
in Proc. of SASO, 2008, pp. 233–242.

[27] A. Schiendorfer, J.-P. Steghöfer, A. Knapp, F. Nafz, and W. Reif,
“Constraint Relationships for Soft Constraints,” in Research and De-
velopment in Intelligent Systems XXX. Springer, 2013, pp. 241–255.

[28] B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif, “Towards Testing
Self-organizing, Adaptive Systems,” in Testing Software and Systems.
Springer, 2014, pp. 180–185.

133133133

