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Abstract. Resource allocation problems such as finding a production
schedule given a set of suppliers’ capabilities are generally hard to solve
due to their combinatorial nature, in particular beyond a certain prob-
lem size. Large-scale instances among them, however, are prominent in
several applications relevant to smart grids including unit commitment
and demand response. Decomposition constitutes a classical tool to deal
with this increasing complexity. We present a hierarchical “regio-central”
decomposition based on abstraction that is designed to change its struc-
ture at runtime. It requires two techniques: (1) synthesizing several mod-
els of suppliers into one optimization problem and (2) abstracting the
direct composition of several suppliers to reduce the complexity of high-
level optimization problems. The problems we consider involve limited
maximal and, in particular, minimal capacities along with on/off con-
straints. We suggest a formalization termed supply automata to capture
suppliers and present algorithms for synthesis and abstraction. Our eval-
uation reveals that the obtained solutions are comparable to central solu-
tions in terms of cost efficiency (within 1 % of the optimum) but scale
significantly better (between a third and a half of the runtime) in the
case study of scheduling virtual power plants.

Keywords: Hierarchical resource allocation · Self-organization · Dis-
crete optimization · Abstraction · Virtual power plants

1 Dynamic Resource or Task Allocation in a Hierarchical
Setting

Resource or task allocation problems present themselves in a variety of domains
addressed by multi-agent-systems [7], including distributed power management
[11,36] or grid computing [1]. In this paper, we investigate resource allocation

This research is partly sponsored by the German Research Foundation (DFG) in the
project “OC-Trust” (FOR 1085).
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problems with a demand imposed by the environment that needs to be satisfied
by a set of suppliers which are represented by software agents acting on their
behalf. These problems also lie at the heart of the selection and payment function
of several practical problems addressed by mechanism design including adap-
tations of the Vickrey-Clarke-Groves mechanism [11,44] where computationally
efficient algorithms are required. These problems can, in general, be expressed as
constraint satisfaction and optimization problems. Techniques from operations
research and discrete optimization, such as constraint programming or mixed
integer (linear) programming, have been proposed to find optimal solutions (see,
e.g., [19,37]). This proves particularly useful when the characteristics of hetero-
geneous suppliers requiring different sets of variables and constraints need to be
modeled.

With regard to power management systems, a specific resource allocation
problem is to maintain the balance between production and consumption at all
times to keep the mains power frequency in a small corridor to achieve stable
power supply [18]. This is achieved by creating “schedules” for controllable power
plants, i.e., instructions of how much power they have to produce at which point
in time, based on the predicted demand and the predicted input of weather-
dependent power plants at that time. A complicating factor is the suppliers’
inability to switch production levels arbitrarily over time. In this context, three
main challenges arise: First, the resource allocation problem involves a vast num-
ber of power plants and consumers but, at the same time, has to be solved in
a timely fashion. Second, the balance has to be kept despite uncertain demand
and output of weather-dependent power plants. Third, heterogeneity requires
solutions that can deal with the power plants’ individual characteristics in the
form of technical limitations and preferences when creating schedules.

If the size of the system prohibits a centralized solution, either due to the
communication overhead required in collecting all necessary information or due
to the complexity of a centralized solution model, hierarchical decomposition
offers a generic tool to deal with these issues (see, e.g., [1,6,14]). Here, the global
problem is decomposed by forming a hierarchical structure of agent organiza-
tions [20,43]. To solve the global problem, each organization acts as an inter-
mediary that has to recursively solve a sub-problem, which is achieved in a
top-down fashion with regard to the hierarchy, as illustrated in Fig. 1. Given a
hierarchy, the problem can be solved by means of an auction protocol [2] relying
only on proposals submitted by subordinates. Alternatively, intermediaries can
centralize information from a region of the system, i.e., the control models of
their subordinates, and solve their sub-problem centrally. Hence, we term this
approach regio-central. Independent sub-problems can be solved concurrently in
both endeavors. Lacking global knowledge, overall proven optimality is generally
not feasible but traded for tractable sub-problems and close-to-optimal solutions
(as evidenced by our evaluation results in Sect. 5.1). To achieve this tractability,
we propose algorithms to calculate abstractions [15]:

Abstraction:On higher levels, intermediaries decide on schedules that have to be
fulfilled by their subordinate agents. To make optimal decisions, exact models
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Fig. 1. A central and hierarchical solution example to a resource allocation problem.
Inner nodes representing intermediaries are marked by double circles and redistribute
their assigned share of an overall demand, e.g., power.

of all subordinates in composition would be required—eventually yielding the
same complexity as a centralized solution. Because of the dynamic compo-
sition of organizations, abstraction has to be performed at runtime without
manual interference.

In this paper, we focus on the regio-central approach to evaluate abstraction
techniques in isolation, effectively testing the quality of the calculated models.
However, abstracted models are also employed in the auction-based algorithm [3],
making them a prerequisite for our hierarchical approach.

In the light of a dynamic environment and uncertainties, an organization
might turn out to be unable to solve its corresponding sub-problem with sufficient
quality or in due time, though. The organizations might thus have to or prefer to
adapt their composition at runtime [3]. Furthermore, it is far from obvious how
suitable structures have to be defined in terms of the size of organizations and
the depth of the hierarchy in order to yield minimal runtimes (a challenge we
discuss in our evaluation in Sect. 5.3) and solutions of acceptable quality at the
same time. The size of the search space of possible hierarchies is Θ(Bn) where Bn

is the nth Bell number denoting the number of partitions since for each partition
we can construct at least one corresponding hierarchy [4]. As a consequence,
the system might thus depend on a number of successive reorganizations to
establish a structure that provides an adequate runtime. In terms of optimization
problems and models, this rises the challenge of separating concerns adequately,
i.e., separating individual supplier characteristics from intermediaries’ objectives,
such that we can synthesize optimization problems at runtime:

Synthesis: To be able to solve the resource allocation problem at the different
levels of the hierarchy considering the dynamic composition of organizations,
synthesis defines necessary interfaces to convert a set of heterogeneous con-
trol models along with a predefined objective to obtain a regio-central opti-
mization problem. The intermediary distributes the solution of this problem
to its subordinate agents which, in turn, redistribute the solution if they are
intermediaries themselves.

Throughout the paper, the creation of power plant schedules in autonomous
power management systems serves as a case study to detail the life cycle and
algorithms for this regio-central solution approach. We present a formalization
of the resource allocation problem as a mixed integer program in Sect. 2 fol-
lowed by considerations on how control models of suppliers are combined to one
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such problem in Sect. 3. Three algorithms to obtain abstract control models of
intermediaries are motivated and presented in Sect. 4. In Sect. 5 we discuss our
experimental setup and present results to a number of evaluation questions. We
present the related work in Sect. 6 and conclude with an outlook on achieved
results and open questions in Sect. 7.

The paper is a substantially revised version of [41] and emphasizes the prob-
lem of cost-efficient scheduling rather than minimizing deviations between supply
and demand only. We added the formal definition of supply automata to enable the
systematic generation of synthesized optimization problems for a variety of gen-
erators. Also, the approach has been re-evaluated on larger experiments and the
results are presented more rigorously. Moreover, the algorithms are discussed in
more detail accompanied by additional examples and complexity considerations.

2 Problem Formalization

In the context of power management as a representative for the considered prob-
lem, the resource to be allocated is electric power and an allocation specifies how
much (controllable) power plants need to supply at a certain point in time. The
task is to assign schedules to controllable power plants so that their joint output
meets the residual load, i.e., the difference between demand and supply from
intermittent, weather-dependent sources. The overall problem is to continuously
keep this balance at all times.

Formally, we abstract from this continuity by considering a finite set of discrete
time steps T = {1, . . . , tmax} (e.g., in intervals of 15 min as used by energy mar-
kets) where we measure discrepancies and collect predictions of expected demand
and intermittent production. Nonetheless, the problem cannot be solved optimally
in advance for, e.g., the next day, due to the dynamic and stochastic nature men-
tioned in Sect. 1. An optimal schedule under the assumption of a sunny day might
drastically underestimate the residual load and thus be detrimental to the sys-
tem’s objective. However, we need to consider at least a certain scheduling window
W ⊂ T ranging from the next time step tnow + 1 up to tnow + W with W = |W|
being the fixed width of that window. Inertia manifested in physical constraints
such as limited rates of change or start-up times—both factors that present in
slow-changing thermal power plants—necessitates this proactive behavior [18].
For instance, if a power plant’s production is necessary to meet a high demand
at time tnow + W , it may be required to start ramping up in tnow + 1.

In the energy management setting, suppliers are further subject to both lim-
ited maximal and minimal capacities of production due to mostly technical but
also economical reasons (e.g., a minimum generation of 20 % of the nameplate
capacity for gas turbines or 40 % for coal based thermal plants [21]). Moreover,
for a virtual power plant, it is imperative to be able to switch plants on and off
selectively to achieve more favorable aggregate partial load behavior compared
to a single conventional generator [24] that suffers from increased costs when not
operated at optimal energy conversion efficiency. Based on these assumptions,
we present the core optimization problem we consider in Eq. (1).
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minimize
Sa
t ,σa

t

αΔ · Δ + αΓ · Γ (1)

subject to ∀a ∈ sub(v), ∀t ∈ W :
∃[x, y] ∈ La : x ≤ Sa

t ≤ y,
Sa−

δ

(
σa

t−1, S
a
t−1

) ≤ Sa
t ≤ Sa+

δ

(
σa

t−1, S
a
t−1

)

with Δ =
∑

t∈W
∣∣∣
∑

a∈sub(i) Sa
t − Dt

∣∣∣ ,

and Γ =
∑

t∈W,a∈sub(i) κa(Sa
t )

The problem is formulated for one intermediary i that controls its set of
subordinate agents sub(i). The task primarily consists of assigning scheduled
contributions.

Sa
t for each agent a ∈ sub(i) and time step t ∈ W. Additional state of

agents, such as it being on or off, is taken into consideration with the auxiliary
variables σa

t . Two possibly conflicting objectives to rank schedules are given by
minimizing the discrepancy Δ between the aggregate supply and the demand Dt

given by the residual load as well as minimizing the cost for the scheduled supply
Γ which depends on cost functions κa mapping production levels to costs. The
prioritization of both goals is regulated by weights αΔ and αΓ .

Minimal and maximal production capacities Sa
min and Sa

max are generalized
to finite lists of non-overlapping feasible regions La, representing minimal and
maximal capacities in a particular mode, e.g., on or off. A single generator that
can be switched off1 is then represented by La = 〈[0, 0], [Sa

min, S
a
max]〉. Section 4

sheds light on why the generalization to lists is necessary to deal with abstracted
models of intermediaries representing a whole set of suppliers. Intuitively, the
composition of n suppliers having 2 modes each leads to 2n combined modes
showing individual minimal and maximal boundaries.

Inertia is reflected by functions Sa−
δ and Sa+

δ restricting possible decreasing
or increasing supply given a state and current supply. Their role is explored
more thoroughly and exemplified in Sects. 3 and 4.2. A state σa

t can be seen as
a (heterogeneous) store of variables depending on the type of a. For instance, a
supplier showing minimal runtimes before switching off could store the current
runtime in time steps as σa

t .cr . With respect to a scheduling window W =
{tnow+1, . . . , tnow+W}, σa

tnow contains the actual momentary state as constants,
whereas for t ∈ W, σa

t are decision variables that have to be assigned consistently
by the optimizer (e.g., when to issue a start/stop signal). If a supplier a ∈ sub(i)
is an intermediary itself, it solves the identical optimization problem for its
own subordinates sub(a) with its assigned share Sa

t being the demand Dt to
be redistributed. Guaranteeing that Sa

t is in fact achievable by sub(a) requires
calculating the schedules based on the composition of all underlying agents,
making the problem utterly complicated to solve. To achieve a reduction in
complexity, abstraction is employed instead (see Sect. 4).

1 In the application domain, we also need to consider so-called must-run plants [48],
leading to La = 〈[P a

min, P a
max]〉.
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When allowing these optimization problems to be formulated dynamically at
runtime, we need to separate concerns of individual suppliers and the optimiza-
tion problem as a whole. A few terms help us to put these aspects in context.
More specifically, they aid to decompose the challenge presented by the resource
allocation problem into several subproblems:

Individual AgentModels (IAM) are variants of extended finite state machines
(“supply automata”, see Sect. 3) that describe the properties of one supplier,
in particular possible supply trajectories over time as well as different modes.

Abstracted Agent Models (AAM) are approximations of the composition of
a set of underlying agents and represent the joint behavior.

Synthesized Optimization Problems (SOP) combine several agent models
with a predefined “template” objective to generate the optimization formu-
lation presented in Eq. (1) at runtime. More specifically, the resulting SOP
is a generated artifact in a suitable language, e.g., MiniZinc [32] or, in our
case, the optimization programming language (OPL) [10].

3 Synthesis of Regio-Central Optimization Problems

The process of converting a set of control models into one optimization prob-
lem according to the template presented in Eq. (1) is termed “synthesis”. We
motivate the main ideas and techniques and refer to [42] for a reference imple-
mentation.

A driving factor is to model suppliers with heterogeneous physical require-
ments such that reconfiguration of the system’s hierarchical structure at run-
time is enabled. The suppliers we consider are in fact dynamical systems with a
controller manipulating an underlying physical process to, e.g., ramp up, ramp
down, or shut off the supplier. We search for a sufficiently detailed discrete-
time model that we can employ in the scheduling problem to dismiss technically
infeasible schedules yet abstract enough (e.g., not containing particular control
signals) to solve the synthesized optimization problem efficiently.

First, we look at existing constraints in the power domain (see [5,34]) and
discuss how to build ones appropriate for the problem we are concerned with.
The types of constraints considered in the literature are:

Table 1. Cold and hot start-up times for different power plant types according to
[23,30]. A cold start occurs if a plant is down for more than 48 h, a hot start if it is
down for less than 8 h.

Plant type Cold start-up (h) Hot start-up (h)

Black coal 4 – 5 2

Brown coal 6 – 8 2 – 4

Gas turbine 0.5 0.25

Photothermal 4 – 5 2
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Minimal up/down times: A supplier has to run (or be switched off) for a
minimal number of steps before switching the mode from “on” to “off” or
vice versa [34].

Ramp up/down rates: A fixed amount of ramp-up/ramp-down capacity
between two consecutive time steps is assumed [45]; in thermal power plants,
this is due to required heating and cooling.

Cold/warm start-up times: A thermal plant generally needs a minimum
number of time steps to ramp up from 0 to its minimal production [5].
Depending on the supplier’s type, this start-up duration depends on the
down-time as “cold starts” differ from “warm starts” (see Table 1 for sample
values).

Not all supplier types are subject to the same constraints. Consider, e.g., a
small gas power plant where the ramp up/down rates are high enough to reg-
ulate from minimal to maximal production in one time step. Similarly, with
respect to Table 1, the difference between a hot or cold start-up might be negli-
gible (depending on the duration of one time step) for gas turbines but not for
photothermal plants. Modeling this type of behavior requires storing the running
or standing times as auxiliary variables and define their development over time
by suitable relations.

In [5], the problem is solved by encoding the start-up using linear constraints
and 0/1 decision variables directly in a MIP. We propose to take a short detour
and first model a supplier as a variant off extended finite state machines (EFSM)
that can be seen as a discrete-time variant of a rectangular hybrid automaton [17]
and then generate decision variables and constraints in a suitable language,
e.g., OPL for our synthesized CSOP. Different modes of operation correspond
to, e.g., switching a plant on or off and private variables capture individual
physical characteristics. If, for instance, starting-up takes several time steps,
then turning a supplier on requires taking a transition from the off-mode to a
dedicated start-up-mode (where several time steps have to be passed) before
eventually arriving in the productive mode. Expressing the control models this
way also paves the way for better modeling and debugging support by suitable
tools such as simulations, reachability analysis (“Can a supplier reach Smax if
started newly?”), or automated testing (“Is a given trajectory accepted by a
supplier?”) and offers a canonical transformation.

3.1 Supply Automata

A supply automaton2 is a particular extended finite state machine that specifies
how a supplier can change its output S as well as other local state variables over
one time step. We use it to describe the set of feasible trajectories of a supplier.

2 Supply is not limited to positive production, since negative production, e.g., con-
sumption or storage of a resource, can be vital to meet the demand, reflecting the
concept of a prosumer.
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Fig. 2. Supply automaton to model adaptive start-up times depending on down time
dt . A countdown cd is initialized with g(dt) ∈ N, e.g., according to Table 1, and has
the plant stay in the mode su (start-up) for g(dt) steps. A plant can only contribute in
the on-mode. Expressions in brackets contain jump predicates, invariants are written
inside the modes.

Example 1. Figure 2 presents a supply automaton for a thermal unit considering
start-up time. Consider a supplier that is currently off, needs constant g(dt) = 1
time steps to start up and then provide supply in [5, 10] with a maximal change
per time step Sδ = 1. Then, exemplary trajectories (0, 0, 5, 6, 7, 8, 9, 10) as well
as (0, 0, 0, 0) or (0, 0, 5, 5, 0) are valid, in contrast to, e.g., (0, 5, 5) which violates
minimal start-up or (0, 0, 5, 8) which violates maximal ramp-up.

We first explain the syntactic concepts used in Fig. 2 and provide semantics by
defining valid transitions. We deliberately omit time indices in the presentation
of supply automata as only transitions from one state to another are considered.
The translation into an optimization problem similar to Eq. (1) including the
underlying time series is presented in Sect. 3.2.

Definition 1. A supply automaton SA is described by (M, X, T, Inv, Jump) where:

– M is a finite set of modes,
– X is a finite set of real-valued, local variables with S 	∈ X; we write XS =

{S} ∪ X to include S, the real-valued supply required for all suppliers. X ′
S

represents the same variables after a jump. Φ(XS) denotes the set of predicates
over free variables taken from XS.3

– T ⊆ M × M indicate possible mode transitions
– Inv : M → Φ(XS) returns the invariant in one mode including a feasible

interval per mode “x ≤ S ≤ y” (x ≤ y ∈ R

– Jump : T → Φ(XS ∪ X ′
S) return a predicate specifying the conditions to take

transitions

Note that we assume each state satisfying its mode’s invariant to be a possible
initial state. Let [XS → R] be the set of all assignments that map from the
3 The expressiveness depends on the function and relation symbols of the underlying

constraint language, we assume basic linear arithmetic, boolean algebra and standard
inequalities.
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Fig. 3. Resource allocation over multiple time steps can be viewed as selecting the
optimal combination of trajectories of two agents to meet a given demand.

variables XS to R. Let p ∈ Φ(XS) be a set of predicates over XS . We then write
v |= p to denote that an assignment v ∈ [XS → R] satisfies p.

Definition 2. The semantics of a supply automaton SA = (M, X, T, Inv, Jump)
are described by an associated transition system TS(SA) = (Σ, −→∗) where:

– the (infinite) state space Σ ⊆ M × [XS → R] is given by Σ = {(m, v) | v |=
Inv(m)}.

– the transition relation −→ ⊆ Σ × Σ is defined by (m, v) −→ (m′, v′) if there
exists a transition t = (m, m′) ∈ T such that v ∪ v′ |= Jump(t).

We assume SA to be completed by τ -transitions, i.e., take the reflexive closure −→∗

to allow the supply automaton to preserve its state without explicit notations.

A trajectory of a transition system (Σ, −→∗) is then a sequence (σ0, σ1, . . . , σk)
such that σi ∈ Σ for i ∈ [0, . . . , k] and σi −→ σi+1 for i ∈ [0, . . . , k − 1]. We
write σ −→(k) σ′ to denote that σ′ can be reached from σ in exactly k steps.
With respect to Example 1, we have to reformulate the trajectories in terms
of Σ to verify that (0, 0, 5, 6) is indeed valid (if the supplier is already in the
start-up phase). Consider the trajectory ((su, cd = 1, S = 0) −→ (su, cd =
0, S = 0) −→ (on, cd = 0, S = 5) −→ (on, cd = 0, S = 6)). By contrast,
(su, cd = 1, S = 0) 	−→ (on, cd = 0, S = 5) since the jump condition cd = 0 is
violated (see Fig. 2).

3.2 Translating Supply Automata into a Synthesized CSOP

In light of supply automata, the resource allocation problem presented in Eq. (1)
corresponds to selecting optimal schedules from the set of feasible trajectories
for each supplier in an agent organization such that the demand is met by the
aggregate supply, as illustrated in Fig. 3. More specifically, we seek assignments
of supply and states for future time steps that are consistent with invariants and
jump conditions. This question naturally leads to the framework of constraint
satisfaction and optimization problems (CSOP) treated in areas of discrete opti-
mization including constraint programming and mathematical programming.
We show how to systematically generate such a CSOP based on the syntactical
representation of supply automata.
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Quite generally, in constraint satisfaction problems (CSP) given by (X, D, C),
the main task is to map a finite set of variables X to their associated domains
(Dx)x∈X (i.e., construct assignments v ∈ [X → D]) such that all constraints from
a set C are satisfied.4 An extension to optimization problems is achieved by the
objective f : [X → D] that maps an assignment to a (possibly partially) ordered
set (F, ≤F ) and asking for a consistent assignment having an optimal value in F .

For an intermediary i with supply automata (Ma, Xa, T a, Inva, Jumpa)a∈sub(i),
we can generate variables and constraints over a given time window W as follows
(we write generated CSOP variables and constraints in typewriter font to avoid
confusion with the variables in the supply automata):

Variables. We create the set of decision variables by “flattening” a particular
trajectory over the window W. In particular, we need variables S[a][t] to
represent Sa

t for every agent a ∈ sub(i), a variable x a[t]5 for every indi-
vidually required variable x ∈ Xa, and the mode ma for every time step
t ∈ W ∪ {tnow} written as m[a][t]. The set corresponding to Xa

S for a par-
ticular time step t is written as XaS[t] = {S[a][t]} ∪ {x a[t] | x ∈ Xa}. For a
predicate ϕ ∈ Φ(Xa

S), let ϕ〈Xa
S → XaS[t]〉 denote the substitution of x ∈ Xa

S

with their counterparts in XS[a][t], e.g., “Sa ≤ 50” becomes “S[a][t] ≤ 50”.
Initial States. The time step tnow is needed to consider the current state. For

Sa
tnow , we add the constraint “S[a][tnow] = Sa”, and similarly, we require

“x a[tnow] = σa.x” for x ∈ Xa and “m[a][tnow] = m”.
State Invariants. For all time steps and all modes, the respective invariant has

to hold, i.e., for every t ∈ W and m ∈ M , we add the constraint “m[a][t] =
m =⇒ Inva(m)〈Xa

S → XaS[t]〉”
Transition Constraints. For all transitions (m, m′) ∈ T and every time step

t ∈ {tnow}∪W\{tnow+W}, we add the constraint “m[a][t] = m∧m[a][t + 1] =
m′ =⇒ Jumpa(m)〈Xa

S → XaS[t], X ′a
S → XaS[t + 1]〉”.

The formulation of the CSOP is completed by adding the objective func-
tion f . Since the demand does not depend on the agents that should supply it
and S[a][t] is included for every agent, we can use the objective presented in
Eq. (1). Summing up, we write synthesize((SA)a∈A, f, (F, ≤F )) for the CSOP
translated from a set of supply automata.

Example 2. Consider, for instance, two suppliers a and b: a is able to switch
between on and off and contributes in the range [5, 10] if on, whereas b only
has one mode with its supply ranging in [4, 8]; both can maximally ramp up
or down 1 unit per time step. Furthermore, upon being turned on, a has to
provide its minimal production 5. Assume that both suppliers currently provide
their respective minimum, 0 or 4. We consider scheduling W = 4 time steps
and only care for minimizing discrepancies (i.e., αΓ = 0, αΔ = 1). Constructing
the supply automata, we arrive at the following optimization problem that is
actually a mixed integer program (presented in pseudocode-OPL):
4 We adopt a functional view, i.e., each constraint c ∈ C maps an assignment v ∈ [X →

D] to B = {true, false} and consequently, c is satisfied w.r.t. v iff c(v) = true.
5 Note that the distinction between xa and S[a] emphasizes that S is defined for every

agent and xa is generated specifically for a.
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range window = tnow .. tnow + 4 (2)
agents = {a, b}

minimize sum(t in window) abs (sum(a in agents) S[a][t] − D[t])
subject to forall(t in window) {

m[a][t] = off → S[a][t] = 0

m[a][t] = on → S[a][t] ≥ 5 and S[a][t] ≤ 10

m[b][t] = on → S[b][t] ≥ 4 and S[b][t] ≤ 8

m[a][t] = on or m[a][t] = off

m[b][t] = on

}
forall(t in tnow .. tnow + 3) {

m[a][t] = off and m[a][t + 1] = on → S[a][t + 1] = 5

m[a][t] = on and m[a][t + 1] = on →
abs(S[a][t] − S[a][t + 1]) ≤ 1

m[b][t] = on and m[b][t + 1] = on →
abs(S[b][t] − S[b][t + 1]) ≤ 1

}
m[a][tnow] = off, m[b][tnow] = on, S[a][tnow] = 0, S[b][tnow] = 4

Once the CSOP is synthesized, we can include soft constraints [31] regarding
individual preferable states and transitions (e.g., “try to schedule at 240 KW”
or “never ramp up more than 25 % in 15 min, even if technically possible”). If
not all soft constraints can be satisfied simultaneously, suppliers may establish
constraint relationships [40] prioritizing these goals, i.e., “avoiding strong ramp-
up” is more important than “stay at 240 KW”. Soft constraints lead to a special
kind of codomain for the objective function (F, ≤F ), viz. elements of a c-semiring
or valuation structures (partially ordered monoids). Intuitively, an assignment
v ∈ [X → D] is graded by a set of soft constraints and the overall grading f(v) is
found using the multiplication operator of the c-semiring or valuation structure.
The precise semantics of these statements along with their integration with Eq. (1)
are outside the scope of this work but are described in detail in [25,38].

4 Abstraction of Composite Control Models

Except for the root of the hierarchy, intermediaries can be regarded as another
type of supplier that is also controlled by a superior intermediary. Instead of
merely using composed control models on higher hierarchy levels (which would
effectively just result in a centralized solution), we introduce some reduction
of complexity by an automated abstraction algorithm. Clearly, abstraction may
cause errors due to imprecision but leads to a scalable resource allocation scheme
as discussed in our evaluation in Sect. 5.1. The task at hand is consequently to
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formalize the construction of an abstracted agent model (AAM), as introduced
in Sect. 2, for an intermediary.

Since both AAM and individual agent models (IAM) are of the same type to
have a superior agent only deal with agent models denoted by supply automata,
an AAM also defines possible production ranges and transitions between pro-
ductions for Si

t . More abstractly, it describes the set of feasible trajectories of
an intermediary’s aggregate production. Technically, this set is represented by
means of suitable constraints. We are interested in finding the “corners” of the
possible supply space spanned by an intermediary as well as “holes”, i.e., con-
tributions that cannot be achieved by the set of subordinate agents due to dis-
continuities, e.g., resulting from discrete on/off transitions. We propose three
abstraction algorithms that result in an abstract supply automaton representing
the intermediary.

General abstraction (Sect. 4.1) calculates feasible production ranges corre-
sponding to joint modes of the underlying suppliers by considering on/off settings
and minimal/maximal supply. Temporal abstraction (Sect. 4.2) aims at dismiss-
ing provably infeasible schedules due to inertia (e.g., limited ramping rates and
start-up times). Sampling abstraction (Sect. 4.3) probes a collective’s functional
relationships such as a mapping from supply to costs and uses a simpler repre-
sentation on higher levels.

4.1 General Abstraction

The first important abstraction consists of describing the feasible regions of an
intermediary based on its subordinate agents. As the contribution of an individ-
ual supplier may be discontinuous due to distinct operation modes (e.g., when
a supplier shows a strictly positive minimal contribution when on but may also
not contribute at all when off ), the production space is discontinuous in general.

Example 3. Consider an intermediary i responsible for two suppliers a and b with
their respective possible contributions given by {[0, 0], [1, 4]} and {[0, 0], [7, 10]}
where [0, 0] indicates that the suppliers might be off. Then every production
from [1, 4] can be reached by switching supplier a on and supplier b off. Dually,
the intermediary can produce [7, 10] if only supplier b is running. Engaging both
suppliers leads to a combined production interval [8, 14] and analogously [0, 0]
with both being excluded entirely. However, no output in the intervals (0, 1) and
(4, 7) can be provided. Abstraction enters the picture in the sense that it is not
relevant whether, e.g., the output Si = 8 is created by setting S1 to 1 and S2

to 7 or by S1 to 0 and S2 to 8. Multiple concrete configurations collapse to one
abstract view, beneficially to the complexity of solving the resource allocation
problem. We can thus contract the overlapping intervals [7, 10] and [8, 14] to
yield [7, 14]. To sum up, the feasible regions of that intermediary are given by
{[0, 0], [1, 4], [7, 14]} with supply holes (0, 1) and (4, 7). Hence, 0 and 14 constitute
the intermediary’s actual minimal and maximal production under consideration
of underlying on/off-modes.
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From this example, we derive a formulation of general abstraction that returns
the possible productions of an intermediary. Let + be the standard plus operation
in interval arithmetic such that [x1, y1] + [x2, y2] = [x1 + x2, y1 + y2] which will
be used to calculate the combined production of two suppliers each operating in
one particular mode.

These possible contributions of a supplier a are given by a sorted list La of
non-overlapping intervals. Since a supplier may contribute in any of the offered
intervals due to varying modes, we need to match any two intervals for combi-
nation. For this purpose, we lift the combine operation + to lists and write ×
for the combination of two lists. First, we consider the set of all combinations of
intervals for two lists:

La × Lb := {[x, y] + [x′, y′] | [x, y] ∈ La, [x′, y′] ∈ Lb} (3)

For a set of n suppliers A each having k distinct intervals, the set
∏

a∈A La

contains O(kn) elements. This comes as no surprise since our pivotal application
scenario with La = 〈[0, 0], [Sa

min, S
a
max]〉 enumerates the power set of running

power plants. A brute-force implementation consequently suffers from this expo-
nential behavior. Fortunately, considerable savings can be achieved by composing
the overall result from smaller partial results and merging overlapping intervals.
In addition, the problem is solvable in linear time if k = 1, i.e., if all suppli-
ers have to be on and provide in one continuous interval. With respect to our
case study, this situation corresponds to so-called “must-run” power plants [48].
Nonetheless, we consider the general case (k ≥ 1).

For the aforementioned contraction, we recursively define a normalization
operation ↓ which takes a sorted list of intervals (in ascending order of the
lower bounds of the intervals) and merges overlapping intervals such that, e.g.,
〈[7, 10], [8, 14]〉↓ = 〈[7, 14]〉. Concatenation of lists is written as L1 · L2.

〈〉↓ = 〈〉
〈[x, y]〉↓ = 〈[x, y]〉

(〈[x1, y1], [x2, y2]〉 · L)↓ =
{

〈[x1, y1]〉 · (〈[x2, y2] · L)↓) if y1 < x2

(〈[x1, max{y1, y2}]〉 · L)↓ else
(4)

Equipped with this operation, we can implement general abstraction by iter-
atively calculating the set of possible combinations as shown in Algorithm 1.

As a consequence, the list of feasible regions for an intermediary i is given by
Li = general-abstraction((La)a∈sub(i)), also written as

⊗
a∈sub(i) La. Tech-

nically, the ability to calculate partial results and normalize them, originates
in the associativity of × (inherited from +) and the fact that normalization
obtained by ↓ is only a different representation for the same set of feasible con-
tributions. Regarding supply automata, each interval j = [x, y] ∈ Li translates
to one mode mj with Inv(mj) = “x ≤ Si ≤ y”. Transitions and jump conditions
are added in Sect. 4.3.
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Algorithm 1. General Abstraction to find feasible regions
Require: La is a finite list of feasible regions for a supplier a ∈ A �= ∅, A is finite
Ensure: L is a list of feasible regions reachable by the suppliers in A
1: procedure general-abstraction((La)a∈A)
2: Choose a ∈ A � arbitrary first supplier
3: L ← La

4: for all b ∈ A \ {a} do
5: L′ ← 〈〉
6: for all [x, y] ∈ L × Lb do
7: Insert-Sorted(L′, [x, y]) � sort by x ascendingly
8: L ← L′↓ � normalize
9: return L

4.2 Temporal Abstraction

While general abstraction describes feasible regions of an intermediary, it fails to
consider momentary states, such as the current productions, that further restrict
inertia if some suppliers internally are at peak level or switched off. Temporal
abstraction thus calculates infeasible ranges of an intermediary i for all time
steps t ∈ W given the initial state σi

tnow and supply Si
tnow . For an intermediary,

a possible production level at time step t is composed by the supply offered by
its children. Starting from a given initial state, we determine temporally feasible
ranges by both minimizing and maximizing every child’s production respecting
jump conditions until time step t and merging the resulting intervals using ⊗.
Values below or beyond those ranges are guaranteed to be infeasible and must
therefore not be allocated in the abstract view.

Example 4. Consider the same intermediary i presented in Example 3 responsible
for two suppliers a and b specified by La = 〈[0, 0], [1, 4]〉 and Lb = 〈[0, 0], [7, 10]〉.
Now assume that a is off at the moment and needs to be off for one more time step
before contributing the minimum 1 and b currently producing 8. Both suppliers
feature a maximal rate of change of 1 per time step. Provided that we intend to
schedule 2 time steps, we analyze possible contributions after each future time
step under the present constraints. At tnow+1, a may still only be considered with
0 as there is one step more to wait, whereas b’s output can be either decreased
to 7 or increased to 9 but not be switched off completely. Consequently, the
intermediary can only contribute in the range of [7, 9] at that point. At tnow +2,
a can contribute the minimum 1 (or be still off if we chose not to start it) and b
can go up to 10 maximally or be already switched off to yield 0 since the minimum
of 7 is reachable in the previous step tnow + 1. Therefore, the intermediary can
contribute in 〈[0, 0], [1, 1]〉⊗〈[0, 0], [7, 10]〉 = 〈[0, 0], [1, 1], [7, 11]〉. If we incorrectly
assumed the full range of general abstraction to be available, wrong allocations,
such as Si

tnow+1 ← 2 and Si
tnow+2 ← 3, would be possible in the abstract view of

the intermediary i and need systematic treatment.

The intuition behind temporal abstraction directly stems from Example 4.
For each future time step, we perform a maximization step as well as a
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minimization step that provides us with the feasible regions of all subordi-
nate agents, which are combined to find abstract boundaries. Technically, for
a supplier a modeled by SAa with its associated transition system TTS(SAa) =
(Σ, −→), we look for Sa,max

t = max{S | ∃σ ∈ Σ : (ma
tnow , σa

tnow) −→(t−tnow)

σ ∧ σ.S = S} and dually for the minimization. For the constraints showed in
Sect. 3, we can calculate these boundaries by ramping-up and down step-wise
but in general this need not hold.6

Restricted transitions regarding possible supply are encoded in a supplier’s
jump conditions Jumpa. Given a state and supply, we assume that all conditions
allow to derive functions that present minimal and maximal supply and states
in the following time step and call them inertia functions. For each mode m ∈
Ma and c = Jumpa(m), we require associated functions cmin and cmax. We
write σa,max

t and Sa,max
t to denote the states and supplies for supplier a at the

maximization step t (dually for the minimization). To illustrate the concept
of such inertia functions, consider a fixed rate of change condition maxChange:
|Sa − S′a| ≤ Sa

δ . We can derive bounding functions that depend on a state as
follows: maxChangemin(σa, Sa) := (σa, Sa − Sa

δ ) and maxChangemax(σa, Sa) :=
(σa, Sa +Sa

δ ). Similarly, in the case of a start-up condition su, sumax(σa, ) equals
(σa〈m → on〉, Sa

min) if σa.cd = 0 (the remaining “count down” in that state) and
(σa〈cd → cd − 1〉, 0) if σa.cd > 0. In addition, minimization and maximization
steps ought to respect minimal and maximal productions of the respective mode.

Based on these inertia functions, we derive Algorithm 2 to exclude infeasible
parts of the search space. For a future time step t, we identify the minimal and
maximal contribution of each subordinate a returned by its inertia functions. To
obtain the minimal and maximal output of the intermediary in this time step,
we combine and merge the resulting intervals with ⊗. We write Li

t to represent
the feasible regions of the intermediary i for time step t which corresponds to
the combined gray intervals in Fig. 4. These intervals further constrain feasible
schedules in addition to the general bounds represented by the combined white
intervals established by general abstraction.

Temporal abstraction thus adds constraints excluding infeasible regions for
specific time steps in the synthesized optimization problem (on higher levels),
thereby further reducing the abstracted search space. These constraints are as
well only concerned with Si

t and therefore seamlessly integrate with the AAM
found by general abstraction.

∀t ∈ W : ∃[x, y] ∈ Li
t : x ≤ Si

t ≤ y (5)

In addition to the general boundaries Li returned by general-abstraction(i)
(see Algorithm 1) that hold for all time steps, we constrain Si

t (the supply of i
in time step t) to lie in an interval specified by Li

t. Section 5.4 investigates the
effects of temporal abstraction.
6 Consider a supplier with limited fuel resource in-flow such as, e.g., a biogas plant.

At a future time step t, the supply could actually be higher if no gas had been spent
in the previous steps rather than ramping-up upfront and needing to ramp-down at
t due to the lack of fuel.
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Algorithm 2. Temporal Abstraction to exclude infeasible ranges
Require: i is an intermediary; σtnow

contains state tnow for all suppliers a ∈ sub(i)

Ensure: (Li
t)t∈W consists of the feasible regions reachable by the intermediary at time step t

1: procedure temporal-abstraction(i, σtnow
)

2: intermediaries ← {a is an intermediary | a ∈ sub(i)}
3: for all j ∈ intermediaries do
4: (Lj

t )t∈W ← Temporal-Abstraction(j, σj
tnow

)

5: ∀a ∈ sub(i) \ intermediaries : σa,min
tnow

, σa,max
tnow

← σa
tnow

6: for all t ∈ W do
7: for all a ∈ sub(i) \ intermediaries do
8: Sa,min

t , σa,min
t ← cmin(σ

a,min
t−1 , Sa,min

t−1 ) � c = Jumpa(σa,min
t−1 .m)

9: Sa,max
t , σa,max

t ← cmax(σ
a,max
t−1 , Sa,max

t−1 ) � c = Jumpa(σa,max
t−1 .m)

10: La
t ← {[Sa,min

t , Sa,max
t ]}

11: Li
t ←⊗

a∈sub(i) La
t

12: return (Li
t)t∈W

4.3 Sampling Abstraction

In addition to finding the feasible regions of an intermediary, we are interested in
functional relationships between aggregate variables, such as mapping the total
production of all subordinate agents to total costs. Similarly, inertia functions for
the intermediary depending on current productions ought to be found. Temporal
abstraction only goes so far as to exclude definitely infeasible productions at time
t. It does not restrict the transition between two independently feasible but not
consecutively reachable productions for future time steps.

Example 5. In the scenario described in Example 4, we found that Li
tnow+1 =

〈[7, 9]〉 and Li
tnow+2 = 〈[0, 0], [1, 1], [7, 11]〉 are feasible. Assume a schedule leav-

ing suppliers a and b at their current state during time step tnow + 1 (thus
Si

tnow+1 = 8 ∈ Li
tnow+1) but asking Si

tnow+2 = 11 ∈ Li
tnow+2. Clearly, both sched-

uled productions are individually attainable with respect to temporal boundaries
but ignore the fact that Si

tnow+2 = 11 is reachable only if Si
tnow+1 = 9. More

precisely, b needs to already ramp up to 9 in step tnow + 1 to reach 10 in step
tnow + 2 when a is then able to provide its minimum level 1, leading to a com-
bined production of 11. With regard to Fig. 4, consider a schedule leaving the
suppliers at their current output for the time steps tnow + 1 and tnow + 2 but
demanding Si

3 to be maximal. This schedule ignores that, starting from state
σtnow , only regions in Li

tnow+1 ⊂ Li, i.e., the gray intervals in time step tnow + 1
are possible.

Hence, inertia functions for the intermediary mapping a certain aggregate
production to possible successor states are of interest. Similarly, an intermedi-
ary’s cost function is needed to be able to make better allocations on higher
levels. We propose to acquire an abstract representation of these functional rela-
tionships by sampling, i.e., solving several optimization problems that “probe”
the collective behavior of an intermediary. Concretely, these sampling problems
consist of the constraints given by the composition of agent models and introduce
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Fig. 4. Temporal abstraction for an intermediary consisting of three suppliers given
their current states shown in time step tnow. White boxes indicate general bounds,
gray areas represent the temporal boundaries at time step t. Supplier a needs two time
steps to start up and is then available at its minimal output.

an additional constraint that binds the input variable to some particular value.
Regarding inertia functions, as objective, the output variable is minimized or
maximized.

For instance, consider an AVPP with 400 being included in its feasible regions
obtained by general abstraction. Multiple configurations of its children can lead
to these 400, resulting in varying possible increases in production. To find the
maximal positive change, we enforce 400 = Si

tnow =
∑

a∈sub(i) Sa
tnow and ask to

maximize Si
tnow+1. Assuming that the solution yields 450, we collect the pair

(400, 450) as sampled information. Similarly, we find the minimal costs by using
the objective to minimize κ(Si

tnow) =
∑

a∈sub(i) κ(Sa
tnow) given Si

tnow = 400.
Performing this procedure not for one but a set of sampling points evenly

distributed over the respective input range is intended to capture the interme-
diary’s characteristics. The resulting input-output pairs can be represented by a
suitable approximation method. We currently employ piecewise linear functions
since they are readily supported by MIP or constraint solvers and have already
been applied in model abstraction in simulation engineering [13]. Algorithm 3
illustrates this idea for finding maximal productions given the current state.
Since absolute time indices are not needed for this calculations, we may fix Si

0

and maximize Si
1. Note that we formulate constraints and the objective syntac-

tically using quotes rather than presenting them semantically in terms of, e.g.,
their extension.

As of now, the sampling points are selected equidistantly across the full range
although more informative points can be selected systematically using techniques
borrowed from active learning [39]. The resulting sampling optimization prob-
lems (see line 7 in Algorithm 3) are NP-hard in general. Therefore, a robust
implementation ought to consider bounding the time spent on optimization by,
e.g., setting a time limit. If then no solution is found for a particular input,
we give up on it and deal with the next input. Guidance by properties of the
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Algorithm 3. Sampling Abstraction for rates of change
Require: (SA)a∈sub(i) is a family of supply automata
Ensure: Si+

δ collects pairs of the positive change speed
1: procedure sampling-abstraction(i, s)
2: (X, D, C, f) ← synthesize((SA)a∈sub(i), f, (R, ≤)) � see Sect. 3.2
3: I ← choose-sampling-points(s, Li), Si+

δ ← ∅ � select s feasible points
4: for all inp ∈ I do
5: C′ ← C ∪ {“Si

0 = inp”}
6: f ′ ← “maximize Si

1” � new objective function
7: out ← solve (X, D, C′, f ′)
8: Si+

δ ← Si+
δ ∪ {(inp, out)}

9: return convert-to-piecewise-linear(Si+
δ )

function, such as monotonicity (x ≤ y → f(x) ≤ f(y)) or extensivity (x ≤ f(x)),
can help to shrink the search space.

It has to be stated that this form of abstraction leads to over-approximations
of the actually possible rates of changes and minimal costs. This is due to the
fact that among all configurations yielding the input, we select an extremal
one. For instance, for a certain level of production and possible ramp-up, we
select a configuration that offers the most potential (all suppliers far enough
below their maximum). In other cases showing the same aggregate supply, some
subordinate agents might however be already peaking and cannot offer additional
ramp-up. This leads to an over-approximation of the ramp-up. Similarly, when
considering a schedule in the abstract view, we assume to achieve the optimal
costs for each scheduled production individually (i.e., for each time step), whereas
transitions among them might not be technically feasible in the concrete view.
More sophisticated abstraction techniques to allow for more robust estimations
(e.g., by considering minimal as well as maximal costs for a given supply) have
yet to be investigated.

However, regarding our current setting, our evaluation in Sect. 5.2 shows
promising results for using the proposed scheme for cost function approximation.
Mostly, this is due to the fact that regionally optimal solutions at the lowest level
of the hierarchy can improve upon possibly suboptimal decisions made on higher
levels. As expected, Table 4 and Fig. 7 show that more sampling points lead to
increased accuracy in abstraction observable by better overall costs at the cost
of higher running times. An implementation exploiting this principle could start
by collecting an initial small set of sampling points to offer a first crude approx-
imation faster while collecting more sampling points in a background process.
Finally, the sampled inertia function is used to define the set of transitions and
suitable jump conditions for the abstracted supply automaton. Consider two
modes mj , ml with j = [x, y], l = [x′, y′] ∈ Li obtained by general abstraction
such that y < x′. We add transitions (mj , ml) if Si+

δ (y) ≥ x′ and (ml, mj) if
Si−

δ (x′) ≤ y. Furthermore, we add reflexive transitions (mj , mj). All of these
transitions include the jump condition Si−

δ (Si) ≤ S′i ≤ Si+
δ (Si).
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5 Evaluation

To give the presented algorithms empirical grounding, we evaluated the approach
on problems taken from decentralized energy management using power plant
models built from freely available data [12]. A centralized (optimal) solution
planning the outputs of all power plants at once is compared to the regio-central
approach using abstraction. These solutions are used for benchmark purposes
offering insight in how close to the optimum the regio-central approach gets.

More specifically, we consider biofuel, hydro, and gas plants in the region of
Swabia in Bavaria. Nameplate capacities, i.e., maximal productions are drawn
from a distribution according to this data. Minimal productions depend on the
type of plant and are given as percentage of the nameplate capacity. Similarly,
maximal rates of change per minute and costs per kWh are selected based on
the type and taken from [21,26], respectively. To sum up, our data is based on
the quantities in Table 2.

This statistical data forms the basis of a generative model that we can use
to sample realistic power plants for our simulation. First, we sample the type
according to their relative frequency and then draw the maximal production
depending on the selected type according to normal distributions (N (368.72,
1324.62) for biofuel, N (264.63, 746.55) for hydro, and N (275.88, 494.80) for gas)
within the bounds listed in Table 2. Rates of change and costs are added based on
type and maximal production. The demand, i.e., the residual load, to be fulfilled
by a set of power plants is based on consumer data of [29] and scaled such that the
peak loads map to 110% of the drawn plants’ combined maximal productions –
in order to have a representative load test for the system. Regarding Eq. (1), we
set αΔ to a high value7 to prioritize the goal of meeting the demand but still
minimize costs among all demand-satisfying schedules.

Upon drawing a set of power plants, hierarchies are created similar to a B+
tree, i.e., only AVPPs at the lowest level control physical power plants. The hierar-
chies’ shapes, i.e., depth and width, are controlled by restricting the maximal num-
ber of physical power plants per AVPP at the leaf level and the maximal number
of directly subordinate AVPPs at the inner node levels. First, the “leaf” AVPPs

Table 2. Initially assumed distribution of input data including characteristics [21,26].
We list minimal and maximal bounds for the maximal production. Standard deviations
for cost distribution are given in parentheses.

Type Rel. Frequency Max. Power Min. Power Rate of Change Costs

[%] [KW] [%] [%/min] [e / KW]

Biofuel 54 [3.0, 17374.0] 35 6 0.175 (0.014)

Hydro 43 [2.0, 7800.0] 0 50 0.15 (0.017)

Gas 3 [1.0, 2070.0] 20 20 0.0865 (0.004)

7 The value of αΔ effectively acts as a “market price” since violations would have to
be compensated by buying additional energy.
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are created by taking a random permutation of the physical plants and picking
clusters of the maximal physical plant count. Then, new hierarchy levels in the
form of intermediate AVPPs, i.e., inner nodes, are introduced when needed.

We export the synthesized optimization problems (be it regio-central or cen-
tral ones) as mixed integer programs that are solved by IBM ILOG CPLEX [10]
which is indicative for the state-of-the-art in commercial energy management
software [35,47]. Given the same power plants and initial states, the problem
is solved, unless otherwise stated, for a period of half a day (i.e., 48 time steps
in 15 min intervals, being a standard in energy markets) both centrally and
regio-centrally — called a run. We obtain comparable results by taking care of
random seeds and reproducibility. Consequently, all our experiments follow the
basic structure:

1. Draw n power plants
2. Load consumer data for half a day (unless otherwise stated, t = 48 steps)
3. Solve the resource allocation problem in a hierarchical way
4. Solve the resource allocation problem in a central way
5. Repeat k times (k depends on the experiment)

We investigate parametrizations for the regio-central approach depending on
the specific evaluation questions that can be seen as the independent variables
in our experiment setup. That includes the number of sampling points to be
used, the maximal number of concrete plants per AVPP as well as the maximal
number of AVPPs per AVPP to control depth and width of hierarchy structures.

Several dependent variables are measured to compare the performance and
are introduced when needed. The most prominent ones are clearly overall costs
and runtimes per run as well as per time step which results in either k · t or k
data points that are statistically analyzed.

The experiment suite and full source code including an instruction on how
to run the experiments can be found online8 in an attempt to provide replicable
research. Each presented experiment was run on a machine having 4 Intel Xeon
CPU 3.20 GHz cores and 14.7 GB RAM on a 64 bit Windows 7 OS with 8 GB
RAM offered to the Java 7 JVM running the abstractions as well as CPLEX.

All central models used for comparison were solved with a 30 min time limit
per time step. When planning for 15 min intervals, a solution must be available
much earlier. We still wanted to collect optimal solutions as benchmarks and
therefore allowed twice that period for the central solver. We examine questions
of interest and present the results of the experiment runs in the following sections.

5.1 Scalability

Does the size of the problem impact the performance in terms of time and qual-
ity? We expect that upon reaching a certain number of power plants, the runtime
per time step scales better in the hierarchical setting than in a central bench-
mark. We vary the number of power plants considered and compare the achieved
8 https://github.com/Alexander-Schiendorfer/TCCI-Abstraction.

https://github.com/Alexander-Schiendorfer/TCCI-Abstraction
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runtime and costs. Given n power plants, we construct a hierarchy by group-
ing 35 physical plants at the leaf level as suggested by Sect. 5.3. Inner AVPPs
may control up to 10 other AVPPs. By inspecting the runtime behavior of a
centralized solution from 5 to 100 plants (see Fig. 6), we found that, although
the median runtimes grow linearly with the number of scheduled suppliers, the
spread increases strongly and, in particular, outliers showing high runtimes are
more probable. We drew 50 times a set of power plants of the respective size and
simulated 48 time steps, i.e., half a day.

Table 3 presents the results per time steps aggregated over 2400 data points.
For each input size, the difference between monetary costs per step as well as
the difference between runtimes per time step were statistically significant using
a paired t-test at α = 0.01. Figure 5 visualizes this effect, indicating that the
central runtimes strictly grow faster than the hierarchical ones. However, the
overhead costs incurred by using the hierarchical scheme are in the order of
magnitude of 1% while speed-ups of up to 50 % compared to the central solution
could be achieved. Note that we compare the runtime of the centralized approach
to the aggregated sequential runtime of all intermediaries in the regio-central
approach. Further runtime improvements can be achieved when parallelizing
the schedule creation of independent intermediaries, i.e., those that belong to
different subtrees in the hierarchy.

In addition to the speed-up per time step, one has to consider the runtime to
be invested on the abstraction itself.9 For a period of 48 time steps, the “fixed
costs” (in terms of runtime) for abstraction consist of the computational effort for
general and sampling abstraction. With only 50 plants, amortization of the hier-
archy is not reached as the mean execution times for the central solution (57.49 s)
are far below the hierarchical case (82.57 s). At 100 plants, the central times
(158.87 s) begin to exceed the hierarchical case (154.91 s). This development
culminates in a difference of 5232.75 s (central) vs. 3210.62 s (hierarchical) when

Fig. 5. Runtimes central vs. hierarchi-
cal per time step. 1

6
of the standard devi-

ation is presented for visualization.

Fig. 6. Runtime development of central
solutions. Only runtimes less than 5 s are
plotted. With rising n, the probability of
outliers increases drastically.

9 Note that the temporal abstraction execution is already included in the runtime per
time step for the hierarchical setting.
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Table 3. Comparison of central and hierarchical approach over varying numbers of
plants. Costs (Γ ) and runtimes (T ) are presented per time step averaged over 2400
data points from 50 drawn sets of plants each considering 48 time steps. Values in
parentheses denote standard deviations.

# plants Tcentr (sec) Thier (sec) rel. Γcentr (e) Γhier (e) rel.

50 1.2 (3.42) 1.49 (0.3) 124.18% 2395.6 (536.14) 2398.21(536.16) + 0.11%

100 3.31 (7.43) 2.82 (0.57) 85.19% 4777.65 (845.56) 4782.79(845.81) + 0.11%

150 5.27 (6.19) 4.43 (1.32) 83.94% 7008.41 (1170.96) 7017.81(1169.98) + 0.14%

200 8.09 (8.54) 5.92 (2.45) 73.23% 9431.81 (1322.07) 9442.39(1321.87) + 0.11%

250 10.67 (5.77) 7.71 (3.62) 72.31% 11805.68 (1686.42) 11819.61(1686.49) + 0.12%

300 15.2 (9.58) 9.6 (5.37) 63.14% 14120.96 (1818.34) 14138.42(1818.0) + 0.13%

350 19.15 (13.7) 11.44 (8.16) 59.71% 16343.07 (2139.34) 16362.32(2139.0) + 0.12%

400 23.2 (13.46) 13.49 (10.16) 58.14% 18695.82 (2388.73) 18721.15(2390.16) + 0.14%

700 65.68 (37.26) 45.28 (56.43) 68.93% 32576.8 (3930.08) 32910.47(3906.97) + 1.05%

800 81.19 (45.26) 36.07 (65.84) 44.43% 37376.75 (4435.96) 37664.91(4431.76) + 0.79%

900 109.02 (75.49) 61.64 (107.57) 56.54% 41936.44 (4890.82) 42244.31(4835.42) + 0.76%

considering 900 plants. The average relative share of abstraction runtime (exclud-
ing temporal abstraction time that belongs to every time step) with respect to
the full 48 time step simulation decreases from 13.5 % (50 plants) to 7.8 % (900
plants). Concluding, we see a significant speed-up but, perhaps more impor-
tantly, that the abstracted models obtained at reasonable time investments are
accurate enough to provide solutions close to the optima.

5.2 Sampling Accuracy

How does the extra running time spent on collecting sampling points pay off
in terms of accuracy? Since we expect the abstracted models to increase in
accuracy by using more sampling points, considerable improvements should be
obtained at the cost of getting these sampling points (involving more sampling
optimization problems) upfront. For varying numbers of power plants (50, 200,
and 500) and varying numbers of sampling points (5, 10, 15, 25, and 35), we
drew 50 times a set of plants from our generative model and calculated 5 time
steps both regio-centrally and centrally (optimal) for comparison, totaling in a
number of 250 data points. A maximal number of 20 power plants per AVPP
and 5 AVPPs per AVPP were set to consider at least 3 AVPPs (in the case
of 50 plants) up to 25 AVPPs (in the case of 500 plants), where we also need
an additional intermediate layer to allow for several abstraction steps. Table 4
summarizes the results that are visualized in Figs. 7 and 8.

As expected, the runtimes rise with the number of sampling points due to the
number of optimization problems that have to be solved in abstraction. Since 250
identical steps (50 draws with 5 time steps each) were solved by the algorithm
with parameters, we tested our hypothesis of varying costs per time step using a
pairwise t-test at α = 0.01. Significantly different costs per step were shown for
all combinations of sampling points other than 25 vs. 35 sampling points with
50 plants, 5 vs. 15 and 25 vs. 35 sampling points with 200 plants, and 5 vs. 10
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Fig. 7. The influence of sampling points
on the accuracy of abstracted models.
Extra costs are normalized w.r.t. the
number of considered plants. We plot 1

4

of the std.dev. for visualization purposes.

Fig. 8. The influence of the number of
sampling points on the overhead costs in
the case of 500 plants taken from Table 4.
A Gaussian Process regression model is fit
to the data to visualize the nonlinear func-
tional relationship.

sampling points with 500 plants. In general, one can see a tendency that very
high accuracy is achievable by selecting many points. However, offering more
sampling points alone does not guarantee actual improvement due to the fact
that the points are just selected equidistantly over the full range and therefore,
informative points may appear randomly in sets consisting of fewer points but
not in the larger one. We observe this behavior, e.g., when comparing 5, 10
and 15 sampling points for 200 plants. By chance, 10 sampling points lead to
a significant improvement over 5, whereas 15 points compare unfavorably to 10
and yield accuracy similar to just 5 points. This confirms our findings in [39],
emphasizing that more systematic selection is needed. Figure 8 provides more
insight into the effect of increasing the number of sampling points on the achieved
accuracy. This relationship is clearly nonlinear and one can observe a classical
“diminishing returns”: adding points to an already saturated set of observed
sampling points does provide less benefit than to a comparably smaller set.

5.3 Hierarchy Influence

How does the hierarchy depth and breadth affect the quality and runtime? For
this experiment, we varied the maximal number of physical plants per AVPP
(ppAVPP) as well as the maximal number of AVPPs per AVPP (avppAVPP)
resulting in different system structures for 600, 700, and 800 plants in total.
Both parameters lead to broad structures if they are large and deep structures
if they are small, thus provoking more abstraction steps.

Table 5 lists the results for different numbers of physical plants as well as
ppAVPP/avppAVPP-combinations. Using a paired t-test at α = 0.01, we com-
pared all ppAVPP/avppAVPP-combinations in terms of runtime and costs, show-
ing significant differences in most cases. Setting ppAVPP to a small value (5 or 15)
leads to fragmented structures where accuracy and efficiency can be wasted as
the centralized solver still has capacities for higher numbers of plants, confirming
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Table 4. Comparison of different sampling point settings. Costs are presented per
time step averaged over 250 data points from 50 drawn sets of plants each considering
5 time steps. Overhead shows relative and absolute extra costs compared to the optimal
solutions. Runtime consists of the time needed to schedule 5 steps and overhead for
sampling abstraction. Values in parentheses denote standard deviations. Optimal costs
are written in bold.

# sampling points costs per step rel. overhead abs. overhead runtime

50 power plants: 2180.71 e (453.91)

5 sps 2187.73 e (453.57) + 0.32% (0.29) + 7.03 e (2.37) 27.29 s (2.82)

10 sps 2184.31 e (453.87) + 0.17% (0.16) + 3.6 e (1.79) 41.42 s (4.16)

15 sps 2183.45 e (453.72) + 0.13% (0.15) + 2.75 e (1.77) 52.81 s (2.52)

25 sps 2182.05 e (454.01) + 0.06% (0.06) + 1.34 e (1.1) 78.11 s (2.92)

35 sps 2181.9 e (453.86) + 0.05% (0.07) + 1.19 e (1.15) 106.86 s (3.67)

200 power plants: 8587.1 e (938.36)

5 sps 8717.41 e (1014.05) + 1.52% (1.53) + 130.31 e (12.28) 107.05 s (3.61)

10 sps 8671.07 e (975.07) + 0.98% (1.36) + 83.97 e (11.2) 172.89 s (33.44)

15 sps 8713.46 e (995.13) + 1.47% (2.22) + 126.36 e (14.02) 225.95 s (43.85)

25 sps 8618.24 e (938.57) + 0.36% (0.83) + 31.14 e (8.27) 329.84 s (20.76)

35 sps 8616.31 e (952.83) + 0.34% (0.7) + 29.21 e (8.14) 460.12 s (51.72)

500 power plants: 21157.72 e (1853.51)

5 sps 21393.53 e (1885.9) + 1.11% (1.08) + 235.81 e (14.97) 244.0 s (11.28)

10 sps 21428.24 e (1868.18) + 1.28% (1.16) + 270.52 e (15.51) 357.59 s (10.71)

15 sps 21339.92 e (1870.11) + 0.86% (0.99) + 182.2 e (14.37) 470.32 s (18.24)

35 sps 21176.55 e (1853.2) + 0.09% (0.09) + 18.83 e (4.28) 934.63 s (26.98)

our findings in Fig. 6. The largest value for ppAVPP, 35, led to the best runtime
and cost efficiency in all considered cases which is why it was used as setting for
Sect. 5.1. Interestingly, the tradeoff between cost and runtime performance seems
to be regulated by the depth of the hierarchy; deep structures (avppAVPP = 5)
led to the best runtime performance at slightly higher costs due to more abstrac-
tions. In the case of 600 plants, however, the differences in cost with 35 plants
per AVPP over all AVPP per AVPP settings was not significant. Similarly, the
difference in cost between 35/5 and 35/15 was not significant for 700 plants.
With 900 plants, however, the flat structure with 15 AVPPs per AVPP showed
significantly different costs compared to 5 and 10 AVPPs per AVPP. Concluding,
our results suggest that AVPPs at the leaf level need to schedule an adequately
number of power plants, whereas the speed-up benefits of having a deep structure
controlled by small inner nodes seem to outweigh the (in most cases insignifi-
cant) additional costs. A more thorough analysis including probabilistic models
of the system structures and more ppAVPP/avppAVPP-combinations is planned.

5.4 Temporal Abstraction for Inertia

Is temporal abstraction required for accurate abstracted models? We want to
investigate the effects of temporal abstraction on the achieved accuracy. There-
fore, we analyzed a small setting consisting of 50 power plants that are either
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Table 5. Influence of the hierarchy on costs and runtimes per time step. Costs are
presented per time step averaged over 250 data points from 50 drawn sets of plants
each considering 5 time steps. Left column contains runtimes in seconds; right col-
umn contains costs in Euros; values in parentheses denote standard deviations. Best
configurations per number of plants are written in bold.

plants per AVPP 5 AVPPs per AVPP 10 AVPPs per AVPP 15 AVPPs per AVPP

600 plants:

5 plants per AVPP 34.27 25895.19 43.92 25840.34 34.43 25842.65

(1.63) (2110.12) (2.16) (2107.79) (1.4) (2106.21)

15 plants per AVPP 33.66 25780.93 31.07 25765.1 31.64 25784.81

(1.42) (2137.22) (1.39) (2120.32) (1.28) (2122.12)

35 plants per AVPP 25.1 25729.94 27.96 25712.88 28.1 25712.09

(2.29) (2080.1) (9.93) (2108.26) (6.89) (2106.86)

700 plants:

5 plants per AVPP 39.65 30109.09 50.27 30048.11 40.02 30045.2

(1.61) (2444.44) (1.67) (2422.91) (1.56) (2418.81)

15 plants per AVPP 39.51 29992.62 35.91 29966.94 36.51 29972.93

(3.9) (2449.15) (1.57) (2447.9) (1.4) (2429.5)

35 plants per AVPP 28.77 29897.34 30.18 29934.82 38.46 29896.27

(1.73) (2431.65) (4.19) (2445.54) (18.2) (2430.87)

800 plants:

5 plants per AVPP 56.47 34542.19 59.43 34456.06 45.8 34458.11

(1.98) (2747.09) (2.64) (2737.62) (1.85) (2737.22)

15 plants per AVPP 41.93 34502.89 41.36 34310.24 42.25 34377.36

(2.19) (2738.86) (1.49) (2742.44) (1.62) (2750.6)

35 plants per AVPP 32.81 34377.9 34.52 34383.45 41.5 34289.73

(2.18) (2722.67) (2.28) (2711.98) (14.74) (2722.37)

grouped in 10 AVPPs of 5 power plants or in 5 AVPPs of 10 power plants that
are managed by the root AVPP. Both cases show a hierarchy of depth 2 and
therefore need one step of abstraction. Furthermore, the length of one time step
has been reduced from 15 min to 1 min to consider increased effects of inertia.
Errors are defined as differences between schedules assigned to intermediaries
and their possible redistribution to their own subordinates.

As Table 6 shows, the error between assigned schedules to an intermediary
and actually achievable schedules, i.e., the difference between its own subordi-
nates’ overall supply and assigned share of the residual load, can be reduced
by employing temporal abstraction. This difference in errors is significant using
a pairwise t-test at α = 0.01 for both 5 as well as 10 plants per AVPP. Also,
the error roughly doubles with 5 plants since more abstractions are performed
and more possible deviations are introduced. Interestingly, the tighter rates
of change induced by the shorter scheduling time steps makes the problem
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Table 6. Influence of temporal abstraction. Costs are presented per time step averaged
over 2400 data points from 50 drawn sets of plants each considering 48 time steps.
Runtime is measured per time step (excluding fixed times for general and sampling
abstraction); error denotes the overall discrepancy between supply and demand. Values
in parentheses denote standard deviations.

plants per AVPP Tcentr Thier Rel. Error

without temporal abstraction:

5 plants 12.25 (127.69) 4.36 (1.92) 35.55 % 3.55 (55.06)

10 plants 10.67 (116.23) 4.1 (0.56) 38.37 % 1.37 (33.9)

with temporal abstraction:

5 plants 14.33 (141.99) 3.89 (0.58) 27.15 % 0.26 (6.25)

10 plants 15.01 (143.04) 4.41 (2.49) 29.38 % 0.01 (0.09)

significantly harder for CPLEX. This setting closely resembles the one used in
[41], explaining the proportionally higher speed-up of about 70% compared to
Sect. 5.1 with about 50%. Therefore, the proposed abstraction techniques can
prove particularly useful when short intervals are considered to react timely on
updated prognoses, slow power plants have to be scheduled, or schedules should
not utilize the full technical potential of a power plant’s rate of change, i.e., are
restricted by soft constraints.

6 Related Work

Our proposed approach draws inspiration from many well-established concepts
from diverse areas of computer science, including abstract interpretation, model
abstraction, decomposition, and finite state machines.

The methodology of using abstracted models that are then refined on lower
levels is closely related to abstract interpretation [9] used in program verification
or approximation techniques used in the analysis of hybrid systems [17]. The lat-
ter technique analyzes minimal and maximal derivatives ẋ of a state variable x
(e.g., supply) w.r.t. time given a model in the form of differential equations and
produces so-called rectangular hybrid automata that have constant upper and
lower bounds. Hence, in one mode, x can perform continuous time transitions
according to ẋmin ≤ ẋ ≤ ẋmax, similar to our considerations in Sects. 4.2 and 4.3.
Merging output variables shared by a composition of agents (the aggregate sup-
ply) as we do in general abstraction is not considered. However, approximations
obtained by their technique could serve as supply automata.

Abstractions have been treated from many different angles and in a variety of
fields. First attempts toward automatic “model abstraction” to make pre-defined
abstractions of complex physical system models obsolete were made in [46]. From
an AI perspective, [15] was an attempt to systematically describe different vari-
eties of abstraction and their formal properties, especially with regard to deduc-
tion and representation. A similar systematization was done in [13] where a
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taxonomy of common model abstraction techniques from the perspective of the
simulation engineering community is provided. Crucially, [13] states that abstrac-
tion techniques “must maintain the validity of the simulation results with respect
to the question being addressed [...]” which holds true in the abstraction of com-
posite control models as well. Another approach is to differentiate structural and
behavioral abstraction [28]. The authors demonstrate abstraction methods and,
e.g., use neural networks to get a behavioral abstraction of subcomponents that
were given as state machines.

Abstraction methods for task and resource allocation problems are presented
in [8]. One of the techniques, summarization, has similarities to our general
abstraction since it combines time intervals in much the same way that we com-
bine production intervals (cf. Sect. 4.1). The other technique, generalization, uses
a taxonomy of the domain concepts used in the constraints to find more gen-
eral formulations, e.g., to express that a certain operating room belongs to a
certain unit within a hospital. Instead of assigning a surgeons to concrete oper-
ating rooms, they are assigned to units, making the problem smaller. We do not
employ a similar technique. The paper argues for the inclusion of user decisions
in the abstraction process to ensure that abstraction errors are avoided.

An approach to extract constraint models from an architectural description
of the system for use in runtime optimization is presented in [16]. A model of
the instantiation of an abstract architecture is used to derive constraints that
describe the correct configurations of a system. The utility function takes into
account the utility of the configurations as well as the utility and cost of the
reconfiguration and the decision making itself. The resulting problem can either
be solved with a MIP approach or by pseudo-boolean optimization (PBO) in
order to find the best configuration of the system given the circumstances. Inter-
estingly, the evaluation results suggest that the PBO method that intuitively
should yield more accurate results failed to deliver and an approach based on
MIP is sufficient. Similar to our work, the optimization problems are constructed
at runtime, but no abstraction is attempted. Since the systems regarded do not
follow a hierarchical structure, the problem solved has a very different structure.

The problem we address has similarities with lot size problems, especially
those with minimal order quantities [33]. These problems address the optimal size
of orders in cases where the machines producing them have a setup cost as well as
a unit production cost and there is the possibility to store an inventory of items
for later delivery. Minimal order quantities give a lower bound of the production
per time step that is similar to the one for power generators: either a machine
is switched off completely or it produces at least a minimal number of units.
Formulations with a capacity constraint also limit the maximum inventory [27].
Such a limit can be used to model the maximum capacity of storage power plants
in a power grid. However, the formulations from operations research do not
address two important issues in energy management: change rates and loading
times. The proposed models assume that it is possible to switch from maximum
production (usually bounded by the cumulative demand) to zero production
within one time step. Likewise, the inventory can take up as many units as
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produced within a single time step. Power generators, however, have ramp up
times that limit the change in their production from one time step to another.
Power storage facilities, on the other hand, have loading rates that limit the
energy that can be stored per time step. These issues are reflected in the supply
automata we present in Sect. 3.

7 Conclusions and Future Work

In this paper, we addressed a resource allocation problem that is very relevant to
energy management systems. The variant we consider shows minimal in addition
to maximal supply capacities, discontinuity by on/off switches, and inert suppli-
ers. We have motivated the need for self-organizing hierarchical structures due to
scalability concerns and the large search space of “good hierarchies” in terms of
runtime and monetary efficiency. To allow for self-organization, we need to sepa-
rate individual properties, such as the start-up behavior of suppliers, from overall
goals: meeting the demand cost-efficiently. In the process, we suggested supply
automata to model individual, heterogeneous supplies as suitable formalism for
common problems in the power systems literature that can be automatically
translated into synthesized optimization problems and provided an example.

Based on supply automata, we discussed techniques to calculate abstractions
of the composite models of a sub-system, i.e., intermediaries. Our evaluation
shows that the hierarchical setting achieves a quality within 1% of the optimal
solutions at about 30% to 50% of the runtime by mere decomposition, i.e.,
without a parallel execution of the individual sub-systems. The runtimes of the
hierarchical approach for given input sizes showed more favorable growth than a
centralized benchmark using CPLEX. While the presented abstraction methods
have been successfully applied to a market-based scheduling approach [2], we
hope that the presented algorithms and models also generalize well to other
problem domains.

The paper focused on the modeling and optimization aspects of the overall
hierarchical, multi-agent approach sketched in Sect. 1. Uncertainties arising from
deviations of predictions are dealt with by means of robust optimization methods
using trust-based scenarios as described in [3]. Cooperative, i.e., truthful behav-
ior of the involved agents is incentivized using techniques inspired by mechanism
design [2]. It remains to be analyzed if a truthful mechanism for revealing the
supply automata (the “types” in the language of algorithmic mechanism design)
is achievable and/or desirable.

Our experiments also revealed further directions of research: given that the
quality of abstraction depends strongly on the number and location of sam-
pling points (see Sect. 5.2), we plan to investigate better choices for a guided
selection strategy for sampling points using active learning or response surfaces.
First tests show significant potential for improvement [39]. Furthermore, Sect. 5.3
highlighted the influence of the hierarchy on solution quality and runtime. Cur-
rent techniques [43] rely on local rules triggering reconfigurations. Assuming
patterns in the relationship of, e.g., input size, type composition and runtime,
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we hope to learn more about the hardness of subproblems given certain features
using techniques from empirical algorithmics such as model-based algorithm con-
figuration [22].

References

1. Abouelela, M., El-Darieby, M.: Multidomain hierarchical resource allocation for
grid applications. J. Electr. Comput. Eng. 2012, 8 (2012)

2. Anders, G., Schiendorfer, A., Siefert, F., Steghöfer, J.P., Reif, W.: Cooperative
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42. Schiendorfer, A., Steghöfer, J.P., Reif, W.: Synthesised constraint models for dis-
tributed energy management. In: Proceedings of the 3rd International Workshop
Smart Energy Networks & Multi-Agent Systems (SEN-MAS 2014), pp. 1529–1538
(2014)
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