
A research overview and evaluation of performance
metrics for self-organization algorithms

Benedikt Eberhardinger, Gerrit Anders, Hella Seebach, Florian Siefert,
Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Eberhardinger, Benedikt, Gerrit Anders, Hella Seebach, Florian Siefert, and Wolfgang Reif.
2015. “A research overview and evaluation of performance metrics for self-organization
algorithms.” In 2015 IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, 21-25 September 2015, Cambridge, MA, USA, edited by Gerrit Anders,
Jean Botev, and Markus Esch, 122–27. Piscataway, NJ: IEEE.
https://doi.org/10.1109/sasow.2015.25.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1109/sasow.2015.25
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/


A Research Overview and Evaluation of Performance
Metrics for Self-organization Algorithms

Benedikt Eberhardinger, Gerrit Anders, Hella Seebach, Florian Siefert, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

E-Mail: {eberhardinger, anders, seebach, siefert, reif}@isse.de

Abstract—Self-organization (SO) algorithms are supposed to
restructure and reconfigure the system at run-time in order to em-
power it to fulfill its requirements under uncertain environmental
conditions. For this purpose, information about the state of the
environment and the system is used in feedback loops to establish
a flexible, powerful system. Consequently, the performance of the
SO algorithms has a significant effect on the overall performance
of the system. Indeed, it is hard to design high-performing SO
algorithms, because the environmental conditions the system has
to operate in are partially unpredictable at design time. A crucial
aid for the development of SO algorithms are tools that enable
the evaluation of the algorithms’ performance at design time.
These tools could also be used to select the best-fitting algorithm
and parametrization for a specific application, among others.
We show how existing performance metrics can be applied to
SO algorithms by evaluating different partition-based algorithms.
Based on these results, we discuss the advantages and limitations
of the existing metrics and deduce requirements for performance
metrics for SO algorithms.

Keywords—Self-organizing System, Self-organization Algo-
rithm, Performance Metrics, Evaluation, Self-Adaptation

I. PERFORMANCE OF SELF-ORGANIZATION ALGORITHMS

Self-organizing (SO) systems structure or organize them-
selves without explicit control from outside [1]. In general, SO
systems encompass a large number of interacting components
in an ever-changing environment. Despite these changing con-
ditions, they are able to operate robustly and flexible in open
and interoperable system settings. To achieve this behavior,
a SO mechanism has to collect information about the current
state of the system, analyze if the requirements are sufficiently
met, and, if this is not the case, trigger a SO algorithm that re-
establishes the requirements’ satisfaction by reorganizing the
system structure. Due to the system’s non-determinism, it is
very challenging to analyze its global behavior.

As a SO algorithm plays a central role in the system, its
quality and characteristics are crucial for the overall system’s
performance. Since SO algorithms have to operate under ever-
changing environmental conditions that are partially unpre-
dictable at design time, it is, indeed, far from obvious how
to design and implement the best performing SO algorithm
for a certain kind of system. Metrics that allow to evaluate the
algorithms’ performance at design time are thus an indispens-
able tool for engineering SO algorithms efficiently.

a) Performance Analysis: Analyzing the performance
of algorithms has been a topic of interest in computer science
for decades, mostly driven by theoretical analysis that is
based on abstraction, theorems, and proofs in order to find an

asymptotic bound on the dominant operation under a worst-
case or average-case model [2]. For example, the theoretical
analysis of Dijkstra’s algorithm [3]—which is applied to a
graph of n vertices and m edges—results in a worst-case bound
of O(m log n) or O(m + n log n). However, experimental
analysis by Cherkassky et al. [4] has shown that the worst-
case bound is overly pessimistic since Dijkstra’s algorithm
exhibits O(n+m) performance in many real-world situations.
This is just one example illustrating that there is not only
a need for experimental analysis of algorithms but also for
sound metrics. In the context of SO algorithms, this demand is
even stronger, as van Dyke Parunak and Brueckner [5] argue,
because the concepts of theoretical analysis are stretched to
their limits given that the majority of SO systems are formally
undecidable.

b) Performance Criteria: McGeoch [2] categorizes
metrics for evaluating the performance of classical algorithms
into the two performance criteria solution quality and time.
The latter indicates how much time (CPU, real, or logical) the
algorithm spent to solve given problems. Although the time
could be measured with high precision, it neither guarantees
accuracy nor generality [2]; the results depend on the platform
used to evaluate the performance. An essential technique to
cope with these issues is data analysis [6]. The other aspect
of performance, solution quality, is of interest when the task
at hand is to solve an optimization problem, that is, to find
a solution that is optimal with regard to a specific objective
function in a set of feasible solutions. In this case, the metric
for evaluating the solution quality can correspond to the
problem’s objective function.

c) Measuring Performance of SO Algorithms: For our
further investigations and as a running example, we use a SO
algorithm called PSOPP [7] (Particle Swarm Optimizer for
the Partitioning Problem) that represents an algorithm for weak
SO1. PSOPP is a particle swarm optimizer that partitions a set
of agents representing a (sub)system into pairwise disjoint and
non-empty groups. These groups constitute the (sub)systems’
organizational structure. Feasible organizational structures can
be described by so-called partitioning constraints that restrict
the number and the size of these groups. PSOPP is an
anytime algorithm and a metaheuristic that optimizes the
groups’ composition with respect to an objective function.
In our running example, PSOPP is used to optimize the
groups’ composition in each so-called separate subsystem of a
hierarchically structured system. An example of such a system
structure is shown in Figure 1: Here, two separate subsystems

1The classification of weak SO is used according to the definition of
Serugendo et al. [8].

122122122



�� ��

�� �� �� �� ��

Fig. 1. The graph shows a possible hierarchy formed by a SO algorithm.
Within this hierarchy, it is possible that just a subgraph, e.g., the right gray
part of the graph, is part of a reorganization. The impact on the working time
of the entire system is much smaller if the gray subgraph is reorganized than
in case of a reorganization of the left white part. Given that such hierarchical
structures are often exploited by SO systems (cf. [9], [7]), this characteristic
has to be addressed by metrics for SO algorithms.

s1 and s2 are shown with subordinate groups g1, g2, g3 and
g4, g5, respectively. Each separate subsystem, such as s1 or s2,
uses an instance of PSOPP to maintain a suitable partitioning.
We call this form of SO regio-central.

Clearly, both solution quality as well as time are perfor-
mance criteria that are applicable to SO algorithms. As shown
later in Equations (1) to (3), it makes sense to estimate a SO
algorithm’s performance by comparing the working time of the
SO algorithm to the working time of the controlled system.
This relation reflects the fact that the performance of the SO
algorithm determines the performance of the controlled system.
However, in a system consisting of many subsystems that can
reorganize themselves independently from each other, it is not
obvious how to define the working time of the controlled
system when, with respect to a specific time frame, some
parts might reorganize their structure and others do not. With
regard to Figure 1, for example, the influence on the system’s
working time should be the higher the larger the subsystem is
that reorganizes its structure and thus does not contribute to
the system’s actual task.

The solution quality reflects how well a SO algorithm lives
up to its responsibilities, i.e., maintaining a suitable system
structure with regard to some objective function. However,
the interpretation of the solution quality is quite hard in
the setting of SO algorithms because the quality of feasible
solutions is likely to change over time due to the ever-changing
environment.

d) Contributions of this Paper: In our paper, we provide
the following contributions:

(i) a research overview on performance metrics applicable
to SO algorithms and their evaluation by means of the
SO algorithm PSOPP (see Section II)

(ii) a set of requirements for performance metrics for SO
algorithms based on our evaluation of existing perfor-
mance metrics (see Section III)

II. EVALUATION OF APPLICABLE METRICS FOR

MEASURING PERFORMANCE OF SO ALGORITHMS

To put it simply, the performance of an algorithm describes
how well or badly it works. SO algorithms work on the
structure or organization of the system. Consequently, their
performance is defined by how well they structure or organize
the system. In the literature, different metrics are defined that
concretize “how well” algorithms work by identifying several
fine-grained performance criteria.

Fig. 2. The UML component diagram shows the essential components of
the test bed that is used to measure PSOPP’s performance. The test bed
consists of an Evaluation Suite Generator, an Execution, as
well as a Monitoring and Evaluation component. To investigate the
applicability of metrics outlined in Sections II-B to II-C, we plugged PSOPP
into this test bed.

Our summary of the state of the art, which we provide
in Sections II-B to II-C, aims at identifying and discussing
different performance metrics with regard to their applicability
to SO algorithms. We base our discussion on empirical data
we obtained during an evaluation of PSOPP’s performance by
means of these metrics (cf. Section I). We introduce our test
bed in Section II-A, before we outline the state of the art and
discuss the results of our evaluation in Sections II-B to II-C.

A. Test Bed for Evaluating SO Performance

To apply and evaluate the metrics introduced in Sec-
tions II-B and II-C, we use a test bed2 that is shown in
its essential components in Figure 2. It is structured into
three main components that encompass the generation of
evaluation suites, the execution of the evaluation suites, and
the observation as well as evaluation of the SO algorithm that
is plugged into the evaluation system via an interface.

An evaluation suite consists of a System
Configuration and a number of Evaluation
Sequences. These are automatically generated by the
Evaluation Suite Generator. A randomly created
system configuration describes a basic system setting:

• a set of agents
• an initial state for each agent (for the time being, each

state is represented by a real value from the interval [0, 1])
• a number of predefined separate subsystems
• an initial system structure for each separate subsystem

Based on such a configuration, a number of evaluation se-
quences is generated. Each evaluation sequence represents
a series of state changes of the agents within the system.
The length of a series corresponds to the number of time
steps that should be simulated within the Evaluation
System. Consequently, each agent will change its state
exactly once in each time step. To generate the evaluation
sequences, we simulate a probabilistic model of the system
and its environment—described as a Markov chain—for the
specified number of time steps. Thus, it is possible to gain
simulation runs causing likely conditions under which the
SO algorithm has to operate. The generated evaluation suites
are executed within the Evaluation System where the

2The test bed for evaluating SO algorithms is grounded on the IsoTeSO
framework introduced in [10].

123123123



System Initializer sets up the system as described in
the corresponding configuration. After the system is initialized,
the evaluation sequences are executed by the Environment
Simulator by applying the state changes to the agents.
From time to time, a reorganization might be necessary to
re-establish a suitable partitioning of the overall system. In
our evaluation setting “PSOPP HP”, PSOPP’s goal was to
create a homogeneous partitioning in each separate subsystem.
A homogeneous partitioning is a partitioning in which each
partition, i.e., agent group, has a similar average state value.
This is accomplished by minimizing the standard deviation
of the average state values by creating new or dissolving
existing partitions and exchanging agents between them. Such
a structure has shown to be rather robust against changing
states compared to heterogeneous partitions as they are formed
in the evaluation setting “PSOPP k-means” (cf. Section II-B).
The Monitor logs the working time of the agents and the
time needed for reorganizations in real time. Further, it logs the
fitness value achieved by the SO algorithm and forwards the
data to the Metric Evaluation component that applies
the different metrics and provides their results as output of the
Evaluation System.

This test bed is used to assess the capabilities of the
metrics discussed in the next section. For comparison, we
executed all 100 generated evaluation suites, each comprising
10 evaluation sequences, in three different settings: (1) In the
setting “noSO HP”, PSOPP was disabled. (2) In the setting
“PSOPP HP”, PSOPP established partitionings according to
the homogeneous partitioning objective function described
above. (3) In the setting “PSOPP k-means”, PSOPP established
heterogeneous partitionings according to the well-known k-
means objective function. All evaluation sequences represented
300 time steps and have been performed in a distributed cluster
of 12 computers with an Intel Core-i5 CPU and 4GB RAM
for about a week. We performed each setting on a predefined
system structure consisting of 1, 2, and 5 separate subsystems.

B. Metrics for Adaptation Algorithms

There are several metrics for adaptation (resp. self-
adaptation) algorithms in the literature. As is the case with
classical algorithms, they can be clustered into time-oriented
metrics and solution-quality-oriented metrics. The research
survey of Villegas et al. [11] as well as the criteria for the
evaluation of self-* systems of Kaddoum et al. [12]3 are time-
oriented metrics that reflect the relationship between time for
adaptation and working time. The performance metrics of
Becker et al. [14], Tarnu and Tiemann [15], and Reinecke et
al. [16] address the solution quality of the adaptation algorithm.
Overall, we selected those metrics that are applicable to SO
algorithms, which represent some special form of adaptation.
We discuss if the metrics are suitable for measuring the perfor-
mance of SO algorithms on the basis of our evaluation results.

1) Investigated Metrics:

a) Time-oriented Metrics: Kaddoum et al. [12] extend
classical performance metrics to metrics for self-adaptive
systems by distinguishing nominal and self-* situations and

3Parts of the criteria for evaluation of adaptive systems have been applied
by Cámara et al. [13].

focusing on their relation. One example is the WAT metric
that is defined as follows:

WAT :=
working time
adaptivity time

(1)

The codomain of the WAT is [0,∞], where the performance
of the adaption algorithm is said to increase with the value
of WAT . The intuition of WAT is that adaptation is re-
sponsible for keeping the controlled system working with
as little disruption as possible by an adaptation algorithm.
Further metrics introduced in [12] are also defined as the ratio
between adaption and working time, but focus on service-
oriented systems, e.g., the response time of a service.

The metrics proposed by Villegas et al. [11] also focus
on service-oriented adaptive systems. Proposed information
of interest are, for example, monetary execution costs or the
reliability of a service according to task completion. Villegas et
al. defined the availability (A) resp. unavailability (U ) metrics
as follows:

A :=
MTTF

MTTF +MTTR
(2)

U :=
MTTR

MTTF +MTTR
(3)

MTTR is the mean time to recover and MTTF is the mean
time to fail with a codomain of A and U of [0, 1].4 A large
value of A and a small value of U is desired to attest to an
algorithm’s good performance. The metrics are based on the
concepts of reliability engineering (cf. [17]) and define the
performance of an adaptation algorithm over the reliability it
yields for the controlled system.

b) Solution-quality-oriented Metrics: Taranu and Tie-
mann [15] use a cost function to evaluate the solution quality
of an adaptation algorithm in the context of network scenarios.
The function maps a performance value to different situations.
Each situation may consist of sub-situations with individual
costs. Costs are, for example, defined by the generated network
traffic, where as little traffic as possible is desired. With regard
to a specific situation sit , their performance metric is defined
on the basis of the measured costs Csubsit and the maximum
costs Cmax of the sub-situations subsit :

perf (sit) := 1−
∑

subsit∈sit Csubsit∑
subsit∈sit Cmax

(4)

The metric perf (sit) yields a normalized5 cost value—resp.
a solution quality for a situation sit—on the basis of the
costs of different sub-situations, e.g., different time steps. The
resulting performance is within the codomain of [0, 1]. The
best performance is 1.

Becker et al. [14] derive performance metrics from require-
ments by measuring the time the requirements are fulfilled
and, above that, how well they are fulfilled. This approach is
grounded on requirements specified as RELAXed requirement
(cf. [18]) and a function that maps the satisfaction resp.
dissatisfaction of the requirement within a given time interval
to a numeric value. Let us consider an example where the
requirement RF is defined as follows:

4Note that A+ U = 1.
5In our paper, the term normalization is used in the sense of adjusting values

measured on different scales to a notionally common scale of [0, 1].

124124124



“The system SHALL keep the rental fee AS CLOSE AS
POSSIBLE to 0.”

The function Δ(φRF , [i, j)) evaluates the dissatisfaction of
the requirement RF in the time interval [i, j), e.g., if there is
no rental fee, the value is 0. The corresponding performance
metric for a requirement RF is defined as follows:

mRF :=

{
0 if Δ(φRF , [i, j)) ≥ RFmax

1− Δ(φRF ,[i,j))
RFmax

else
(5)

RFmax is the rental fee threshold. For mRF , the codomain
is [0, 1] with the optimal performance being 1 since the
requirement RF is completely fulfilled. The metric is quite
similar to Equation (4) apart from the property that the solution
quality is bounded by RFmax .

Reinecke et al. [16] propose to measure the performance
according to the sum of benefits obtained by the decisions
made of the adaptation algorithm. To this end, they use three
different sets to remember the time steps i ∈ {1, 2, 3, . . . , N}
in which the payoff pi decreased, did not change, or increased
from one time step to another:

D� := {i = 2, 3, . . . , N | pi−1 > pi}
D� := {i = 2, 3, . . . , N | pi−1 = pi}
D⊕ := {i = 2, 3, . . . , N | pi−1 < pi}

You can think of these sets as sets of negative, neutral,
and positive decisions. The performance metric over these
decisions is defined by the following formula that reflects the
total benefit of adaptation:

Ad :=

∑
i∈D⊕ Δi +

∑
i∈D� pi

N − 1 (6)

Δi defines the benefit of a decision as Δi :=
pi+pi−1

2 and pi
is the benefit in a time step i. Both the function Δi and the
exclusion of the set D� smooths the payoff function of the
system over the considered time period. Since the payoff is
within [0, 1], the maximum payoff is 1. Ad is normalized by
dividing by N − 1.

The last three presented metrics ([14], [16], [15]) have been
introduced and applied to different case studies from the field
of service-oriented, adaptive systems. The other metrics ([11],
[12]) have been evaluated in a quantitative analysis, also with
a strong focus on service-oriented, adaptive systems.

2) Discussion: All metrics have been used to analyze the
PSOPP algorithm in different settings. The results of our
evaluation are summarized in Table I. In the following, we
discuss their significance for SO algorithms.

a) Time-oriented Metrics: The metrics WAT, A, and U
(see Equations (1) to (3)) rely on the ratio between working
time and adaptivity time resp. the mean time to fail and the
mean time to recover. All three focus on the impact of the
adaption on the working system and reflect the stability as
well as the robustness of the organizations established by the
SO algorithm. The results of Table I indicate that PSOPP HP
is able to achieve more robust partitionings than PSOPP k-
means. This reflects our intuition that heterogeneous partitions,
as obtained by homogeneous partitioning, are more robust
than homogeneous partitions favored by the k-means fitness
function (cf. [7]).

Unfortunately, the locality of SO algorithms is neglected
by the three metrics. Thus, a reconfiguration in a small part
of the system is rated as an adaption period of the entire
system. Although the results in Table I show that the average
number of agents participating in a reconfiguration decreases
with an increasing number of subsystems, the whole system is
rated “in reconfiguration”. This contradicts the reality, which is
shown in the number of reorganized separated subsystems per
reorganization. Ergo, it is, for instance, hard to reason (based
on the metrics) whether PSOPP HP performs better in a system
with 2 or 5 separate subsystems: While WAT states that 2
separate subsystems are better, the A and U metrics prefer 5
separate subsystems.

Considering only the time-oriented metrics, it is possible
that a SO algorithm that causes the system to work ineffi-
ciently is rated very good in terms of time if it generates a
robust structure. Therefore, we claim that there is a need for
combining time-oriented metrics with solution-quality-oriented
metrics to rate the overall performance of a SO algorithm.
This is also indicated in the evaluation results of PSOPP k-
means since the very high number of reorganizations results
in a very high payoff in terms of solution quality. An open
question is how to aggregate the results of different metrics,
e.g., is an organizational structure’s robustness better than one
that enables the system to work in an efficient manner?

b) Solution-quality-oriented Metrics: To rate the per-
formance of a SO algorithm, the optimality of its solution
plays a crucial role. In the sense of SO, the optimality depends
on the quality of the selected organizational structure from
the set of all possible structures with respect to a given
fitness function. Such an optimization problem can often be
described as a constrained optimization problem. The problem
is constrained since we can implement the requirements for
valid system structures in the form of constraints [19] that
allow to determine the set of valid structures.

Let us consider the metrics in Equations (4) and (5) first
since both are quite similar in how they measure the normal-
ized fitness of the SO algorithm over time. Note, however, that
Equation (5) bounds the optimum by RFmax. Because of their
similarity, we only evaluated the perf (sit) metric.

Challenges that arise during the evaluation of SO algo-
rithms with the metrics defined in Equations (4) and (5) are
mainly caused by the locality of the SO algorithms. This is
a major difference to the adaptation algorithm considered by
Becker et al. [14] as well as Taranu and Tiemann [15] who
regard a central approach of only one adaptation algorithm
within the entire system. In case of multiple subsystems, as
is the case with our evaluation scenarios, the metrics could
be applied to the separate subsystems, but it is not obvious
how to calculate the performance for the overall system. We
used the average value of the perf (sit) metric applied to
each separate subsystem as an approximation of the quality
of the entire system. However, it is unclear whether this
approach reflects the performance adequately. Depending on
the intended purpose of the performance measurement, this
average value might be weakly informative, e.g., one might
want to have the worst rating of all subsystems in case of a
risk-averse evaluation.

As shown in Table I, the perf (sit) metric obtains high val-

125125125



	

	
�

	
�

	
�

	
�

	
�

	
�

	
�

	



	
�

�

� � � � � �

�
��

�
��

����������

Fig. 3. The figure shows the payoff of two different series of fitness values
(dashed and solid) for six time steps. If we apply the metric Ad defined in
Equation (6) to both series, we get Adsolid = 0.2 and Addashed = 0.1625,
which is not reasonable since the payoff of the dashed series is at every time
step clearly above the one of the solid series.

ues in the settings PSOPP HP and PSOPP k-means, indicating
that PSOPP performs well in choosing organizational struc-
tures. Furthermore, it is possible to compare the performance
of an organizational structure without SO (see noSO HP in
Table I), i.e., no restructuring or reorganization of the system
at run-time, with a system with SO: The results clearly indicate
that SO with the PSOPP algorithm is worthwhile since the
fitness value of the system is almost twice as high compared
to a system without SO (note that PSOPP’s quality was rated
using the objective function of homogeneous partitioning in
case of noSO HP as well as PSOPP HP).

The Ad metric in Equation (6) intends to smooth the
development of the fitness value used by perf (sit). Alas,
the metric shows some bad side effects that are illustrated in
Figure 3 where a series of fitness values that is obviously worse
than another is actually rated better. Due to this unwanted
effect of the metric, it is hard to use the value for performance
evaluation. This is also reflected in the evaluation results of
Table I, where the performance of noSO HP is rated ten
times better than PSOPP HP, which is quite incomprehensible
considering that Ad only tries to smooth the development of
the fitness value that is used by perf (sit).

C. Metrics for SO Algorithms

Hitherto, there has not been any work focusing on the
design of general metrics for measuring the performance
of SO algorithms. The work of Kaddoum et al. [12] lists
metrics under the umbrella of self-* systems and consequently
includes self-organization, but the shown metrics as well as the
paper and pencil evaluation are only considering self-adaptive
systems. That is why we introduced their metrics already in
the previous section as metrics for self-adaption algorithms.
Nevertheless, the implementation and design of SO algorithms
has brought along specialized evaluations of the developed
algorithms during the recent years (cf. [20], [21], [7]).

In general, the evaluation results are used to show the
strengths and limitations of the SO algorithms in a specific
setting. Sometimes, the results are also used to optimize the
parametrization of the developed algorithms. Nevertheless, to
our knowledge, there is no general approach that addresses
systematic and comparable performance evaluations. We claim
that it is necessary to have a better comparability of SO
algorithms and a common understanding of performance as

already established in the field of classical as well as adaptation
algorithms.

III. REQUIREMENTS FOR PERFORMANCE METRICS FOR

SELF-ORGANIZATION ALGORITHMS

For a future systematic uniform approach to evaluate the
performance of SO algorithms, we propose a set of require-
ments for performance metrics suited for SO algorithms as well
as for their application within the performance evaluation pro-
cess. We derived these requirements from the results discussed
in Section II and experiences gained during the evaluations
of our developed SO algorithms. The requirements are split
into requirements for the metrics themselves (Section III-A)
and their implementation in a framework for SO algorithm
evaluation (Section III-B).

A. Metrics Suited for SO Algorithms

We claim that the following requirements are the most
important to be met by metrics to assess the performance of
SO algorithms in terms of time and solution quality:

Req. 1: The locality of SO algorithms has to be taken
into account and the aspects of time and solution
quality have to be evaluated within the existing (over
run-time changing) subsystems that are differently
affected by the SO algorithm, e.g., one subsystem
can be reorganized while another keeps on working.
Furthermore, it is important to be able to assess
the performance of the entire system based on the
performance of the subsystems.

Req. 2: Since SO algorithms have control over the system’s
structure, their performance strongly influences those
of the entire system. So the overhead of a reorganiza-
tion can be worthwhile if it sufficiently improves the
behavior of the controlled system. Consequently, a
metric has to take the benefit of the reorganization
into account.

Req. 3: The interpretation of a value provided by a metric
strongly depends on the current state of the system.
In self-organizing systems, the possible values for the
solution quality can change over time. For instance,
a solution quality of 0.7 would be optimal if possible
values were defined by the interval [0, 0.7] but quite
bad if they stem from the interval [0, 200]; the
same applies to the parameter time. Consequently,
there is a need for dynamic boundaries for the
evaluation—a requirement resulting from the ever-
changing environment of SO algorithms.

B. Application within Performance Evaluation Process

To achieve a systematic approach, we claim that there is a
need for a framework for performance evaluation that has to
satisfy at least the following requirements:

Req. 4: The overall process has to be supported by a frame-
work for performance evaluation that is able to
systematically evaluate SO algorithms. The frame-
work’s components should support the generation of
evaluation runs to perform, the simulation itself, and
the application of performance metrics.

126126126



Setting noSO HP PSOPP HP PSOPP k-means
#Separate Subsystems 1 2 5 1 2 5 1 2 5

WAT — — — 6.92 (1.35) 3.24 (0.90) 0.97 (0.22) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Working Time [s] — — —
29.78

(37.29)
29.69

(92.45)
29.27
(0.21)

15.85
(1.69)

11.57
(3.84)

7.77 (4.84)

Adaptivity Time [s] — — —
4.59

(1.39)
9.93

(2.89)
31.57
(6.62)

623.411
(76.31)

907.80
(151.51)

1,617.07
(394.80)

A — — — 0.77 (0.02) 0.66 (0.02) 0.44 (0.03) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

U — — — 0.22 (0.02) 0.33 (0.02) 0.55 (0.03) 0.97 (0.01) 0.98 (0.01) 0.99 (0.02)

MTTR [s] — — — 3.97 (0.19) 5.41 (1.08) 5.43 (1.29) 4.43 (0.09) 5.03 (0.67) 7.32 (0.85)

MTTF [s] — — — 14.13
(1.82)

10.83
(3.18)

4.51 (1.75) 0.11 (0.04) 0.07 (0.05) 0.04 (0.04)

perf (sit) 0.52 (0.09) 0.96 (0.01) 0.52 (0.07) 0.96 (0.01) 0.57 (0.07) 0.96 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

Ad 0.14 (0.03) 0.01 (0.01) 0.14 (0.02) 0.01 (0.01) 0.14 (0.02) 0.01 (0.01) 0.37 (0.09) 0.14 (0.03) 0.04 (0.01)

#Reorganized Separate
Subsystems

— — —
1.15

(0.37)
2.98

(0.91)
10.21
(2.16)

140.47
(16.93)

245.00
(42.52)

497.63
(123.17)

#Reorganized Separate
Subsystems per Reorg.

— — —
1.00

(0.00)
1.49

(0.50)
1.64

(1.42)
1.00

(0.00)
1.33

(0.47)
2.24

(1.19)

#Reorganized Agents
per Reorg.

— — —
1000.00
(0.00)

646.78
(385.14)

283.87
(318.04)

1000.00
(0.00)

714.74
(305.04)

479.35
(284.08)

TABLE I. EVALUATION RESULTS FOR THE THREE SETTINGS “NOSO HP”, “PSOPP HP”, AND “PSOPP K-MEANS” WITH DIFFERENT NUMBERS OF

SEPARATE SUBSYSTEMS. ALL VALUES ARE AVERAGES OVER 1000 EVALUATION SEQUENCES; VALUES IN PARENTHESIS DENOTE STANDARD DEVIATIONS.

Req. 5: In order to achieve significant results, the evalua-
tion must comprise simulation runs that induce an
environmental behavior reflecting likely conditions
under which the SO algorithms have to operate.

In future work, we will address these requirements and
integrate a performance evaluation component into our testing
framework IsoTeSO, which is introduced in [10].

ACKNOWLEDGMENT

This research is sponsored by the research project Testing
self-organizing, adaptive Systems (TeSOS) of the German
Research Foundation.

REFERENCES

[1] G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos,
S. Mostfaoui, O. Rana, M. Ulieru, P. Valckenaers, and C. Van Aart,
“Self-organisation: Paradigms and applications,” in Engineering Self-
Organising Systems, ser. LNCS, D. M. Serugendo et al., Eds. Springer
Berlin Heidelberg, 2004, vol. 2977, pp. 1–19.

[2] C. C. McGeoch, A Guide to Experimental Algorithmics. Cambridge
University Press, 2012.

[3] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[4] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Mathematical Pro-
gramming, vol. 73, pp. 129–174, 1993.

[5] H. V. D. Parunak and S. A. Brueckner, “Software Engineering for Self-
organizing Systems,” in Proc. 12th Int. Wsh. Agent-Oriented Software
Engineering (AOSE’2011), 2011, pp. 1–22.

[6] R. Ackoff, “From data to wisdom,” Journal of Applied Systems Analysis,
vol. 16, no. 1, pp. 3–9, 1989.

[7] G. Anders, F. Siefert, and W. Reif, “A particle swarm optimizer for
solving the set partitioning problem in the presence of partitioning
constraints,” in Proc. 7th Int. Conf. Agents & AI (ICAART), 2015.

[8] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos, “Self-
organization in multi-agent systems,” Knowl. Eng. Rev., vol. 20, no. 2,
pp. 165–189, Jun. 2005.

[9] J.-P. Steghöfer, P. Behrmann, G. Anders, F. Siefert, and W. Reif,
“HiSPADA: Self-Organising Hierarchies for Large-Scale Multi-Agent
Systems,” in ICAS 2013, The 9th Int. Conf. on Autonomic and Au-
tonomous Systems. Lisbon, Portugal: IARIA, March 2013, pp. 71–76.

[10] B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, A. Knapp, and
W. Reif, “An approach for isolated testing of self-organization algo-
rithms,” in Software Engineering for Self-Adaptive Systems III, ser.
LNCS, R. de Lemos et al., Eds. Springer, 2015, vol. (submitted).

[11] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casal-
las, “A framework for evaluating quality-driven self-adaptive software
systems,” in Proc. 6th Int. Symposium on Software Engineering for
Adaptive and Self-managing Systems. ACM, 2011, pp. 80–89.

[12] E. Kaddoum, C. Raibulet, J. Georgé, G. Picard, and M. P. Gleizes,
“Criteria for the evaluation of self-* systems,” in 2010 ICSE Wsh. on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2010, Cape Town, South Africa, May 3-4, 2010, R. de Lemos and
M. Pezzè, Eds. ACM, 2010, pp. 29–38.

[13] J. Cámara, P. Correia, R. de Lemos, and M. Vieira, “Empirical resilience
evaluation of an architecture-based self-adaptive software system,”
in Proc. 10th Int. ACM Sigsoft Conference on Quality of Software
Architectures. ACM, 2014, pp. 63–72.

[14] M. Becker, M. Luckey, and S. Becker, “Performance analysis of self-
adaptive systems for requirements validation at design-time,” in 9th
ACM SigSoft Int. Conf. Quality of Software Architectures (QoSA’13).
ACM, 2013.

[15] S. Taranu and J. Tiemann, “On assessing self-adaptive systems,”
in Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE Int. Conf. on. IEEE, 2010, pp. 214–219.

[16] P. Reinecke, K. Wolter, and A. Van Moorsel, “Evaluating the adaptivity
of computing systems,” Performance Evaluation, vol. 67, no. 8, pp.
676–693, 2010.

[17] M. R. Lyu, Handbook of software reliability engineering. IEEE
computer society press CA, 1996, vol. 222.

[18] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” in Requirements Engineering Conf. 2009. RE’09. 17th IEEE
Int. IEEE, 2009, pp. 79–88.

[19] B. Eberhardinger, J.-P. Steghöfer, F. Nafz, and W. Reif, “Model-
driven synthesis of monitoring infrastructure for reliable adaptive multi-
agent systems,” in Proc. 24th IEEE Int. Symp. Software Reliability
Engineering (ISSRE’13). IEEE, 2013, pp. 21–30.

[20] M. Al-Zinati and R. Wenkstern, “A self-organizing virtual environment
for agent-based simulations,” in Proc. 2015 Int. Conf. on Autonomous
Agents and Multiagent Systems, ser. AAMAS ’15. Int. Foundation for
Autonomous Agents and Multiagent Systems, 2015, pp. 1031–1039.

[21] J. Pitt, D. Busquets, and S. Macbeth, “Distributive justice for self-
organised common-pool resource management,” ACM Trans. on Au-
tonomous and Adaptive Systems (TAAS), vol. 9, no. 3, p. 14, 2014.

127127127


