
PosoMAS: an extensible, modular SE process for open
self-organising systems

Jan-Philipp Steghöfer, Hella Seebach, Benedikt Eberhardinger, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Steghöfer, Jan-Philipp, Hella Seebach, Benedikt Eberhardinger, and Wolfgang Reif. 2014.
“PosoMAS: an extensible, modular SE process for open self-organising systems.” In PRIMA
2014: Principles and Practice of Multi-Agent Systems: 17th International Conference, Gold
Coast, QLD, Australia, December 1-5, 2014, proceedings, edited by Hoa Khanh Dam, Jeremy
Pitt, Yang Xu, Guido Governatori, and Takayuki Ito, 1–17. Cham: Springer.
https://doi.org/10.1007/978-3-319-13191-7_1.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-319-13191-7_1
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

PosoMAS: An Extensible, Modular SE Process

for Open Self-organising Systems

Jan-Philipp Steghöfer, Hella Seebach, Benedikt Eberhardinger,
and Wolfgang Reif

Institute for Software & Systems Engineering, Augsburg University, Germany
{firstname.lastname}@informatik.uni-augsburg.de

Abstract. This paper introduces PosoMAS, the Process for open, self-
organising Multi-Agent Systems. The process is composed of a number of
practices, reusable and customisable building parts, and integrated into
the lifecycle of the Open Unified Process to yield an iterative, incremen-
tal software engineering process tailored to open self-organising systems.
The individual practices are introduced and their interplay described.
We evaluate PosoMAS in two case studies and provide a qualitative
comparison with existing AOSE processes.

1 Requirements for Agent-Oriented Software Engineering
Processes

If a system has to be open and has to exhibit self-organisation, principled
software engineering techniques become even more important. For instance, in
such cases, the benevolence assumption, i.e., the assumption that the individual
agents contribute to reaching an overall system goal, can no longer be main-
tained. The dynamics of self-organisation and the potential negative emergent
effects are thus coupled with self-interested, erratic, and even potentially malev-
olent agents that still have to be integrated in the system. Examples for domains
that exhibit such effects are energy management [1] and open grid computing [2].

Our previous scientific contributions (refer to, e.g., [1, 3–5]) have dealt with
these issues without being embedded in a methodology for the principled design
of such systems.

PosoMAS, the Process for open self-organisingMultiagent Systems, has been
designed to remedy this situation. It addresses a number of requirements out-
lined below that are motivated by the need to make multi-agent technology and
self-organisation principles available to software engineers and by the specific
characteristics of open, self-organising systems. We do not claim that the pro-
cess is the be-all and end-all of agent-oriented software engineering approaches
but addresses specific circumstances under which it is applicable. If a project
does not adhere to the assumptions made by PosoMAS or requires additional
aspects, other processes might be more suitable. However, due to its modular
design, PosoMAS can be adapted to suit the needs of a specific product or devel-
opment team. Based on an analysis of existing agent-oriented software engineer-

2

ing (AOSE) processes (cf. Section 2) and our own experience with self-organising
systems, we identified the following requirements:

Extensibility and Customisability. The methodology must be extensible. It
must be possible to combine it with different process models and to customise it
for specific situations. This means that it must be possible to use the elements
of the method in an agile context (e.g., in a specialised Scrum process) as well
as in a heavy-weight context (e.g., the still pervasive waterfall method).

Independence from Architectures or Tools. The internal architecture of
the agents (such as BDI) and the concrete implementation platform should play
no role in the high-level design part of the process. Likewise, the modelling
language should not be pre-determined to allow designers with a regular software
engineering background to use tools that they know and understand.

Clear Separation of Different Architecture Domains. To accommodate
open systems and separate design teams, the process has to provide aids that
allow the separate definition of interfaces, data models, and interactions so that
other development teams know how the agents should behave in the system,
interact with other agents, and with the system as a whole.

Special Focus on Interactions between Agents and Agent Organisa-
tions. The dynamics of an open self-organising multi-agent system are defined
by the interactions between agents within organisations. The behaviour of the
individual agent within an organisation determines the fitness for purpose of the
organisation and of its ability to reach its goal within the system. Organisational
structure also affects scalability of the final system. In addition, self-organisation
functionality is usually a result of bottom-up interactions that have to be con-
solidated with the top-down requirements [3].

We adopt the principles of standard software engineering methods such as the
OpenUP (PosoMAS uses the Eclipse Process Framework (EPF) practices library
that contains OpenUP building blocks), that promote, e.g., reuse, evolutionary
design, shared vision. These principles are documented, e.g., in [6] for the Ratio-
nal Unified Process (RUP), a commercial methodology that introduced many of
the features present in modern processes. Arguably, the value of processes such as
RUP stems mostly from their extensive documentation of SE practices and guide-
lines. These are used in a situational method engineering (SME) approach for the
creation of a customised software engineering methodology from these reusable
assets. Likewise, PosoMAS provides such assets containing a wealth of informa-
tion on AOSE with a focus on self-organisation and adaptation which continues
to grow as the process matures. These building blocks are collected in a method
library or method repository [7] which is available at http://posomas.isse.de,
along with the process description and an example.

This paper introduces PosoMAS, relates and compares it to existing AOSE
methodologies in Section 2, describes the practices that make up the method
content in Section 3 as well as the life cycle it uses in Section 4. Since the
format of a paper is insufficient to describe a comprehensive methodology in
full detail, the reader is advised to peruse the detailed process description at

http://posomas.isse.de

 3

http://posomas.isse.de. The website also offers the process description for
use in the EPF Composer. Finally, Section 5 compares PosoMAS with existing
processes, discusses benefits and lessons learned in simulated development ef-
forts. The paper closes with a discussion of future work.

2 Characteristics of Existing AOSE Methodologies

This section gives an overview of current AOSE methodologies, pointing out their
unique characteristics. Apart from the original papers on the methodologies, we
also use content provided by attempts to compare methodologies. Such com-
parative studies (e.g., [8]) are, however, to be taken with a grain of salt, since
the set of evaluation criteria used are not necessarily agreed-upon standards.
Since such standards are missing, however, such studies currently provide the
only reference point for comparing AOSE methodologies. The processes selected
below have been mainly chosen due to the currentness of the published method
content. A recent overview of agent-oriented design processes is presented in [9]
where a number of processes are cast in the IEEE FIPA Process Documentation
Template but the book offers no new method content (e.g., for Gaia or Tropos)
or a qualitative comparison of the methodologies.

The Prometheus methodology [10] combines specification, design, and im-
plementation in a detailed process and is commonly accepted as one of the most
mature AOSE approaches (cf. [11–13]). Prometheus uses a bottom-up approach
for the development of multi-agent systems with BDI agents. While the focus
on BDI is often lauded [12, 13], some authors criticise that this constitutes a
restriction of application domains [11]. According to [10], however, only a subset
of Prometheus is specific to BDI agents. Still, independence is thus limited. The
process has no notion of agent organisation and focuses solely on interactions
between the agents. This also limits the separation of architecture domains. A
main feature are detailed and comprehensible guidelines that support the de-
velopment steps, as well as support for validation, code generation, consistency
checks, testing and debugging. These guidelines promote extensibility but it is
unclear how the process can be adapted to different process lifecycles.

ADELFE has been specifically developed for the design of adaptive multi-
agent systems (AMAS) with emergent functionality [14]. The methodology fol-
lows the Rational Unified Process (RUP) closely and uses UML and AUML, an
extension of the UML meta-model with agent-specific concepts [15]. The method
content for ADELFE is provided in the SPEM1 format, making it extensible and
reusable. It follows principles from the AMAS theory as well as classical object-
oriented approaches. Adherence to the AMAS theory is also the main criteria
when assessing the applicability of ADELFE for a specific system: it should have
a certain complexity and should be open. Additionally, the development of al-
gorithmic solutions to the core problems is an integral part of the process and
therefore, the approach is mainly suitable when the algorithms are not known

1 Software & Systems Process Engineering Metamodel (http://www.omg.org/spec/
SPEM/2.0/), defined by the Object Management Group (OMG).

http://posomas.isse.de

4

yet. This severely limits the methodology’s independence. If an agent reaches a
certain complexity in ADELFE, it is treated as a separate AMAS, thus providing
a focus on interaction between agents and agent organisations. This also pro-
vides some separation of architecture domains, but the process does not provide
guidelines on the separate, principled modelling of these domains.

ASPECS focuses on complex systems with an emphasis on holonic organi-
sations [16] based on the PASSI methodology. A holon is here defined as “[. . .]
self-similar structure composed of holons as sub-structures”. The organisation
into holons is captured in a meta-model that is used for the definition of the sys-
tem structure. An important principle leveraged in ASPECS is the possibility of
stepwise refinement of the holons. Like ADELFE, the methodology therefore has
drawbacks w.r.t. independence and, in addition, relies on a specific meta-model.
It is, however, extensible since the method content is available online. Both sep-
aration of architecture domains and a focus on interactions are ensured.

The Multiagent Systems Engineering methodology MaSE includes a devel-
opment life cycle starting from the initial system specification and including im-
plementation and deployment [12,13,17]. It has been applied in several research
projects and has been lauded for its comprehensibility [11]. MaSE is indepen-
dent of a specific agent architecture and can therefore be applied to heteroge-
neous systems [12]. A strength of the methodology is the way agent interactions
and protocols are defined. Drawbacks are the complex description of concurrent
tasks, the absence of models for the environment and agent behaviour, and miss-
ing specification tools for agent adaptivity [13,18]. In addition, the methodology
was difficult to customise and organisational factors were not considered [19].
Based on this criticism, O-MaSE and “agentTool”2 have been developed [19].
They provide a method engineering framework with which method fragments
specified as SPEM1 activities can be composed. The method content is based
on a common meta-model and focuses mainly on analysis, design, and imple-
mentation. Organisations and the environment are now explicitly considered.
Extensibility and independence are thus limited due to the specialised tool re-
quired and due to the meta-model. O-MaSE provides no overall system design
activities, thus reducing the separation of architecture domains.

INGENIAS [20] aims at the development of organisational multi-agent sys-
tems and is the descendant of MESSAGE [21]. It uses meta-models to describe
the relevant concepts in different aspects or “viewpoints” of a MAS, including or-
ganisation, agent, goals/tasks, interactions, and environment [20]. Relationships
between the concepts for the different viewpoints are exploited to ensure con-
sistency of the modelling. Meta-models are described in a specialised modelling
language. The agents are based on BDI. INGENIAS is supported by specialised
tools for modelling and process customisation. While this limits the extensibility
and independence of the methodology, it offers full support for separation of ar-
chitecture domains and for interactions between agents and agent organisations.

From the remarks above, it becomes clear that the other AOSE methodologies
regarded do not fully support the particular set of requirements we identified.

2 http://agenttool.cis.ksu.edu/

 5

Table 1. Coverage of requirements for agent-oriented software engineering approaches

Requirement Extensibility Independence Arch. Domains Interaction

PosoMAS Full Full Full Full
OpenUP Full Full No No
Prometheus Partial No Partial Partial
ADELFE Full No Partial Full
ASPECS Partial No Full Full
O-MasE Partial Partial Partial Full
INGENIAS No No Full Full

The findings are summarised in Table 1. However, it must be noted that these
requirements do not apply to all development situations. For some teams, it
might be helpful to have a meta-model available or support by a dedicated tool.
Others do not require support for agent organisations since the scale of the
system under development is low or more complex organisational structures are
not needed. In such situations, PosoMAS may not be an ideal candidate and one
of the other methodologies may be better suited. It is thus important to consider
the actual requirements of the development effort before choosing a process.

3 PosoMAS Practices

The practices for PosoMAS, compiled in a practice library, cover the disciplines
requirements, architecture, and development. Testing and deployment are the fo-
cus of ongoing work (see, e.g., [22]) since both disciplines are very important in
MAS and have not been dealt with sufficiently as of yet. The practices introduce
techniques for the principled design of individual agents, organisations, their in-
teractions, as well as the overall system and the environment. The categorisation
of these techniques is an important aspect of the design of the process:

Agent Architecture. The design of the individual agents, separate for each
distinct type of agent.

Agent Organisation. The specification of organisational paradigms that will
structure the agent population at runtime.

Agent Interaction. The definition of interfaces and protocols used by agents
to exchange information, delegate control, and change organisational structure.

System Architecture. The relationship between the different types of agents,
the supporting infrastructure, external components, and the environment.

It is necessary to define common work products that can be used to exchange
information between the activities and tasks specified for each of the areas. To
structure these work products, respective SPEM domains (for work products)
and disciplines (for tasks) have been introduced. The agent system and individ-
ual agent domains and disciplines complement the generic architecture domain
and discipline. Agent interactions and agent organisations are captured in a
respective domain and discipline as well.

6

3.1 Common Categories, Work Products, Roles, and Domains

The PosoMAS practices library introduces a number of work product slots, an
additional role, changes in the interaction and responsibilities of the roles, and
specialised domains. These elements allow the categorisation of artefacts within
the development effort and provide a grouping of work products and tasks.

Work Products. They are used to exchange information between practices and
capture the different architecture areas defined by PosoMAS.Work Product Slots
are placeholders for concrete work products that allow interoperability between
method content. Information about the agent architecture, e.g., is exchanged by
a work product slot [Agent Architecture]. It serves as an abstraction of high-level
artefacts that represent the documentation of the architecture of a single agent
within a MAS.

Roles. A role fulfils certain tasks in the process, requires a certain skill set, and
is usually assigned to one or more persons. To emphasise agile aspects, Poso-
MAS puts focus on the Product Owner who represents the client in the process.
PosoMAS includes it in the requirements elicitation process and in the aspects
that relate to the system environment. This changes the responsibilities of the
Analyst, who is the liaison between the development team and the customer,
since the customer is now more directly involved in the process. Likewise, the
Architect works closely with the product owner during requirements elicitation.

Domains. PosoMAS introduces or extends four domains—specialised categories
for the classification of work products—that relate to the different areas of the
development effort. Work products can be related to Agent Interaction and Sys-
tem Organisation. In addition, the Requirements and Architecture domains from
the practices library included with the EPF are supplemented with domains that
contribute content to them.

3.2 Overview of PosoMAS Practices

As PosoMAS is targeted at open systems, the architectural tasks are aimed
at providing standardisation, separation of concerns, and interoperability. The
applicability to a wide range of target systems has also been a concern. Therefore,
even though some content of the practices is specific to open self-organising
multi-agent systems, they do not require the use of a specific meta-model or
agent architecture. The practice library provides the following practices:

Goal-Driven Requirements Elicitation. Operationalises the technique for
requirements elicitation based on KAOS [23] and the work of Cheng et al. [24].
It provides an iterative process composed of the tasks Identify System Goals,
Refine System Goals to Requirements, Mitigate Uncertainty Factors, Define Sys-
tem Limitations and Constraints, and Validate Requirements. By applying these
actions, the goal model is successively refined until a complete model of the
system requirements is gained. Beside the system goal model, a conceptual do-
main model as well as a glossary of the domain are outputs of this practice.

 7

The approach is ideally suited for adaptive systems since uncertainties and their
mitigation can be directly modelled in the requirements. This allows the stake-
holders to reason about countermeasures and identify risks early on. The practice
is easily embedded in iterative-incremental processes. System goals can be elab-
orated in different iterations, with a preference to elaborate those first that have
the greatest potential impact and risk. Guidelines detail the application of the
practice in an agile environment and how to capture process support require-
ments.

Pattern-Driven MAS Design. Provides guidance to design a multi-agent sys-
tem based on existing architectural, behavioural, and interaction patterns and
reference architectures. These three types of patterns correspond to the system
architecture, agent architecture, and agent interaction areas. A design conscien-
tious of existing work enables reuse, avoids making mistakes twice, and allows
tapping into the knowledge that has been created elsewhere for a cleaner, leaner,
and more flexible design. An architectural pattern can be applied in the devel-
opment of the system architecture, while more fine-grained patterns and proto-
cols can be used to create agent architectures and define interactions between
agents. The use of patterns also facilitates communication between stakehold-
ers and makes the architecture and the implementation more comprehensible.
The practice lists a wealth of published work containing patterns for the de-
sign of agents and MAS (e.g., [25]), including the FIPA Interaction Protocols
Specification (http://www.fipa.org/repository/ips.php3).

Evolutionary Agent Design. Describes an approach to design agents and
their architecture in an evolutionary way that enhances the design over time
while requirements become clearer and development progresses. During the de-
velopment process, the agent types, their capabilities and behaviour, their in-
ternal architecture, and their interactions become clearer as the requirements
mature and the system design progresses towards a shippable build. To allow
the product to mature this way, the design of the agents has to adapt to new
knowledge continuously and become more specific by refinement when neces-
sary and incorporating changes in the requirements or the system environment.
The practice defines three tasks for the design of the different agent elements.
These are tightly interwoven with tasks from Pattern-driven MAS Design in the
PosoMAS lifecycle. Special guidance on the design of modular agents and the
intricacies of message-based MAS is provided. A specialised UML profile helps
the designer to identify agents, operations that are available through messaging,
and to define elements of the infrastructure the development team relies on.

Agent System Design. Outlines how the system the agents are embedded
in is designed and how the agents interact with it. A multi-agent system not
only consists of autonomous agents but also incorporates a multitude of addi-
tional infrastructure, external actors, interfaces, hardware, and environmental
factors. These can have a significant impact on the overall system design and
should be regarded early on. The practice provides tasks to identify these fac-
tors and incorporate them in the design of the overall system. This includes the

http://www.fipa.org/repository/ips.php3

8

identification and design of necessary interfaces between the agents and to ex-
ternal components in the system’s environment as well as the identification of
uncertainty factors in the environment. Additional guidance is provided with
regard to the separation of concerns between system and agent level.

Agent Organisation Design. Describes the design of the organisation the
agents will interact in. Multi-agent systems with many interacting agents require
a form of structure or organisation imposed on the population. Sometimes, this
structure is permanent, such as a hierarchy that determines the delegation of
control and propagation of information, or transient, such as a coalition in which
agents interact until a certain common goal is reached. The system designer has
to decide which organisations are suitable for the system to reach the stated
goals and implement mechanisms that allow the formation of these organisa-
tional structures at runtime. If this process is driven from within the system,
“self-organisation” is present. This practice includes tasks, work products, and
guidance that support the decision for a suitable system structure and the selec-
tion of a suitable self-organisation mechanism. If the system under development
requires self-organisation, e.g., to be robust against agent failures or to adapt
to a changing environment, these issues will have to be considered timely and
thoroughly as the organisational structure and the algorithm to create it can
have tremendous impact on the performance of the system. Introducing these
concepts also influences the way the system is tested and deployed and has conse-
quences for the operation of the deployed system. Possible system organisations
and self-organisation approaches are, e.g., described in [26].

Model-Driven Observer Synthesis. Describes how observer implementa-
tions can be synthesized from constraints specified in the requirements doc-
uments as described in [4]. In adaptive systems, it is necessary to observe the
system and react if the system enters an undesirable state or shows unwanted be-
haviour. For this purpose, feedback loops, operationalised as observer/controllers
can be employed [27]. This practice describes an automatic transformation to
observer/controller implementations from constraints defined during require-
ments analysis. A prerequisite of this practice is that constraints have been
captured during requirements analysis. Ideally, these are expressed as OCL con-
straints that define the correct states of the system. If Define System Limitations
and Constraints from the practice Goal-driven Requirements Elicitation is per-
formed, constraints and a domain model should be available. At the same time,
this ensures that a domain model containing the elements the constraints are
defined on is available. Constraints can also be defined in a specialised document
separate from the requirements model. The process can be repeated after the
requirements or the domain model have changed, according to a model-driven
design (MDD) approach. Changed parts of the system models and implementa-
tion will be re-generated while existing models and code are preserved.

Trust-Based Interaction Design. Guides the design of interactions in open
systems that can be evaluated with trust models and agent decisions that use
trust values to make the system more robust and efficient. Trust-based

 9

interaction design enables the agents in the system to determine and select trust-
worthy interaction partners with a high likelihood of successful completion of an
interaction. The added overhead of using trust is often justified if the interac-
tions have a high risk or a high impact. Trust helps make the system more robust
against unintentional and malevolent interaction behaviour and can even enable
more efficient problem solving. To be effective, trust values need to be calcu-
lated using a trust model (see, e.g., [28]) that allows the quantification of an
interaction’s outcome. It is also helpful to define the intended outcomes with an
implicit or explicit contract. The concept of an interaction can be regarded very
generally. Not only are communications with other agents an interaction but also
querying of sensors, the use of environmental data, and others. All these inter-
actions are sources of uncertainties that can be mitigated by trust. The practice
supports the design of the trust model, the decision making process of agents
based on trust values, the design of an infrastructure to measure trust values,
and the design of a repuatation system.

Each practice is defined by an appropriate guidance in EPF that states the
purpose of the practice, gives a description, and provides a brief instruction
on how the elements of the practice relate to each other and in which order
they should be read. The practice usually references a roadmap (another special
type of guidance) for the adoption of the practice, a list of key concepts and
white papers, and a set of guidances. A practice also takes one or several work
products (or work product slots) as inputs and outputs. These work products
are automatically derived from the respective relationships of the tasks. If the
practices are combined into a process, the outputs of the practices can be used
to instantiate the work product slots denoting the inputs of the other practices.
The Conceptual Domain Model can, e.g., be used to fill the [Multi-Agent System
Architecure] in early iterations of the process.

The detailed practice descriptions and the models for use in EPF are available
at http://posomas.isse.de. We thus provide a repository for method content
and make reusable assets available for combination with method content from
other processes, fulfilling the appeal of the IEEE FIPA Design Process Docu-
mentation and Fragmentation Working Group and many authors (e.g., [29,30]).

4 The PosoMAS Life Cycle

The process life cycle determines the progression of a product under develop-
ment in the context of the process, the stakeholders, and the environment. A
well-defined life cycle provides guidance w.r.t. the order of activities the devel-
opment team has to perform, the project milestones and deliverables, and the
progress of the product. The advancement of a product development effort can
thus be measured based on the planned and the actual progress within the life
cycle. A methodology is created by embedding the activities and tasks defined
in the practices into a life cycle. The structure the life cycle provides is often
defined by phases (e.g., inception, elaboration, construction, and transition in
the OpenUP as described below) that are executed sequentially. Each phase

http://posomas.isse.de

10

addresses different needs within the project and in general, a shift away from
requirements, towards design and then implementation and testing is evident.

4.1 The Open Unified Process as a Method Template

The PosoMAS practices are embedded in the risk-value life cycle of the Open
Unified Process (OpenUP) [31, 32]. It promotes an approach in which the most
risky requirements and those that provide the greatest value are tackled first
in an iterative-incremental way, in which each phase consists of a number of
iterations. It is a lean, agile, process and towards an extensible process framework
that provides a starting point for customisations and extensions.

The technical practices described in the OpenUP practice library deal with all
disciplines of the development process. In general, they are described on a very
high level of abstraction. Therefore, most of them are replaced by more specific
practices defined by PosoMAS. For example, the practice Evolutionary Design
is superseded by PosoMAS’ Evolutionary Agent Design. However, the proposed
process borrows a number of practices from testing and deployment as these
areas are still under active development. The EPF practice library also contains
a “core” area in which common elements are defined, including categories, roles,
work products (and work product slots), and guidance, some of which are refined
by the practices in the PosoMAS practices library.

4.2 The PosoMAS Life Cycle and Work Breakdown Structure

PosoMAS adds most of its method content in the design activities and replaces
use cases with system goals as the main model to capture requirements. It also
adopts the OpenUP project and iteration life cycle by incorporating the EPF
practices Risk-Value Life Cycle and Iterative Development which divide the work
in PosoMAS in four phases. In each phase, specialised activities are applied to
accommodate open self-organising multi-agent systems. They are all specified in
detail by activity diagrams such as the one in Figure 1.

The inception phase is often iterated only once and lays the foundational
work for the project. The development team, the product owner, and the stake-
holders have to come to an agreement about the scope of the project, including
the features of the system and the final quality standards (task Develop Tech-
nical Vision, practice Shared Vision). For this purpose, extensive requirements
elicitation is performed. PosoMAS uses goal-driven requirements elicitation from
the practice of the same name. The requirements and the shared vision are also
used to Agree on a Technical Approach (includes the task Envision Architecture,
practice Evolutionary Architecture).

Notably, the activity Plan and Manage Iteration addresses Prepare Environ-
ment and Project Process Tailoring during inception. As in later phases, its out-
puts are an Iteration Plan and a Work Items List that describe the timetable
and break down of work packages, as well as a Risk List containing critical points
that need to be addressed. The inception phase ends with a Life Cycle Objectives

 11

Plan and Manage Iteration
Design Architecture Components Design System Dynamics

Identify System Goals and Requirements Develop Solution Increment

Ongoing Tasks

Test Solution

Fig. 1. Overview of the elaboration phase of the PosoMAS. Red frames indicate original
PosoMAS content.

Milestone that determines the project scope and the objectives the project has
to fulfil at the end of the inception phase.

The elaboration phase puts the focus of the development team on the
design of the software and the realisation of the requirements. At the same time,
first implemented features generate value for the customer and are the basis for
further elaboration of the requirements. The activity diagram in Figure 1 shows
the most important activities. System design activities are now added. Early
implementation and testing are also performed, along with change management.

Design activities include Design Architecture Components, Design System Dy-
namics, and Develop Solution Increment. Requirements are selected and design
and subsequent implementation are then performed to develop an increment
that provides value to the customer and reduces the risk inherent in the project.
Design Architecture Components deals with the static parts of the system de-
sign and the trust infrastructure and includes sub-activities for system architec-
ture, agent architecture, and trust-based interaction design. It also includes a
task from Model-driven Observer Synthesis for the definition of the observation
model. The use of patterns and re-usable architectural elements is promoted by
incorporating Pattern-driven MAS Design.

Design System Dynamics deals with the behaviour of the agents, their inter-
actions, and agent organisations. Capabilities of the agents are identified and
their behaviour is specified. The interactions between the agents are designed
and interaction patterns and protocols are applied if possible. A suitable system
organisation is selected and a self-organisation algorithm is specified if neces-
sary. Develop Solution Increment can be performed after these design activities
have been completed. Tests are carried out in Test Solution and if all tests pass,
the code is integrated and a build is created. Ongoing Tasks deals with the
submission and integration of change requests.

The elaboration phase ends with the Life Cycle Architecture Milestone that
signifies that the most important aspects of the system, agent, and organisational
architecture are completed. The most risky requirements have been tackled and
appropriate solutions have been incorporated into the design.

12

The construction phase marks a shift from design and requirements elic-
itation towards implementation and preparation for an eventual release. While
the overall structure of an iteration in this phase is similar to prior ones, the
overall design has become stable and most design activities are no longer per-
formed. Release and documentation activities are newly introduced.The phase
ends with the Initial Operational Capability Milestone, an extended prototype
that is usable as a standalone product. Testing is mostly finished and a prelim-
inary product documentation as well as plans for deployment are available.

The final iterations of the process are part of the transition phase in which
development is wrapped up and a final release is created and deployed. Change
requests no longer result in new requirements or changes in the design but have
to be realised on the code level. Product documentation and training documents
are finished and product training starts. Release preparations are completed
and the final release is deployed. The transition phase ends with the Product
Release Milestone including the accepted final product, complete training and
documentation, as well as successful deployment.

5 Evaluation and Comparison to Other AOSE Processes

The validation of a software engineering process is difficult from a methodical
point of view. Ideally, the process is tested in a productive environment for the
creation of a software product with an experienced team of software engineers
and developers who can compare the effort to previous experiences with other
methodologies. Such an approach, however, is not feasible in the scope in which
AOSE methodologies are created at the moment. Instead, we rely on qualitative
evaluation and validation criteria. Tran et al. [8,11] have introduced a catalogue
of criteria that are used in Table 2 to show the characteristics of PosoMAS
and to compare it to other approaches. It is important to note that the table
only captures if a process has explicit supporting content for a certain criterion.
It is, e.g., possible to build proactive systems with PosoMAS even though the
process does not include specific support for them. The process website contains
a detailed description of the criteria and comparisons under different aspects
and for additional methodologies at http://posomas.isse.de.

The basis for these evaluations are simulated development efforts for two case
studies: a self-organising emergency response system and a power management
system. The former system is highly connected and includes sensors, information
retrieval and distribution, as well as a pronounced human component. The power
management case study on the other hand puts the focus on self-organisation and
self-optimisation in a fully autonomous system. It is available as an example run
at http://posomas.isse.de along with a detailed description and a selection
of artefacts. This diversity allows us to demonstrate that PosoMAS is applicable
to a wide range of open multi-agent systems if tailored appropriately.

The development of PosoMAS and the accompanying validation provided a
number of lessons that have been integrated in the process and its documen-
tation. First and foremost, the distinction of architecture areas is vital for the

http://posomas.isse.de
http://posomas.isse.de

 13

Table 2. Characteristics of PosoMAS, O-MasE, Prometheus, and ASPECS based on
[8–11,16,19]. More details on criteria and values on http://posomas.isse.de.

Criteria PosoMAS O-MasE Prometheus ASPECS

Process-Related Criteria

Development
lifecycle

Iterative-incremental
risk-value life cycle

Depends on base
process

Iterative across
all phases

Iterative-
incremental life
cycle

Coverage of the
lifecycle

Conceptualisation,
Analysis, Design,
(Test, Deployment,
Management)

Analysis, Design Analysis, Design Analysis, Design,
Test, Deployment

Development
perspectives

Hybrid Top-Down Bottom-Up Top-Down

Application
Domain

Any Any Any Any

Size of MAS Not Specified Not Specified Not Specified Not Specified
Agent paradigm Heterogeneous Heterogeneous BDI Holonic
Model
Validation

Yes Consistency Consistency and
completeness

No

Refinability Yes Yes Yes Yes
Approach
towards MAS
development

Object-Oriented,
Non-Role-Based

Object-Oriented,
Role-Based,
Goal-Oriented

Object-Oriented,
Non-Role-Based

Role-Based,
Knowledge
Engineering

Meta-model
based

No Yes No Yes

Model-Related Criteria

Syntax and
Semantics

Medium High High High

Model
transformations

Yes Yes Yes Yes

Consistency Yes Yes Yes Yes
Modularity Yes Yes Yes Yes
Abstraction Yes Yes Yes Yes
Autonomy Yes Yes Yes Yes
Adaptability No Yes No Yes
Cooperation Yes Yes Yes Yes
Inferential
capability

No Yes Yes No

Communication Yes Yes Yes Yes
Reactivity Yes Yes Yes Yes
Proactivity No Yes Yes Yes
Concurrency No Yes No No
Model Reuse Yes Yes Yes Yes

Supportive Feature Criteria

Software and
methodological
support

Yes Yes Yes Yes

Open systems
and scalability

Yes No No Yes

Dynamic
structure

Yes Yes No Yes

Performance and
robustness

Yes No Yes Yes

Support for
conventional
objects

Yes No Yes Yes

Support for
self-interested
agents

Yes No No Yes

Support for
ontologies

No No No Yes

http://posomas.isse.de

14

creation of a modular, flexible design. Many of the problems with the initial sys-
tem design in early iterations were caused by a misunderstandings about which
parts of the design were on the agent level, which on the system level and in
the environment, and which are part of the organisation design. These areas
have thus been discriminated more thoroughly and according tasks and guid-
ance has been disentangled. Second, the concept of scope and thus of the system
boundaries has been overhauled and extended from the guidance provided by the
OpenUP or existing AOSE processes. Essentially, everything outside the scope
the system has to interact with, can not simply be ignored but assumptions
must be captured and the environment has to be modelled accordingly. Finally,
a specialised UML profile containing stereotypes for agents, methods that are
part of an agents interface, and external components was introduced to mark
specific concepts in the agent and system models.

6 Discussion and Future Work

This paper introduced PosoMAS, a novel agent-oriented software engineering
process for the class of large-scale open self-organising systems. It is based on
a risk-value lifecycle and incorporates practices both for agile development and
for the principled design and implementation of self-organising systems. It has
been validated in two case studies and compared with a number of other agent-
oriented processes.

The level of abstraction differs tremendously between different processes.
While the OpenUP is very abstract, without domain- or problem-specific guid-
ance, Prometheus, ASPECS and other AOSE-processes are very concrete and
prescribe solution approaches, techniques, and models in great detail. The lat-
ter approach excels when a system fits the assumptions made by giving much
more hands-on support. However, it is rare that a product fits the assumptions
perfectly. PosoMAS tries to find a middle ground between these extremes by
providing guidance without forcing adherence to a special paradigm and by for-
mulating method content in a way that lends itself to process customisation and
tailoring. The comparisons in Table 1 and Table 2 can provide indications of the
strength and weaknesses of the different processes.

Most processes impose a certain way of thinking about the system under
construction. Prometheus enforces the use of BDI-agents, O-MaSE puts the focus
on organisations, and ASPECS forces developers to think in terms of ontologies
and holarchies. PosoMAS has been designed to be independent of most of these
factors but still contains elements that favour certain solutions, e.g., using the
Observer/Controller architectural pattern as the basis for adaptation. When
choosing a process, the development team has to make sure that the perspective
taken by the process is compatible with the product.

Future work includes the creation and integration of additional method con-
tent, especially w.r.t. deployment and testing of self-organising systems. Fur-
thermore, the method content will be combined with the principles of the Scrum
methodology to yield a truly agile process. These efforts will be accompanied

 15

by evaluations and refinement of the method content. Our hope, however, is
that by making PosoMAS and all method content available as a repository at
http://posomas.isse.de both in browsable form and as EPF source code,
other researchers and practitioners will start using the practices and the frame-
work they provide to adapt the process, create new methodologies, and enrich
the content with their own ideas and concepts3.

Acknowledgements. This research is partly sponsored by the research unit
OC-Trust (FOR 1085) of the German Research Foundation. The authors thank
Julian Kienberger for his input on the comparison of existing AOSE approaches.

References

1. Steghöfer, J.P., Anders, G., Siefert, F., Reif, W.: A system of systems approach
to the evolutionary transformation of power management systems. In: Proc. of
INFORMATIK 2013 – Workshop on Smart Grids. LNI, vol. P-220. Bonner Köllen
Verlag (2013)

2. Bernard, Y., Klejnowski, L., Müller-Schloer, C., Pitt, J., Schaumeier, J.: Enduring
institutions and self-organising trust-adaptive systems for an open grid computing
infrastructure. In: Proc. of the 2012 Sixth IEEE Int. Conf. on Self-Adaptive and
Self-Organizing Systems Workshop (SASOW), pp. 47–52. IEEE (2012)

3. Sudeikat, J., Steghöfer, J.P., Seebach, H., Reif, W., Renz, W., Preisler, T., Sal-
chow, P.: On the combination of top-down and bottom-up methodologies for the
design of coordination mechanisms in self-organising systems. Information and
Software Technology 54(6), 593–607 (2012)

4. Eberhardinger, B., Steghöfer, J.P., Nafz, F., Reif, W.: Model-driven Synthesis of
Monitoring Infrastructure for Reliable Adaptive Multi-Agent Systems. In: Proc.
of the 24th IEEE Int. Symposium on Software Reliability Engineering (ISSRE
2013). IEEE Computer Society, Washington, D.C (2013)

5. Steghöfer, J.P., Behrmann, P., Anders, G., Siefert, F., Reif, W.: HiSPADA: Self-
Organising Hierarchies for Large-Scale Multi-Agent Systems. In: 9th Int. Conf. on
Autonomic and Autonomous Systems, ICAS 2013, Lisbon, Portugal, pp. 71–76.
IARIA (March 2013)

6. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy—A Practi-
tioner’s Guide to the RUP. Addison-Wesley Professional (2003)

7. Henderson-Sellers, B., Gonzalez-Perez, C., Ralyte, J.: Comparison of method
chunks and method fragments for situational method engineering. In: 19th Aus-
tralian Conf. on Software Engineering, ASWEC 2008, pp. 479–488 (2008)

8. Tran, Q.N.N., Low, G.C.: Comparison of ten agent-oriented methodologies. In:
Agent-oriented Methodologies, pp. 341–367. Idea Group, Hershey (2005)

9. Cossentino, M., Hilaire, V., Molesini, A., Seidita, V.: Handbook on Agent-
Oriented Design Processes. Springer, Heidelberg (2014)

10. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems. John Wiley &
Sons, Ltd. (2005)

3 All content is made available under the Creative Commons–Attribution-ShareAlike
License v3.0 (http://creativecommons.org/licenses/by-sa/3.0/).

http://posomas.isse.de

16

11. Tran, Q.-N.N., Low, G., Williams, M.-A.: A preliminary comparative feature anal-
ysis of multi-agent systems development methodologies. In: Bresciani, P., Giorgini,
P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS (LNAI),
vol. 3508, pp. 157–168. Springer, Heidelberg (2005)

12. Al-Hashel, E., Balachandran, B.M., Sharma, D.: A Comparison of Three Agent-
Oriented Software Development Methodologies: ROADMAP, Prometheus, and
MaSE. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS
(LNAI), vol. 4694, pp. 909–916. Springer, Heidelberg (2007)

13. Dam, K.H., Winikoff, M.: Comparing agent-oriented methodologies. In: Giorgini,
P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030,
pp. 78–93. Springer, Heidelberg (2004)

14. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: A methodol-
ogy for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R.,
Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169.
Springer, Heidelberg (2003)

15. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A formalism for specifying multi-
agent software systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

16. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an
agent-oriented software process for engineering complex systems. Autonomous
Agents and Multi-Agent Systems 20(2), 260–304 (2010)

17. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
IJSEKE 11(3), 231–258 (2001)

18. Abdelaziz, T., Elammari, M., Unland, R.: A Framework for the Evaluation of
Agent-Oriented Methodologies. In: 4th Int. Conf. on Innovations in Information
Technology, IIT 2007, pp. 491–495 (November 2007)

19. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE – a customisable approach to design-
ing and building complex, adaptive multi-agent systems. IJAOSE 4(3), 244–280
(2010)

20. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

21. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis using
message/UML. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–135. Springer, Heidelberg (2002)

22. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-
organizing, adaptive systems. In: Merayo, M.G., de Oca, E.M. (eds.) ICTSS 2014.
LNCS, vol. 8763, pp. 180–185. Springer, Heidelberg (2014)

23. van Lamsweerde, A., Letier, E.: From object orientation to goal orientation: A
paradigm shift for requirements engineering. In: Wirsing, M., Knapp, A., Balsamo,
S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 325–340. Springer, Heidelberg (2004)

24. Cheng, B., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach
to develop requirements of an adaptive system with environmental uncertainty.
In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009)

25. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adap-
tive systems. In: Proc. of the Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2010, pp. 49–58. ACM, New York (2010)

26. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review 19(04), 281–316 (2004)

 17

27. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for Organic Computing. In: 36. Jahresta-
gung der GI. LNI, vol. 93, pp. 112–119. GI (2006)

28. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: a review. Artificial Intelligence Review 40(1), 1–25 (2013)

29. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proc. of the Workshop on Objects and Agents (WOA 2006), Catania,
Italy, pp. 130–137 (September 2006)

30. Cossentino, M., Gleizes, M.-P., Molesini, A., Omicini, A.: Processes engineer-
ing and AOSE. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS,
vol. 6038, pp. 191–212. Springer, Heidelberg (2011)

31. Eclipse Foundation: Openup (2013), http://epf.eclipse.org/wikis/openup/
(accessed September 2, 2013)

32. Gustafsson, B.: Openup – the best of two worlds. Methods & Tools (2008)

http://epf.eclipse.org/wikis/openup/

