
A compositional proof method for linearizability applied
to a wait-free multiset

Bogdan Tofan, Gerhard Schellhorn, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Tofan, Bogdan, Gerhard Schellhorn, and Wolfgang Reif. 2014. “A compositional proof
method for linearizability applied to a wait-free multiset.” In Integrated Formal Methods:
11th International Conference, IFM 2014, Bertinoro, Italy, September 9-11, 2014, proceedings,
edited by Elvira Albert and Emil Sekerinski, 357–72. Cham: Springer.
https://doi.org/10.1007/978-3-319-10181-1_22.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-319-10181-1_22
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

A Compositional Proof Method for

Linearizability Applied to a Wait-Free Multiset

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
Augsburg University

{tofan,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. We introduce a compositional, complete proof method for
linearizability that combines temporal logic, rely-guarantee reasoning
and possibilities. The basic idea of our proof method is that each pro-
cess must preserve possibility steps as an additional guarantee condition
for linearizability. To illustrate the expressiveness of our method, we ap-
ply it to a wait-free multiset implementation with intricate linearization
points. Both the soundness of our method as well as its application to
our multiset have been mechanized in the interactive verifier KIV.

Keywords: Temporal Logic, Rely-Guarantee Reasoning, Linearizabil-
ity, Wait-Freedom, Multiset, Interactive Verification.

1 Introduction

Data structure implementations that offer fast concurrent access on multi-core
machines are of particular importance. These implementations use fine-grained
locking or non-blocking techniques that apply atomic hardware instructions in-
stead of locks, e.g., compare-and-set (CAS). Thus a higher degree of parallelism
can be achieved.

The central safety property of these implementations is linearizability [6].
Roughly speaking, it requires that each concurrent data structure behavior cor-
responds to some behavior of an abstract data type with atomic operations.
Furthermore, linearizability imposes the following constraint on the order of ab-
stract behaviors: It must preserve the order of concrete executions that do not
overlap in time. A strong progress condition for non-blocking data structures
is wait-freedom: Wait-free operations terminate in a finite number of steps, in-
dependent of the behavior of other processes. Wait-free implementations are
particularly useful in real-time settings where the number of execution steps of
an operation must be known beforehand.

Our proof method for linearizability is based on the well-known (intuitive)
technique of identifying linearization points. The key idea behind this approach
is that a linearizable operation appears to take effect instantaneously during its
execution [6]. This point in time is called a linearization point: In simple cases,
linearization points are internal and static, i.e., they coincide with one spe-
cific instruction of a running operation, independent from the overall concurrent

358

system execution. We call linearization points that depend on the concurrent
behavior of other processes potential linearization points [1]. In more complex
cases, linearization points can be external, i.e., they can happen with an instruc-
tion of another process. Algorithms with potential external linearization points
are particularly challenging for proving linearizability.

Possibilities [6] formalize the intuition of identifying linearization points. Our
proof method is based on the key insight [13] that backward simulation with
possibilities is a complete proof strategy for linearizability. To reason composi-
tionally about linearizability, we combine a rely-guarantee decomposition rule
with possibilities: The basic idea is that each process must preserve possibilities
as an additional guarantee condition which performs a step-local backward sim-
ulation. We specify and verify our proof method for linearizability in the logic
Rely-Guarantee Interval Temporal Logic (RGITL), which offers an expressive
framework for the symbolic execution of sequential/interleaved programs with
temporal logic [14]. The logic makes it possible to verify safety and liveness prop-
erties. It is implemented in the interactive verifier KIV. Both the soundness of
our proof method as well as its application to verify the multiset linearizable
and wait-free are mechanized in KIV [8].

To illustrate the expressiveness of our proof method, we consider a novel
multiset implementation with wait-free operations to insert, lookup and delete
an element, respectively. While our multiset operations are pretty simple, they
pose intricate linearization problems similar to Herlihy and Wing’s queue [6]. In
particular, the multiset has potential external linearization points that change
the abstract representation and linearize several other running processes.

The structure of the rest of this paper is as follows: Section 2 introduces our
wait-free multiset implementation and shows the challenges of proving it lineariz-
able. Section 3 briefly introduces RGITL, in particular rely-guarantee reasoning
in the logic. Section 4 then defines our proof method and Section 5 illustrates
its application to verify the multiset correct. Finally, Section 6 discusses related
work and Section 7 concludes with a brief summary and possible future work.

2 A Simple Wait-Free and Linearizable Multiset

2.1 The Multiset Implementation

We introduce a multiset data structure that can be accessed concurrently by an
arbitrary finite number of processes that repeatedly execute one of the algorithms
INSERT, DELETE or LOOKUP given in Figure 1. All individual (atomic) steps of
these operations are executed in an interleaved manner. First we explain these
operations, then we describe our overall concurrent system model.

The implementation stores elements x of the multiset in a shared array Ar of
size N �= 0. Each array slot either contains an element or empty . All operations
get an element x as input parameter (before the semicolon). They sequentially
run through the array Ar and compute a boolean output value Out (these two
are reference parameters).

359

INSERT(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
CAS(empty , x;Ar [Pos],Found);
if ¬ Found
then Pos := Pos + 1

};Out := Found}

DELETE(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
CAS(x, empty ;Ar [Pos],Found);
if ¬ Found
then Pos := Pos + 1

};Out := Found}
LOOKUP(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
if Ar [Pos] = x
then Found := t
else Pos := Pos + 1

};Out := Found}

CAS(Exp,New ;Curr ,Out) {
if* Curr = Exp
then Curr := New ,Out := t
else Out := f}

Fig. 1. The Wait-Free Multiset Operations INSERT, LOOKUP and DELETE in RGITL

When operation INSERT finds an empty slot, it atomically replaces empty with
x using a CAS instruction. CAS atomically compares a current location Curr
with an expected value Exp. If the values are equal it sets Curr to a new value
New and returns true; otherwise it returns false. We specify this using parallel
assignments separated by comma, which need one atomic step to execute, and
if*, which (in contrast to using if) does not take an extra step to execute its test.
Local variables are introduced with let. Operation DELETE atomically assigns
empty to the first slot in Ar that it finds to contain x. Operation LOOKUP returns
true if it finds the searched element throughout its scan, otherwise it returns
false.

In the following, let V in introduces arbitrary initial values for variables V .
For better readability we will write process identifiers p : N0 as subscripts rather
than as an input parameter or function argument.

RGITL offers an operator ‖ which interleaves1 steps of its first and second
component. Thus we can specify an overall concurrent system

SPAWNn(S) { if* n = 0 then PROC0(S) else {PROCn(S) ‖ SPAWNn−1(S)} }
that recursively interleaves n+1 processes PROCp(S) with identifiers p ≤ n. The
overall system state is S : state. Each process repeatedly executes an operation
COPp(I , In;S,Out)

PROCp(S) { {let I , In,Out in COPp(I , In ;S,Out)}* }
with some operation index I : index, input In : input and output Out : output.
The star operator * denotes arbitrary iteration.

For the multiset, the operation index is one of ins | del | lkp, the input is an
element, the state is Ar , the output is of type bool, and we instantiate COPp as
{if* I = ins then INSERT(In;S,Out) else if* I = del then DELETE . . . }.
1 The version here does not assume (weak) fairness.

360

2.2 The Abstract and Concrete Specifications for Linearizability

To better understand the challenges of proving our multiset implementation
linearizable, we first define its semantics in terms of an abstract specification.
Then we briefly explain how to extend the abstract/concrete specifications with
execution histories that represent the visible behaviors for linearizability.

Our abstract specification is based on atomic operation relations

AOP(I)(In ,AS ,AS ′,Out)

where I is again the operation index, AS/AS ′ is the abstract state before/after
an atomic AOP-transition and In/Out are input and output values, respectively.
Initial abstract states are specified according to a predicate AInit(AS).

For the multiset, the abstract state is an algebraic multiset Ms and we define
AOP(lkp) = ALookUp, AOP(del) = ADelete and AOP(ins) = AInsert as the
following atomic relations: The lookup relation ALookUp leaves the multiset
unchanged and sets its output to true iff the input element x occurs at least
once in the current multiset (x ∈ Ms).

ALookUp(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms ∧ (Out ↔ x ∈ Ms)

The ADelete relation removes one occurrence of its input element x from the
current multiset Ms if x occurs in the multiset, otherwise it leaves the multiset
unchanged and returns false (where {|.|} denotes a multiset).

ADelete(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms \ {|x|} ∧ (Out ↔ x ∈ Ms)

Finally, the insert relation AInsert either adds its input x to the current
multiset (this increases the number of occurrences of x by 1) and returns true,
or it non-deterministically returns with output false and leaves the multiset
unchanged. Restricting AInsert to only return false if the multiset is full w.r.t. a
predefined bound on the number of elements (typically the size N of the array)
would make the implementation non-linearizable.2

AInsert(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms ∪ {|x|} ∧ Out ∨ Ms ′ = Ms ∧ ¬ Out

Linearizability defines the behaviors of concrete and abstract operations in
terms of execution histories which are finite sequences of events. An event
e : event models either the invocation invp(I , In) or the return retp(I ,Out) of a
particular operation I that is invoked by a process p with some input, possibly
returning an output. We use the following simple selectors on events: e.p/e.i
selects the process identifier/the operation index and invp.in/retp.out are the
associated input/output values.

Linearizability extends the abstract operation relations with history parame-
ters Hs/Hs ′ and these extended operations additionally add a pair of an invoke

2 For the same reasons, an atomicity check [4] for our multiset fails, since running the
concrete code without interruption as an abstract specification does not offer the
possibility to return false non-deterministically.

361

and return event to Hs with every AOP-transition. Sequences of such operations
that are executed by a finite number of processes from an initial state (where
AInit holds and Hs is empty), generate the histories of the abstract specification.

Similarly, we extend the state of our concurrent system model SPAWNn with
a history variable H such that each process now first adds an invoke event
invp(I , In) to H before it executes the internal steps COPp(I , In;S,Out) that
leave H unchanged.

COPp(I , In;S,H,Out) {
H := H + invp(I , In); COPp(I , In;S,Out);H := H + retp(I ,Out) }

With its return, process p adds a return event retp(I ,Out) to H . The overall
system state is initialized using a predicate Init(S,H) which requires H to be
empty. Hence, the visible behaviors H of the extended system SPAWNn(S,H)
consist of either i) invp/retp events of a process p that correspond to terminated
executions of an operation or ii) pending invoke events where p has added an
invoke event toH but not yet returned, i.e., it is still running. Due to preemption,
invoke events in H can be followed by events of other processes.

Roughly speaking, SPAWNn(S,H) is linearizable if every prefix of its histories
H corresponds to some history Hs of the abstract specification that preserves
the order of non-overlapping executions in H . (Two executions in H are non-
overlapping iff the invoke event of one operation occurs after the return event
of the other one.) However, it is cumbersome to reason about linearizability
by searching for a corresponding abstract behavior for each possible concrete
behavior [6]. Reasoning in terms of linearization points (possibilities) is more
convenient: The basic idea is that the unique order of linearization points in a
concurrent execution precisely determines the order of atomic operations in a
corresponding abstract execution.

2.3 Challenges of Proving the Multiset Linearizable

This work started by looking at [3] where a lock-based multiset without a delete
operation is shown to be linearizable. We and the authors of [3] first thought that
adding a delete operation would violate linearizability. However, our presumed
counter-example was flawed as we explain below. Our result here suggests that
adding a (blocking) delete operation to their implementation should also be
correct. Thus it solves an open challenge from [17].

The presumed counter example was based on the following concrete execution.
A lookup and a delete operation concurrently search for an element x that lies
ahead of their current positions but they have not reached x’s position yet:

x Ms = {|x|}Ar

DELETEx

LOOKUPx

Next, both operations are preempted and a concurrent insert operation success-
fully inserts x below the current search indices of lookup and delete:

362

xx Ms = {|x, x|}Ar

DELETEx

LOOKUPxINSERTx : t

Then the delete operation runs to completion and removes x from the upper
part of the array:

x Ms = {|x|}Ar

LOOKUPx DELETEx : t

Finally, the lookup operation completes and returns false.
This concurrent behavior seems to contradict linearizability: At least one oc-

currence of x is always in the multiset while lookup returns false. It is however
wrong to think that if some x is always in the array, then it must also be in the
multiset. Indeed, according to linearizability, the order of the abstract insert and
delete operations may be changed here, since the respective concrete executions
do overlap in time. That is, the concrete history

invp(lkp, x), invq(del, x), invr(ins, x), retr(ins, t), retq(del, t), retp(lkp, f)

can be correctly reordered to the abstract history

invq(del, x), retq(del, t), invp(lkp, x), retp(lkp, f), invr(ins, x), retr(ins, t)

where first the delete operation takes effect, deleting the initial occurrence of x
in the multiset, and thus making a lookup with false possible.

The concurrent execution above already motivates a central idea of our lin-
earizability proof in terms of linearization points: Successful delete operations
must potentially linearize early during their execution, before they actually
delete their element from the array. Consequently, the abstract representation
becomes a collection of multisets, since potentially linearizing a delete operation
does not leave the abstract state unchanged and the linearization must be possi-
bly revised due to future executions of other processes. To illustrate this effect,
we consider the previous concurrent execution again:

Initially, no process is running and the abstract representation is merely
{{|x|}}. In general, when no running delete operation exists, the abstract multi-
set is uniquely given by the elements in the array. As soon as a delete operation
starts, it might have already linearized which gives possible multisets {{||}, {|x|}}
where the empty multiset {||} results from deleting x from the initial multiset
{|x|}. After the insert operation succeeds, the abstract representation is either
{|x, x|}, or {|x|} if the delete has potentially linearized. Finally, as soon as the
delete operation succeeds, {|x|} becomes the only possible multiset again.

Thus we compute possible abstract multisets by executing running operations
to the end, then abstracting the array content to a multiset. This corresponds
to the general approach of [13] to compute observation trees.

Note that in the execution above, the lookup operation must linearize to false
with the potential linearization of the delete operation that removes the last
occurrence of x from the multiset. If there were any delay between these two

363

linearizations, then a concurrent INSERT might insert x below the current posi-
tion of the lookup operation and linearizing to false would no longer be possible,
since any possible abstract multiset would contain x. In this case, the lineariza-
tion point of the delete operation is also an external potential linearization point
for all running lookup/delete operations that can now complete with false.

The linearizability proof poses a further challenge for lookup/delete opera-
tions that return false: These operations must potentially linearize with false
before they pass the first slot of the array. Starting with an empty array, af-
ter passing the first slot, a concurrent insert at the first slot makes linearizing
these operations to false impossible. Together, successful delete operations, plus
lookup/delete operations that return false, must potentially linearize early dur-
ing their execution. Intuitively speaking, this allows us to move their lineariza-
tion point towards the time of their invocation. We will formalize this intuition
when we instantiate the abstraction relation of our proof method (see properties
DELt/DELf /LKPf in Section 5.1).

3 RGITL

We specify and verify our proof method and the multiset case study in the logic
RGITL that we briefly introduce next. For a detailed exposition refer to [14].

3.1 Syntax and Semantics

The semantics of RGITL is based on intervals which are finite or infinite se-
quences of the form I = (I(0), I ′(0), I(1), I ′(1), I(2), . . .) where every I(k) and
I ′(k) is a state function that maps variables to values. The state transition
from I(k) to I ′(k) is called a program transition, whereas the transition I ′(k) to
I(k+1) from a primed to the subsequent unprimed state is an environment tran-
sition. Thus intervals alternate between program and environment transitions,
similar to reactive sequences [12].

The logic discerns static variables v (written lowercase) that do not change
in any transition of an interval, from dynamic variables V (written uppercase)
that can change arbitrarily. Primed and double primed variables V ′ and V ′′ are
evaluated over I ′(0) and I(1), respectively, if I is not empty. (For an empty
interval, both V ′ and V ′′ are evaluated over I(0).) Formulas ϕ are higher-
order/temporal logic expressions of boolean type: For instance, the temporal
logic operator ϕ1 untilϕ2 states that ϕ2 holds in some state of a given interval
and up to that state ϕ1 holds. From this operator, the standard temporal logic
operators eventually � and always � can be easily derived. For instance, for-
mulas � V = V ′ and � V ′ = V ′′ state that variable V does not change in any
program/environment transition of an interval.

Assertions in RGITL are based on the well-known sequent calculus where a
sequent Γ � Δ is valid if the conjunction of all formulas from the antecedent
Γ implies the disjunction of all formulas from the succedent Δ. Programs in
RGITL are formulas: A program restricts the program transitions of an interval

364

only. A typical program assertion Init , α, E � ϕ states that program α satisfies
property ϕ, starting in an initial state that satisfies predicate logic formula Init ,
given that the environment behaves according to formula E.

3.2 RG Reasoning

Rely-Guarantee (RG) reasoning [7] extends Hoare’s well-known approach to rea-
son about sequential programs with pre-/post-conditions to a concurrent set-
ting: Assumptions of a process p about possible environment transitions are
specified using a two-state predicate Rp : state × state → bool over the entire
program state. These are called rely conditions. In return, each process p must
specify guarantees for its steps using a further two-state predicate Gp : state ×
state → bool, called guarantee conditions.

RGITL offers native support for RG assertions which are a special type of
temporal formulas: An RG assertion for partial correctness

Pre(S), Inv(S) � [R(S′, S′′), G(S, S′), Inv(S), α(S)] Post(S)

requires that final states of a program α satisfy the post condition Post :
state → bool if the program starts in a state where the precondition Pre :
state → bool holds; program transitions preserve G and propagate the invariant
Inv : state → bool if previous environment transitions satisfy R and propagate
Inv , respectively. This semantics can be easily formalized in the logic using the
until operator, see [17].

Similarly, an RG assertion for total correctness (using 〈 . 〉 instead of [.])
strengthens partial correctness by additionally requiring that α terminates if the
environment always preserves the rely conditions and propagates the invariant.
(We verify such liveness properties by induction over a given variant term.)

RGITL offers a Hoare-style calculus for the symbolic execution of RG asser-
tions for partial and total correctness of sequential programs. For instance, we
execute an assignment (S := e);α according to the following rule

Pre(s0), Inv(s0), s1 = e � G(s0, s1)

Pre(s0), Inv(s0), s1 = e � Inv(s1)

Pre(s0), s1 = e,R(s1, S), Inv(S) � 〈R,G, Inv , α〉 Post(S)
Pre(S), Inv(S) � 〈R(S′, S′′), G(S, S′), Inv(S), (S := e);α〉 Post(S) (1)

where the static variables s0/s1 denote the state vector S before/after the
assignment. In its first/second premise, the rule requires proving the guaran-
tee/invariant propagation for the assignment transition. In the third premise, the
RG assertion must be shown for the rest program α: The antecedent is typically
simplified to the stable part of Pre(s0) over the assignment and the subsequent
rely, i.e., to a formula Prenew (S) with Pre(s0)∧ s1 = e∧R(s1, S) → Prenew (S).

Symbolic execution is practical for sequential but not for interleaved pro-
grams. Therefore, we apply RG decomposition rules for interleaved programs
that reduce the verification to the constituent (sequential) sub-programs. Here

365

we use the following RG decomposition rule for SPAWNn(S) (ignoring operation
indices, inputs/outputs and histories for a moment):

1) reflexive(Gp), transitive(Rp), Gp(S, S
′) → Rq(S, S

′)
2) Prep(S

′) ∧ Rp(S
′, S′′) → Prep(S

′′), Postp(S
′) ∧ Rp(S

′, S′′) → Postp(S
′′)

3) Inv(S),Prep(S) � [Rp, Gp, Inv(S), COPp(S)] Postp(S)

4) (∃ S. Init(S)) ∧ (Init(S) → Inv(S) ∧ ∧

p≤n

Prep(S))

Init(S) � [
∧

p≤n

Rp,
∨

p≤n

Gp, Inv(S), SPAWNn(S)]
∧

p≤n

Postp(S)

(2)

The conclusion of the rule states that each transition of the interleaved system
preserves some guarantee Gp and propagates the invariant as long as the pre-
vious environment transitions satisfy all rely conditions Rp and propagate the
invariant. (Note that we can not prove total correctness for SPAWNn, since the
system can invoke infinitely many operations.) Premises 1), 2) and 4) are sim-
ple predicate logic conditions on the used RG conditions: Guarantees must be
reflexive, relies transitive, and a guarantee step of a process p must be a rely
step for each other process q. Moreover, pre-/post-conditions must be stable over
rely steps, since a process might start after/terminate before another process.
Finally, there must exist an initial overall system state where predicate Init , the
invariant and all pre-conditions hold. The central premise 3) requires proving an
RG assertion for partial correctness of an individual operation COPp(S).

4 Proof Method: RG Reasoning with Possibilities

Our proof method for linearizability combines RG reasoning with possibilities
as we explain next. The underlying system model is SPAWNn(S,H), Section 2.2.

4.1 Possibilities

Possibilities characterize linearizability in terms of linearization points (see The-
orems 9 and 10 in [6]). Intuitively, our possibilities predicate Poss(H,R,AS)3

holds if H,R,AS has been reached by a finite sequence of invocation, lineariza-
tion and return steps as defined below. Parameter set R stores the return events
for those running operations that have already linearized but not yet returned.

Formally, we define possibilities

Poss(H,R,AS) ≡ ∃ AS 0. AInit(AS0) ∧ ΔPoss(([], ∅,AS0), (H,R,AS))

as possibility steps ΔPoss on triples (H,R,AS) that start with an empty history,
an empty set R and an initial abstract state AS0. A possibility step is either an

3 See [13], p. 248 for a comparison with the original syntax in [6].

366

invocation step Invoke, an abstract atomic operation step Linearize , or a return
step Return

ΔPoss ≡ (Invoke ∨ Linearize ∨ Return)∗

where ∗ denotes the reflexive and transitive closure of the underlying relation.
In an invocation step, the executing process p must not have a pending invo-

cation event in H (nopip(H)). The step adds an invoke event to H but changes
neither the return set R nor the abstract state AS .

Invoke((H,R,AS), (H ′, R′, AS′)) ≡ ∃ p, I , In.

H ′ = H + invp(I , In) ∧ nopip(H) ∧ R = R′ ∧ AS = AS ′

The execution of a linearization step requires a pending invoke in H (denoted
pi(n,H) where n < #H) for a process that has not yet linearized (no corre-
sponding event in R). It executes an abstract atomic transition AOP and adds
the corresponding return event to R.

Linearize((H,R,AS), (H ′, R′,AS ′)) ≡ H = H ′ ∧ ∃ n,Out.

pi(n,H) ∧ (∀ e. e ∈ R → e.p �= H(n).p)

∧ AOP(H(n).i)(H(n).in,AS ,AS ′,Out) ∧ R′ = R+ retH(n).p(H(n).i,Out)

We write LinI,Out for a linearization step of operation I with output Out .
Finally, a return step completes a running operation that has already lin-

earized by removing its return event e from R and adding it to the history.

Return((H,R,AS), (H ′, R′, AS′)) ≡
AS = AS′ ∧ ∃ e. e ∈ R ∧ H ′ = H + e ∧ R′ = R \ {e}

To illustrate possibilities, we reconsider the concurrent multiset execution
from Section 2.3 where the abstract multiset is {|x|} initially and a lookup and
a delete operation are invoked by processes p/q: Executing the Invoke steps
for processes p and q we get a history H = invp(lkp, x), invq(del, x). Now we
have three possible continuations which yield possible values (R,Ms) as follows:
Either i) no Linearize transition is executed (∅, {|x|}), or ii) the delete operation
linearizes with true ({retq(del, t)}, {||}), or iii) the delete operation linearizes with
true and then the lookup linearizes with false ({retq(del, t), retp(lkp, f)}, {||}).

4.2 Proof Method

Our proof method is a linearizability-specific instance of rule (2). Similar to
premise 3) of the rule, our method essentially requires to show the following RG
assertion for partial correctness of an individual process p

nopip(H), Inv(S , H),� Out ′ = Out ′′

� [Rp(S
′, H ′, S ′′, H ′′) ∧ Rposs

p (H ′, H ′′), Gp(S , H,S ′, H ′) ∧ Gposs(S , H,S ′, H ′),

Inv(S , H), COPp(I , In; S , H,Out)] t (3)

367

ΔPossR,AS R′,AS ′

S , H S ′, H ′

Abs Abs

COPp−transition

Fig. 2. Step-Local Backward Simulation

In (3), the rely/guarantee predicates Rp/Gp can be chosen freely for each
case study whereas predicates Rposs

p /Gposs have linearizability-specific defini-
tions that we introduce next. Predicate

Gposs(S , H,S ′, H ′) ≡ ∀ R′,AS ′. Abs(S ′, H ′, R′,AS ′) →
∃ R,AS. Abs(S , H,R,AS) ∧ΔPoss(H,R,AS,H ′, R′, AS′)

ensures linearizability by propagating possibility steps backwards over each pro-
gram transition as Figure 2 shows: For each transition of COPp from S , H to
S ′, H ′, we must show that each abstract state R′,AS ′ that is related to S ′, H ′

according to an abstraction relation Abs, has been reached by a finite number
of possibility steps starting from some abstract state R,AS that Abs relates to
S , H .

The main idea of the abstraction relation is to restrict the number of possible
abstract states that must be propagated backwards in concrete proofs, by taking
the concrete state into account. The abstraction relation must be total over
invariant states Inv(S , H) → ∃ R,AS . Abs(S , H,R,AS).

Furthermore, proof obligation (3) uses the following rely properties

Rposs
p (H ′, H ′′) ≡ (nopip(H

′) → nopip(H
′′))

∧ ∀ n. pi(n,H ′) ∧H ′(n).p = p → pi(n,H ′′) ∧H ′(n) = H ′′(n)

which ensure that after adding an invoke event invp to H , this event remains
pending and unchanged in H throughout the entire execution of p. These prop-
erties obviously hold for an individual process of the concurrent system. They
are required to propagate possibility steps during p’s execution, e.g., the lin-
earization step Linearize requires a pending invocation in H for the respective
process.

In (3), the output variable Out is local, so the output that is computed by
the internal steps in COPp corresponds to the output that is added to H in the
final return transition. The post-condition is trivial for simplicity, but using an
extra predicate to allow more complex post-conditions is possible.

Finally, there must exist an initial concrete system state. All concrete initial
states must correspond to abstract initial states where no process has linearized.

InitH(S) ∧ Abs(S , H,R,AS) → AInit(AS) ∧ R = ∅

368

Theorem 1 (Compositional Proof Method for Linearizability).
With the predicate logic side conditions above, proof obligation (3) is a composi-
tional proof method for linearizability:

InitH(S), SPAWNn(S,H),� (S ′ = S ′′ ∧ H ′ = H ′′)
� � ((∃ r, as. Poss(H, r, as)) ∧ (∃ r, as. Poss(H ′, r, as)))

Intuitively, the theorem states that each prefix of H has a possibility (which
implies linearizability). Further details and a mechanized soundness proof are
described at [8]. Our method is compositional as it ensures the overall system
property of linearizability based on the process-local RG proof obligation (3).
Completeness of the method follows from the completeness of the step-local
backward simulation technique in [13] (based on Owicki/Gries reasoning [11])
and the completeness of RG reasoning w.r.t. the Owicki/Gries method [12].

Since we typically want to talk about local states in concrete RG specifications,
procedure COPp in (3) can initialize local variables S .LSf p of process p with
the invocation transition using an initialization function init(I). (Directly using
a let for the initialization would hide relevant local state information from
specifications. We leave locality properties for LSf p implicit in (3).)

5 Verifying the Multiset

To talk about local states in the multiset specifications, we introduce a function
LSf as part of the program state S = LSf ,Ar which stores the following local
information for each process p: Ip is the operation index, Inp is the input element,
Foundp is the boolean flag that determines whether the operation has found the
searched element and Posp is the current index position of the running operation.

5.1 Instantiating the Abstraction Relation

The abstraction relation Abs of our proof method formalizes the intuitive con-
siderations from Section 2.3 by relating a concrete state S , H to possible ab-
stract states R,Ms as Abs(S , H,R,Ms) ≡ BASE ∨ DELt ∨ DELf ∨ LKPf . In
the base case BASE ≡ Ms = Absf (Ar) ∧ R = Linsf (LSf ,Ar) the abstract
multiset Ms consists of all elements in Ar , computed by function Absf . Set R
corresponds to precisely those running processes which have either not found
their searched element and are at the end of their scan or which have found it
and set their found-flag to true. Function Linsf computes the return events of
these processes.

The second disjunct in the definition of Abs describes the early linearization
of a running delete operation (of process p) that potentially deletes the searched
element that lies ahead of its current position at Ar [n].

DELt(S,H,R,Ms) ≡ ∃ p, n.

Ip = del ∧ ¬ Foundp ∧ Posp ≤ n < #Ar ∧ Ar [n] = Inp

∧ (∀ n0. Posp ≤ n0 < n → Ar [n0] �= Inp) ∧ retp(del, t) ∈ R

∧ Abs(LSf ,Ar [n]:=empty , H + retp(del, t), R \ {retp(del, t)},Ms)

369

The definition can be viewed to consist of three steps. First a possible future state
(S′, H ′) from current state (S,H) is computed by running the remaining steps
of p. This deletes input element Inp = Ar [n] (the resulting array Ar′ is written
Ar [n]:=empty) and adds the return event retp(del, t) to H . Second, Abs is called
recursively to compute a possible abstract state (R′,Ms ′) for state (S′, H ′). If the
recursive call chooses the base case then Ms ′ is just the content of Ar′. Finally
the effect of linearizing the delete early is to add the return event retp(del, t) to
the set R′. The final result of Abs therefore is (R,Ms) = (R′ ∪ retp(del, t),Ms ′).

The third disjunct of Abs similarly considers a running delete process that
potentially linearizes to false as it does not see its searched element ahead

DELf ≡ ∃ p.

Ip = del ∧ ¬ Foundp ∧ Posp < #Ar ∧ (∀ n. Posp ≤ n < #Ar → Ar [n] �= Inp)

∧ retp(del, f) ∈ R ∧ Abs(LSf ,Ar , H + retp(del, f), R \ {retp(del, f)},Ms)

The last disjunct LKPf for a lookup operation that returns false is symmetric
to DELf . It is easy to see that the recursion in Abs is well-founded, since it
decreases the number of running processes.

5.2 The Main Proofs

Instantiating the RG parameters of our proof method is straight-forward: In
the overall initial system state the array is empty. The invariant states that for
each running process, the pending invocations in H correspond to the respective
local state information in LSf . The rely condition Rp states that the length of
the array is not concurrently changed and the guarantee Gp is defined as the
rely conditions of all other processes.

With these instances, the predicate logic premises of our proof method hold
trivially. Therefore, we only focus on the central proof obligation (3) which re-
quires to prove an RG assertion for partial correctness for each individual mul-
tiset operation run by a process p. To also prove wait-freedom of each multiset
operation, we show its stronger version for total correctness by induction over the
variant #Ar−Posp. Symbolic execution of the algorithms leads to proof goals for
each transition (first premise of rule (1) for an assignment) where the guarantee
must be shown. In particular, Gposs must hold for the transition, so a sequence of
suitable abstract steps ΔPoss has to be chosen which makes the diagram of Fig. 2
commute. The choice is easy— usually the empty sequence since the step does not
linearize any running algorihm— for all steps except for one step in each algorithm
as detailed below. All proofs then are by well-founded induction over the number
of running processes. They unfold the definition of Abs for both states (S,H) and
(S′, H ′). The base case is usually trivial, each of the three recursive cases gives
two states (S0, H0) and (S′

0, H
′
0) shown in Fig. 3 that are reached by executing

one pending operation to the end (indicated by the dashed line). Often the COPp-
transition commutes, i.e., it also modifies (S0, H0) to (S

′
0, H

′
0). Then the induction

hypothesis (the dotted lines in the figure) closes the premise immediately. Other-
wise, the state (S′′

0 , H
′′
0) reached by executing the transition from (S0, H0) must be

370

S , H S ′, H ′
COPp−transition

COPp−transition
S0, H0 S ′

0, H
′
0

S ′′
0 , H

′′
0

IndhypAbs

R,AS R′,AS ′

Abs Abs

Fig. 3. Inductive proof scheme for backward simulation

shown to represent the same possible abstract states as (S′
0, H

′
0), which is usually

proved as a lemma using the same proof principle again.
The complex case for the DELETEx operation is the invocation transition. The

proof discerns three cases. First, the delete may not have linearized, i.e., the
set R′ in Fig. 2 does not contain a return event for the process p executing
the operation. Then ΔPoss is empty. Otherwise, when the multiset after the in-
voke (AS′ in Fig. 2) still contains x, then just the delete linearizes, i.e., ΔPoss =
Lindel,t. Otherwise, the linearization of the delete triggers some linearizations of
lookups and deletes to false, i.e. ΔPoss = Lindel,t; (Lin lkp,f ∨ Lindel,f)

∗. The
exact sequence is determined by the difference between R′ and R.

The critical transition for LOOKUPx is finding x. In particular, if we consider a
multiset (after this transition) that does not contain x, there must be a running
delete process q that (potentially) removes the last occurrence of x right after p
linearizes with true. As a consequence, the transition then linearizes the current
lookup process with true, the running delete process q with true, plus again a
sequence (Lin lkp,f ∨Lindel,f)

∗ of currently running lookup/delete processes that
can now return with false.

The critical transition of INSERTx is when it puts x in an empty array slot. This
step can additionally linearize a running delete operation that now potentially
deletes the element that has just been inserted. In this case the effects of the
abstract insert and delete operations cancel each other (such behavior is typically
found for data structures that use elimination [10]).

6 Related Work

The basic idea of our guarantee condition Gposs is based on [13] where back-
ward simulation is shown to be sound and complete for linearizability. The ap-
proach uses predicate logic and non-compositional Owicki/Gries reasoning [11].
The adaptation to our temporal logic setting with RG reasoning has the fol-
lowing benefits: Verified programs can be specified in an abstract programming
language rather than as transition systems with program counters. More im-
portantly, it avoids the manual encoding of local state information that merely
reflects the control flow of a program. Such properties are automatically com-
puted and propagated by the symbolic execution of RG assertions (see also
[17] for a comparison of our two local proof methods for linearizability for a

371

restricted class of linearizable algorithms where potential linearization points do
not modify the abstract state). Finally, we can verify liveness properties within
one framework, here wait-freedom (total correctness) of the multiset operations.
(For more challenging liveness proofs in RGITL see [15,14].)

Doherty et al. [2] use forward/backward simulations in a non-compositional
approach to verify linearizability based on IO-automata. They also report on
model checking linearizability. In general, model checking linearizability can
quickly find bugs, however, it does not consider all possible executions [19].

Recent work [9] describes an RG-based approach for proving linearizability
which annotates potential linearizations in the concrete specifications using ab-
stract auxiliary code that works on a state that roughly corresponds to our
R,AS. In contrast, we separate concrete and abstract code using a step-local
simulation. The approach is manual and only considers partial correctness, while
we mechanically verify the soundness of our method as well as its application.

The proof obligations in [18] are restricted to “pure” linearization points that
leave the abstract state unchanged (as in [1]) and thus cannot prove our multi-
set. In more recent work [5], a complete approach for proving linearizability for a
specific type of purely blocking queue algorithms is introduced. (An operation is
purely blocking if its infinite blocked executions never modify the shared state.)
Proof obligations are not based on linearization points, but rather on a charac-
terization of queue-specific behaviors. They mechanize a proof for Herlihy Wing’s
queue, but only give a manual soundness proof of their reduction. Nevertheless, as
our wait-free multiset is purely blocking, it would be interesting to find such char-
acterizations for multisets and to analyse how their proofs would relate to ours.

7 Conclusion

We have introduced a general proof method for linearizability based on possibil-
ities. It improves the complete proof strategy of [13] by using RG reasoning and
symbolic execution with temporal logic. We have illustrated the expressiveness of
our method by verifying a novel wait-free multiset implementation with potential
external linearization points that change the representation and linearize several
other processes.We leave it for future work to investigate whether the multiset can
be verifiedwith only a fixed small number of local states instead of the full function
LSf , by exploiting the symmetry of the underlying operations (similar to [16]). An-
other option for future work is to apply our techniques to further algorithms such
as the elimination queue [10] that can be verified based on similar ideas.

Acknowledgement. We thank Stefan Schödel for verifying various lemmas of
the case study in KIV.

References

1. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 323–337. Springer, Heidelberg (2011)

372

2. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

3. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizability
proofs with reduction and abstraction. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

4. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2004, pp. 256–267. ACM,
New York (2004)

5. Henzinger, T., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 242–
256. Springer, Heidelberg (2013)

6. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Trans. on Prog. Languages and Systems 12(3), 463–492 (1990)

7. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

8. KIV: Presentation of KIV proofs for wait-free multiset (2014) (2013),
https://swt.informatik.uni-augsburg.de/swt/projects/ifm14.html

9. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2013, pp. 459–470. ACM (2013)

10. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free fifo queues. In: SPAA, pp. 253–262. ACM (2005)

11. Owicki, S.S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6, 319–340 (1976)

12. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press (2001)

13. Schellhorn, G., Derrick, J., Wehrheim, H.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012)

14. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: A temporal
logic framework for compositional reasoning about interleaved programs. Annals
of Mathematics and Artificial Intelligence (AMAI) (2014)

15. Tofan, B., Bäumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of
lock-freedom. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 377–396. Springer, Heidelberg (2010)

16. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with haz-
ard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 239–255. Springer, Heidelberg (2011)

17. Tofan, B., Travkin, O., Schellhorn, G., Wehrheim, H.: Two approaches for proving
linearizability of multiset. Science of Computer Programming Journal (to appear,
2014)

18. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

19. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 261–278.
Springer, Heidelberg (2009)

https://swt.informatik.uni-augsburg.de/swt/projects/ifm14.html

