
Modular refinement for submachines of ASMs

Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Ernst, Gidon, Jörg Pfähler, Gerhard Schellhorn, and Wolfgang Reif. 2014. “Modular
refinement for submachines of ASMs.” In Abstract State Machines, Alloy, B, TLA, VDM, and Z:
4th International Conference, ABZ 2014, Toulouse, France, June 2-6, 2014; proceedings, edited
by Yamine Ait Ameur and Klaus-Dieter Schewe, 188–203. Berlin: Springer.
https://doi.org/10.1007/978-3-662-43652-3_16.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-662-43652-3_16
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Modular Refinement for Submachines of ASMs

Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software & Systems Engineering
University of Augsburg, Germany

{ernst,joerg.pfaehler,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. We describe and formalize a compositional, contract-based
submachine refinement for a variant of Abstract State Machines. We
motivate the approach by models of the Flash file system case study,
where it is infeasible to refine a complete machine as a whole.

1 Introduction

Abstract State Machines (ASMs, [5]) are a general software development method
for state-based systems. By integrating them with refinement [4] and the alge-
braic specification of data types they provide a rigorous framework for verifying
correctness critical applications.

This paper contributes a formally defined instance of ASM refinement theory,
which is compositional for submachines that respect information hiding. For-
mally, we prove that a machine M that calls the operations of a submachine L
satisfies the following substitution law: If K is a correct refinement of L, then
substituting calls to L with calls to K in M is a refinement of M. The theorem
allows to refine submachines independently of the context formed by M.

This work is strongly motivated by our current effort to construct a verified
file system for flash memory. This challenge has been proposed by NASA [15] in
response to problems with the flash file system of the Mars Rover “Spirit” [20].

As a consequence, the syntax and semantics of the variant of ASMs we con-
sider here differs and is somewhat restricted compared to traditional ASMs. In
particular, we define both an atomic semantics and an non-atomic semantics
for the rules. The former is intended for the environment of rules, e.g. the caller
of a POSIX operation like “create directory”. It is also the semantics of calls
to submachines. The non-atomic semantics is necessary to study the effects of
power failures while an operation (i.e., a rule of a control-state ASM which goes
through a potentially infinite sequence of intermediate states) is running: the
recovery mechanism that runs when rebooting after a power failure must restore
a consistent state from any intermediate state.

On the syntactic level our approach currently considers sequential constructs
only, since we have not investigated concurrent execution for the Flash file sys-
tem. Thus, the atomic semantics is an instance of sequential ASMs, the non-
atomic semantics is an instance of control-state ASMs with a single control state.
An extension to several control states and interleaved execution is possible, at
the price that reasoning with the wp-calculus has to be replaced with the more

189

complex reasoning using the temporal logic RGITL we define in [26]. The ASM
rules we use here could also be called (a subset of) RGITL programs.

Our earlier work on ASM refinement [22,24] assumed that rules have guards,
and that an ASM chooses to invoke rules only when the guard is true. This view
is not suitable for submachines, where no guarantee can be given that calls to
the submachine will respect the guards, nor that a refined submachine (viewed
in isolation) has fewer runs than the original submachine with the guard view.
Instead we will use preconditions for rules, where a call with precondition false
is possible, but results in arbitrary behavior. Our approach takes up ideas from
contract refinement as used in Z [29], and adapts it to our scenario.

We motivate the need for compositional refinement of submachines in Sec. 2,
by giving an overview over the structure of our development. Sec. 3 demonstrates
why preconditions are necessary instead of guards. For reasons of space, we
only sketch the machines needed. For an overview over the project we refer the
reader to [25] (this volume). The full details and a list of previous publications is
available online [9]. Sec. 4 defines syntax and semantics of the ASM rules we use.
We contribute two compatible semantic definitions: a non-atomic view, where
execution of an ASM rule results in a sequence of steps; and an atomic view, on
which we base the definition of runs of an ASM, the semantics of submachine
calls, and the weakest precondition calculus we use for deduction in our prover
KIV [21]. Sec. 5 defines refinement for our setting, gives the proof obligations
for forward simulation, and proves that refinement is modular for submachines.
Sec. 6 gives related work and Sec. 7 concludes.

2 Submachines in the Flash File System

In this section, we briefly show the topmost refinement of the refinement hier-
archy and motivate that the file system challenge is inherently compositional.

root

path

file1 file2

Fig. 1. FS graph

Figure 2 displays the structure of the topmost part of the
project, where boxes represent components, and layers re-
spectively, connected by refinement (dotted lines). These are
formally given by Abstract State Machines (ASMs) with al-
gebraic states. The grey boxes are the leaves of the hierarchy
from which we will generate the final code.

At the toplevel, POSIX [28] specifies the requirements: The
file system (FS) is a graph consisting of directories (inter-
nal nodes) and files (leaves), an example is shown in Fig. 1.
Files can be referred to by multiple directories under differ-
ent names (“hard-links”), consequently, names are attached
to edges of the graph. The directory part is a proper tree. The POSIX inter-
face is based on paths. Our formal POSIX model can be found in [11]. As an
example, Fig. 4 shows the specification of the unlink operation, which removes
one link to the file denoted by path, and also deletes the file’s content once it is
unreferenced.

Real file system implementations consist of two parts. Generic aspects, i.e.
traversing paths and checking access rights are realized in Linux by the Virtual

190

AFS

POSIX requirements

VFS

Flash file system

Fig. 2. FFS upper layers

VFS Flash FS

lookup*

...

unlink

POSIX
unlink

Fig. 3. Call sequence in the final com-
posed file system code

posix unlink(path ; err)
tree � tree − path
// conditionally delete content

Fig. 4. POSIX specification of unlink

vfs unlink(path ; err)
ino � ROOT INO;
while path .length > 1 do {

let n = path .head
in afs lookup(ino, n; ino � , err);

path � path .tail, ino � ino �

}
let dent = negdentry(path .head)
in afs unlink(ino; dent , err)
// conditionally evict ino

pre: dirs[ino] �= undef ∧ . . .
afs unlink(ino; dent , err)

let name = dent .name in
dirs [ino].entries[name] � undef

Fig. 5. VFS/AFS rules (no error-
handling, submachine calls underlined)

Filesystem Switch (VFS). Windows’ “Installable File System” serves the same
purpose. Concepts specific to individual file system implementations are realized
by the individual file systems (FS). For standard magnetic discs ext4 or ReiserFS
would be such file systems, for flash memory we use UBIFS [14] as a design
blueprint for our formal models.

VFS communicates with individual file systems through a well-defined inter-
face visualized by the symbol in Fig. 2. The main data structure used in this
interface is called inodes in Linux. To specify this interface we define an ASM
called Abstract File System (AFS). Technically, AFS is a submachine of VFS.

A typical ASM rule for the VFS operation unlink is sketched in Fig. 5 (full
models can be found in [10]). Several calls of afs lookup are used to traverse the
path, checking that the individual directories exist with suitable access rights.
Finally, afs unlink is called for the actual removal of the link in the target
directory. Operation afs unlink has a precondition to characterize valid inputs,
which needs to be checked at every call site. The use of an abstract AFS specifica-
tion makes the proof that VFS is a proper refinement of the POSIX specification
[11] independent of the actual file system.

Figure 3 shows the corresponding sequence of operations in the final composed
code we generate (marked grey in Fig. 2). In this code calls to abstract AFS
operations have been replaced by calling the concrete FS code. The main theorem
we prove in this paper, is that this methodology is sound, i.e., the composed code
refines the top-level specification (see Theorem 2 in Sec. 5).

191

EBM

logical blocks

Flash

write buffer

Fig. 6. FFS lower layers

write
Ø Ø

wear-
leveling

write
Ø

wear-
leveling

logical blocks

physical blocks Ø Ø

PEB i PEB i PEB j
Ø

Ø

Ø

Fig. 7. Abstract/concrete run with wear-leveling

As expected, the size of implementation components is much larger than the
size of their respective specifications (POSIX: 50 lines, VFS: 500 lines, AFS:
100 lines, abstract specification of UBIFS again calling some submachines: 500
lines). This pattern repeats all the way down to the hardware interface, forming
a deep hierarchy. An approach that exploits the compositional structure is key
to make the verification of the whole file system tractable.

3 Contracts in the Eraseblock Management Layer

This section motivates why we need preconditions, not guards for our refine-
ments. In the following we present a (simplified) example taken from the lower
layers of our flash file system and show how this technique is employed to simplify
the abstract layer.

Figure 6 shows a section of these layers. We have a model of flash hardware
at the bottom. A device is divided into physical erase blocks (PEBs). The basic
limitation of flash hardware is that only sequential writes within a block are
allowed and overwriting is not possible. Space can only be reclaimed by erasing
a full block. Erasing is slow and physically degrades the memory, i.e., after 104-
106 erasures a block is unusable. In order to increase the reliability and lifetime of
the device, the layer directly above the hardware, the Erase Block Management
(EBM), performs wear-leveling in the background. Wear-leveling moves stale
data to new blocks, in order to spread the erases evenly amongst the blocks. This
is implemented transparently by introducing a mapping from logical to physical
erase blocks. The mapping is managed by the EBM internally, the client can
only access logical erase blocks (LEBs). We then abstract this implementation
to a layer similar to the flash device (“logical blocks” in the figure). The aim
of the following is to show how preconditions can be used to hide wear-leveling
from upper layers. For technical details not covered here, the reader is referred
to [18].

The basic idea to specify the limitation to sequential writes on physical and
their abstraction to logical blocks is to associate an offset called fillcount with
each block. It stores how far the block is already programmed with data. This
offset can not be accessed by the EBM and is only used to express the precon-
dition of a write (to logical as well as physical blocks): the offset of the write is
above the fillcount of the target block. The vertical arrows in Fig. 7 denote
the fillcount. The upper part of the figure shows a logical block and how it is af-
fected by a write operation and a subsequent wear-leveling cycle. The lower half

192

depicts the PEB mapped for this LEB at any point in time. During writing the
fillcount fields are affected in the same way. For efficiency the implementation
of wear-leveling, however, does not copy the entire contents of the block (if the
remainder is already empty). This means that in general the target block j may
have a lower fillcount than the source block i, as shown in the figure.

If the guard-semantics is used, the EBMmodel has more runs than its abstrac-
tion: In Fig. 7 for example after wear-leveling additional writes to physical block
j are possible, which the abstract model can not reproduce. These additional
runs, however, will never be exploited by a client, since their existence crucially
depends on wear-leveling, which is not triggered by the client but performed
non-deterministically in the background.

In conclusion, preconditions are more appropriate for submachines than the
guards. The reason is that operations of a submachine are explicitly called and
are not triggered internally. Therefore, an implementation may have a more
liberal precondition than the abstract system. This can be used to simplify the
abstract system by strengthening the abstract precondition and thereby hiding
inconsequential runs of the concrete system. Refinement can still be expressed
as the usual trace inclusion if all possible runs (including divergence) are added
to the semantics of an operation outside of its precondition (see Def. 3 and 5).

4 Syntax and Semantics of ASMs with Submachines

Section 4.1 defines the syntax of ASMs without submachines. Roughly, an ASM
consists of a number of rules with preconditions (called “operations”). The rules
are given a non-atomic semantics in Sec. 4.2 that is similar to the one of control
state ASMs, however, we never use an explicit control state. We then abstract
to an atomic view, which is used to define runs of ASMs in Sec. 4.3 and calls
to submachine operations in Sec. 4.4. Finally, Sec. 4.5 gives the semantics of
wp-formulas that we use to define and verify properties.

4.1 Syntax

This subsection defines the syntax of the ASMs we use. We assume the reader
is familiar with first-order logic, where based on a signature SIG = (F, P) with
functions f ∈ F and predicates p ∈ P terms t, formulas ϕ and boolean expres-
sions ε (= quantifier-free formulas) can be defined. The semantics �t�(s) of terms
t and the semantics s |= ϕ of formulas ϕ is defined over a state s consisting of
an algebra and a valuation for variables x as usual.

We assume the signature is partitioned into four parts: a static signature (no
updates allowed), an input signature (that is only read by ASM rules), an output
signature (that is only written by ASM rules), and a controlled signature that
may be read and written by ASM rules.

We use the general convention to underline sequences of elements, i.e., a stands
for a sequence (a1, . . . , an) for some n ≥ 0. We write s{x �→ a} for the modified
state, where variable x now maps to value a, and s{f(t) �→ a} for the state, where

193

function f has been updated to have value a for arguments �t�(s). A location
loc is either a variable x or f(t), so s{loc �→ a} denotes a generic update. We
introduce the abbreviation s{loc �→ t} = s{loc �→ �t�(s)} for terms t, and the
generalization s{loc �→ t} to a parallel update, when all locations are different.
The leading symbol of a location is x and f , respectively. An input resp. output
location is a location f(t) where the leading symbol f is in the input resp. output
signature. We use the following syntax for our rules α, β:

α ::= loc � t | α;β | if ε then α else β |
while ε do α | choose x with ϕ in α ifnone β

For parallel updates we require that the leading symbols of loc are all distinct
(so no clashes are possible) and writable, i.e., are local variables or part of the
controlled or output signature. We write skip for an empty parallel update.

The choose constructs binds local variables x to values such that ϕ is satisfied
and executes α. If there is no possible choice (e.g. if ϕ ≡ false) then β is executed
instead. Standard local variable declarations are defined as

let x = t in α ≡ choose y with y = t in α
y
x ifnone skip

where y are new variables and α
y
x denotes the substitution of x with y in α.1 Note

that ifnone skip is never executed here, and we will we drop such irrelevant
ifnone-clauses as well as random choice (i.e., with true) in the following.

Based on the syntax of rules we define abstract state machines.

Definition 1. A (data type-like) ASM M = (SIG,Ax , Init , {Opj}j∈J) consists
of a signature SIG, a set Ax of predicate logic axioms for the static part of the
signature, a predicate Init to characterize initial states, and a set of operations
for indices j ∈ J . Each operation Opj = (prej , inj , αj , outj) consists of an ASM
rule αj that describes possible state transitions, provided precondition prej holds.
It reads input from a vector inj of input locations, and writes output to a vector
outj of output locations. It may modify local variables, controlled locations and

the locations of outj. The rules should have no non-local variables.2

In concrete code like the one given in Fig. 4 each operation Opj has a name
(instead of using an index j), the precondition is given after keyword pre, and
the other components are given in the form of name(inj ; outj){ αj }.

4.2 Non-atomic Semantics of Rules

This section gives a semantics to rules that assumes that they are executed non-
atomically: each update and each test of a condition is executed as a separate
step. The semantics of rules is therefore based on sequences I = (I(0), I(1), . . .)
of states I(k), which may be finite or infinite. Such sequences are called intervals.
Formally, I |= α expresses that the interval I is a possible execution of α.

1 The renaming avoids conflicts when x is used in t.
2 Thus, states of M are just SIG-Algebras; the values of variables are irrelevant.

194

We introduce some auxiliary notation: The length of an interval #I is in
N ∪ {∞}. If I is finite it consists of #I + 1 states. In particular, the smallest
interval with #I = 0 has one state only. We also lift modification of states
to intervals: given a vector of variables x and a sequence of value vectors a =
(a0, a1, . . .) of the same length as the interval (where each element ak has the
length of vector x), then I{x �→ a} is the modified interval, where I(k)(x) is ak.

For sequential execution we need the sequential composition of intervals I1
and I2, written I1 o

9I2, which is defined in two cases. For finite I1, the last state of
I1 (written I1.last) must agree with the first of I2: I1.last = I2(0), and the result
is (I1(0), . . . , I1.last, I2(1), I2(2), . . .), i.e., the duplicate middle state is removed.
If I1 is infinite, then I1 o

9 I2 := I1.

Definition 2.

I |= loc � t iff I = (s, s′) and s ′ = s{loc �→ t}
I |= α;β iff there are I1, I2 such that I1 |= α, I2 |= β and I = I1 o

9 I2

I |= if ε then α else β

iff either I(0) |= ε and I |= skip;α or I(0) 	|= ε and I |= skip;β

I |= choose x with ϕ in α ifnone β

iff either I(0){x �→ a0} |= ϕ and I{x �→ a} |= skip;α

for some a = (a0, a1, . . .)

or I |= skip;β and there are no values a with I(0){x �→ a} |= ϕ

I |= while ε do α

iff I ∈ ν(λ I. {I0 |
either I0(0) 	|= ε and I0 |= skip

or #I0 = ∞ and I0(0) |= ε, I0 |= skip;α

or I0 = I1 o
9 I2 with #I1 < ∞, I1(0) |= ε, I1 |= skip;α, I2 ∈ I})

Most of the clauses should be intuitive. The skips in the clauses for if , while
and choose indicate that evaluating the test is done in a separate step.3 In the
first disjunct of the semantics of choose, the sequence of states a captures the
values x in the entire interval of α, not just in the first state. The set of runs of a
while loop is defined as the greatest fixpoint ν4 of interval sets I whose elements
I0 denote different possibilities to execute the loop. Informally, an interval I is
a run of the while loop, if it can be split into a (finite or infinite) sequence of
adjacent pieces. Each piece I1 must be finite and execute the loop body (last
case I1(0) |= ε, I1 |= skip;α), the only exception being the last interval, when
the sequence is finite. This interval may either be a nonterminating (infinite)
execution of the loop body (second case of the definition), or it may be one skip
step, where the loop test evaluates to false (first case of the definition).

3 It is possible (and sometimes useful; e.g., to define atomic test-and-set instructions),
to define the semantics such that evaluations of tests takes no additional step.

4 The greatest fixpoint ν(λI. {I | ϕ(I, I)}) can be understood as the union of all sets
I whose elements satisfy the recursive property ϕ. The more commonly used least
fixpoint is inadequate here, since it gives finite executions only.

195

4.3 Semantics of ASMs

The interval semantics of rules is relevant when we want to study the effect of
power cuts, which will interrupt execution and produce prefixes of the intervals.
It is also relevant when we add calls to submachines in the next subsection.

To define the runs of a machine M, the fine-grained semantics of rules can be
abstracted to an atomic view of the execution of an operation. It is also much
easier to reason about the atomic semantics (using wp-calculus, see Sec. 4.5).
The atomic view is therefore a relation over the set of states augmented with a
bottom element, to indicate nontermination: S⊥ := S ∪ {⊥}.

Definition 3. The atomic semantics �Op� ⊆ S⊥ × S⊥ of an ASM operation
Op = (pre, in, α, out) is defined as:

(s, s′) ∈ �Op� iff either s 	= ⊥ and s 	|= pre (and s′ is arbitrary from S⊥)
or s 	= ⊥, s |= pre and there is I with I(0) = s, I |= α

and if I is finite then s′ = I.last, otherwise s′ = ⊥
or s = s′ = ⊥

The first line of the definition gives the idea of a precondition: if it is violated in
state s, then calls to α may result in any successor state (including nontermina-
tion). The second clause collapses terminating runs I of α to their first and last
state. Infinite runs yield ⊥. The last line allows to define the semantics of call-
ing two operations sequentially as relational composition: If the first operation
does not terminate (gives ⊥), then attempting to call another operation is not
possible and will also give ⊥.

Based on the semantics of single operations we can define runs of a machine:

Definition 4. An ASM program over a machine M is a possibly infinite se-
quence j = (j0, j1, . . .) of (indices or names of) operation calls. An execution of

the program j is an interval I with states in S⊥ and #I = #j,5 where

(s, s′) ∈ �Opjk
� for s = I(k) and s′ = I(k + 1){injk

�→ s(injk
)}

holds for all 0 ≤ k < #I. An execution is a run of the program, written I ∈
runsM(j) if it starts with an initial state I(0) 	= ⊥, I(0) |= Init .

The definition of runs of programs mimics the definition of runs of data types,
although we consider both finite and infinite runs. Note that state I(k) stores the
input s(injk

) for calling Opjk
. The operation itself does not change it, so state

s′ still stores the old input. Instead, the environment of the ASM is assumed to
modify the input arbitrarily to the next one stored in I(k + 1).

In contrast to the standard definition of guarded rules, runs as defined here
may well call an operation with the precondition being false. According to the
semantics of one operation (Def. 3) the rest of the run is unpredictable then:
either the operation diverges, or execution may continue with an arbitrary state.

5 We write intervals that may contain ⊥ in bold.

196

4.4 Submachines

Now we define ASMs M = (SIG,Ax , Init , {Opj}j∈J) that call operations of a

submachine L = (SIGL,AxL, InitL, {OpLk }k∈K). We require that M uses L prop-
erly, indicated by the notationM(L). The following conditions must be satisfied:

– M extends L’s signature and axioms: SIGL ⊆ SIG and AxL ⊆ Ax ,
– initialization of M includes initialization of L, i.e., Init → InitL holds and
– M respects information hiding: The signature of L is never accessed directly

by operations of M, i.e., M can only read and update the signature of L
indirectly via calls to operations of L.

The latter means that the local state of L, consisting of the locations in the
input, output and controlled signature of L, may not be used in updates or tests
of M operations. We write ls for this local state (and similarly ls ′ for the local
part of s ′). The global state gs is the state of M without ls .

Rules αj of the ASM may now contain calls to operations of L. We extend
the syntax of rules of Sec. 4.1 with

α ::= . . . | OpLk (t ; loc)

The call copies (values of) actual input parameter terms t to the input locations
inL

k of OpLk , executes the rule Op
L
k , and finally copies outLk back to actual outputs

loc, which must be writable locations of M. Within the run of αj the call to OpLk
is considered as one atomic step. The semantics is therefore defined as

I |= OpLk (t ; loc)
iff I = (s , s ′{loc �→ outLk }) and gs ′ = gs and (ls{inL

k �→ t}, ls ′) ∈ �OpLk �

or #I = ∞, I(0) = s and (ls{inL
k �→ t},⊥) ∈ �OpLk �

Note that we avoid adding ⊥ to the non-atomic semantics here: if the call of
OpLk does not terminate, then the resulting interval for OpLk is infinite, implying
that the operation calling OpLk does not terminate, too. Intervals I ∈ runsM(j)

therefore contain the outputs of the submachine (in the formal outputs outLk).
Given an interval I |= α, where α calls operations of a submachine L, it

is possible to extract the execution I
∣
∣
L of the submachine. It is an interval

over the state space of L including ⊥ and its length matches the number of
submachine calls in I. For every call (s , s ′) in I, I

∣
∣
L has a state transition

(ls , ls ′), all other transitions are left out. If the last call to an operation of L
starting in a state s does not terminate, a transition (ls ,⊥) is added. Note that
merging the intervals of consecutive calls to L is possible because the local state
is not altered in between the calls. We lift this definition to an execution I of
a program j on M(L): I ∣∣L is the concatenation of the submachine intervals of
each of the operations of j. It follows:

Lemma 1. Given an execution I of a program of M(L), then I
∣
∣
L is an execu-

tion of L. It is a run if I is.
�

197

4.5 Calculus

To define and to verify properties of ASM rules we use the wp-calculus. The
calculus defines two program formulas 〈|α|〉ϕ and 〈α〉ϕ as follows:

s |= 〈|α|〉ϕ iff all intervals I |= α with I(0) = s have #I < ∞ and I.last |= ϕ

s |= 〈α〉ϕ iff there is a finite interval I |= α with I(0) = s and I.last |= ϕ

Formula 〈|α|〉ϕ expresses the weakest precondition for rule α to be guaranteed
to terminate and to establish postcondition ϕ (which is often written wp(α, ϕ)
in the literature). Formula 〈α〉ϕ is from Dynamic Logic [12] and expresses that
α has a terminating run after which ϕ holds.6

Note that in contrast to standard wp-calculus formula ϕ is not restricted
to a predicate logic formula, but may be another program formula. This will
be exploited in the proof obligation for simulations (see Theorem 1). The wp-
calculus has simple symbolic execution rules for reasoning about rules α (some
of these rules can e.g. be found in [21]; an extension of symbolic execution to
temporal logic formulas is described in [26]).

5 Refinement of ASMs and of Submachines

5.1 Contract Refinement for ASMs

ASM refinement between an abstract machine A = (SIGA, InitA,AxA, {OpAj }j∈J)

and a concrete machine C = (SIGC, InitC,AxC, {OpCj }j∈J) with the same operation
set J is defined relative to a relation IO (“input/output correspondence”) over
the input and output part of the two algebras. It specifies what matching inputs
and outputs are. Often IO requires identity for input and output locations, but
more general cases are possible. IO(as , cs) is given syntactically as a formula
over the combined signature SIGA ∪̇ SIGC . Correspondence of two executions
I C and IA of C and A (“I C matches IA via IO”) is defined as

I C �IO IA iff #I C = #IA and for all k < #I C :

either IA(k) = ⊥ (and I C(k) is arbitrary)
or I C(k) 	= ⊥, IA(k) 	= ⊥ and IO(IA(k), I C(k)) holds.

Refinement relative to IO is then defined as follows.

Definition 5. Machine C refines A relative to IO, written C �IO A, if for every
program j and every I C ∈ runsC(j) an abstract run IA ∈ runsA(j) exists, such

that I C �IO IA holds.

The refinement definition allows to refine an abstract run, which calls a diverg-
ing operation (i.e., one where the precondition is violated) with a terminating
run: the state IA(k) after the diverging operation (and all subsequent states)
will be ⊥, and match any concrete state.

Proofs of refinement are done with forward simulation:
6 Dynamic Logic writes wlp(α, ϕ) as [α]ϕ; 〈α〉ϕ is equivalent to ¬ [α]¬ϕ.

198

Theorem 1 (Forward Simulation). C �IO A follows from a forward simu-
lation R ⊆ IO that satisfies

Initialization: InitC(cs) → ∃as . InitA(as) ∧ R(as , cs)

Correctness: R(as , cs) ∧ preAj (as) ∧ 〈|αA
j |〉 true

→ preCj (cs) ∧ 〈|αC
j |〉 〈αA

j 〉R(as , cs) for all j ∈ J

Proof. For finite runs the proof is by induction over its length. Infinite runs
require a simple diagonalization argument.
�

5.2 Refinement of Submachines

In this section we show that refinement is modular in the following sense: Given
a machine M(L), and a refinement K �LIO L, then replacing calls for L in oper-
ations of M with calls to K gives a machine C := M(K) that refines A := M(L).
The result needs one additional restriction compared to general refinement: re-
lation LIO is the identity relation over the input and output parameters of L
and K. Otherwise calls could not just be replaced. The replacement of L by K
in M(L) is defined as follows: The signature is (SIG \ SIGL) ∪̇ SIGK and the
initialization condition is

InitM(K)(ks , gs) ↔ InitK ∧ ∃ ls . R(ls , ks) ∧ InitM(L)(ls , gs),

where ks is the local state of K. The I/O correspondence IO extends LIO to the
entire set of input/output parameters of C and A by identity.

In order to express the modularity of refinement on the level of intervals, we
define the substitution I ′ := I{I∣∣K �→ IL} of all calls to a submachine K by

corresponding calls to L taken from IL assuming IL satisfies I
∣
∣
K �LIO IL.

For each transition τ =(gs , ks , gs ′, ks ′) in I after k calls to the submachine, the
corresponding transition of the substitution I ′ is (gs , IL(k), gs ′, ls ′) with

ls ′ =

⎧

⎨

⎩

IL(k), if τ is not a call

IL(k + 1), if τ is a call and IL(k + 1) 	= ⊥
arbitrary, if τ is a call and IL(k + 1) = ⊥

In the last case the (k + 1)-th call to L did not terminate and we additionally
demand that the interval I ′ is infinite and may be arbitrary after the call. Ac-
cording to �LIO , #IL = #I

∣
∣
K and IL reaches ⊥ before I

∣
∣
K (if at all). After

lifting this substitution to an execution I of a program j it follows:

Lemma 2. Given an execution I of a program j on M(K) and IL with I
∣
∣
K �LIO

IL, then I ′ := I {I∣∣K �→ IL} is an execution of j on M(L) with I �IO I ′. I ′ is
a run if I is.

Proof. The proof is by inspecting the (non-atomic) runs of each operation. For
a single operation induction over rule complexity gives the desired result.
�

199

Given these prerequisites we prove the compositionality theorem:

Theorem 2 (Compositionality). K �LIO L implies M(K) �IO M(L)
Proof. Let I ∈ runsC(j) be arbitrary. According to Lemma 1 I

∣
∣
K is a run of the

submachine K. By assumption there is a run IL of L with I
∣
∣
K �LIO IL. The

matching abstract run then is I {I∣∣K �→ IL} by Lemma 2.
�

6 Related Work

In general our approach is based on (iterated) refinement, following the general
idea of ASM refinement [4]. We prefer this over an approach that just anno-
tates code with pre- and postconditions. With such an approach all the abstract
layers would become ghost code and extra ghost state, cluttering the implemen-
tation with annotations. This would be particularly problematic for the Flash
file system, since its refinement hierarchy is deep, at least a dozen layers and
various submachines are necessary to conceptually isolate the relevant building
blocks. Verifying that the whole implementation is a refinement of the POSIX
specification in one step is practically infeasible.

The specific instance of refinement defined here is based on data refinement
[13], in particular the contract-based approach of Z [29] (see [8] for other ap-
proaches, and [23] for a comparison to ASM refinement). It can be viewed as
an adaption of this approach to the setting of ASMs. We prefer the operational
style of ASM rules over the relational style of Z operations, since ASMs can be
executed (and we think that they are easier to understand).

Nevertheless, our atomic semantics (Def. 3) of ASM operations parallels the
contract embedding of Z relations into states with bottom, except that we do
not add {⊥}×S⊥, but just {⊥}×{⊥} to preserve the meaning of ⊥ as “nonter-
mination” (not “unspecified”). [23] argues that for both embeddings the same
refinements are correct. As a result the proof obligations for forward simulations
are similar to those of Z refinement. As a minor difference our theory allows an
operation to have diverging runs, even when its precondition is satisfied, though
we have not exploited this in the Flash project (we always prove termination).
The generalization results in the extra precondition 〈|αA

j |〉 true in the correctness
proof obligation.

It is a folklore theorem of data refinement that proof obligations for individual
operations are sufficient to allow substitution of abstract with concrete opera-
tions in any reasonable context, i.e., one that does not access the local state
of operations. Our formal proof of Theorem 2 shows that ASM rules are one
suitable context. In [7] an analogous result is proved on a semantic level using
relations of μ-calculus as context.

It should however be noted that the contract approach [29] itself is not suffi-
cient for such a result, since it considers finite sequences of operation calls only,
while our context (the main rule of an ASM) may be a loop calling operations
of the submachine an infinite number of times. Considering finite runs only has
the advantage that forward and backward simulation together give a complete

200

proof technique. Here, as in most refinement definitions that consider infinite
runs, backward simulation is not sound: it may result in implementing a ter-
minating run of a rule of M(L) with a non-terminating run of M(K), when
the abstract machine has infinite nondeterminism (i.e., has a choose from some
infinite domain). Most of our ASMs have infinite nondeterminism.

The refinement concept discussed here differs from our earlier formalisation
[22,24], and from Event-B [3] in that it uses preconditions, not guards (the earlier
B formalism [2] had both preconditions and guards). Whether one needs one or
the other concept is application dependent: when rules are “called” by the envi-
ronment (as here), the precondition approach is appropriate, while applications,
where the machine itself chooses a rule (e.g., an interpreter for a programming
language, where the next rule is chosen according to the next statement to in-
terpret), then the guard interpretation is appropriate.

The definition given here is on the one hand more liberal than the one in [24],
as it allows one to implement a diverging operation on the abstract level with
any run on the concrete level (since for IA(k) = ⊥ any concrete state is allowed).
On the other hand it is more strict, as it forbids general m : n diagrams where
m abstract operations are implemented with n concrete ones. The case m > 1
is disallowed here, since any sequence of submachine calls must be verified. The
case m = 0 can be simulated by adding an abstract skip operation that does
nothing. Diagrams with n 	= 1 are still implicitly possible, by using a concrete
rule that takes n atomic steps (in the fine-grained semantics) to complete.

With respect to ASMs, our syntax only uses a fragment of the syntax available
in [5]. In particular we use parallel updates only in the atomic updates, while
control state ASMs allow arbitrary ASM rules. It would be possible to generalize
the atomic steps to general ASM rules, however this would have two drawbacks.
Code generation would become more difficult, and simple symbolic execution
rules would be precluded since parallel rules may have clashes. These require a
complex axiomatization of update and consistency predicates, even when nonde-
terministic choice (that we often use for specification purposes) is omitted (see
[27] and Chapter 8 of [5]).

For the atomic semantics given in Def. 3 it is not difficult to show that it agrees
with standard rule semantics of ASM rules, when α;β is interpreted as α seq β
in the following sense: (s, s′) ∈ �Op� corresponds to a successful computation of
a consistent set of updates of a Turbo ASM rule in [5], Chapter 4. (s,⊥) ∈ �Op�
corresponds to either a diverging computation of updates, or to the computation
of an inconsistent set. Our largest fixpoint for the non-atomic semantics ofwhile
reduces to the least fixpoint definition 4.1.2 of iterate that is used to define the
semantics of while with deterministic body in [5]. In general, using a largest
fixpoint is unavoidable to characterize guaranteed termination for rules with
infinite nondeterminism.

The non-atomic semantics we give in Def. 2 is based on Interval Temporal
Logic (ITL [16,17]). We prefer this alternative over a structural operational se-
mantics (SOS, [19]), since SOS must model an explicit stack of local variables
which is unnecessary for a direct interval semantics.

201

The non-atomic semantics in this paper is a simplified version of the one we
give in [26], which additionally handles interleaved concurrency and temporal
operators.

Our definition of submachines is different from the one in [5]. A submachine
there is a subrule that may be called within a rule, with the purpose to support
mutual recursion in Turbo ASMs. These are similar to the calls of submachine
operations, however, submachines as defined here are full ASMs (with initial-
ization, signature etc.). Additionally, information hiding constraints have to be
satisfied for modular refinement. To be able to check these constraints syntacti-
cally we use input and output parameters passed by value, whereas subrules in
[5] use call by name. This extension does not give additional expressivity: a dec-
laration Op(x, y){α} could be replaced Op(;x, y){α} using reference parameters
only. Calls Op(t; z) for a submachine operation with declaration would have to
be replaced with let in = t in Op(; in, z).

The ASM formalism is also strong enough such that preconditions are defin-
able. A rule RULE working on dynamic functions f1, . . . fn with precondition
pre is equivalent to the extended rule if pre then RULE else CHAOS where

CHAOS = choose diverge? in if diverge? then abort
else RANDOM (f1)

. . .
RANDOM (fn)

and
RANDOM (fi) = forall args i choose val in fi(args i) � val

Rule CHAOS either diverges (when diverge? is true) or chooses a random
next state by overwriting each fi with a new function in RANDOM (fi).

Event-B has two decomposition concepts for machines that roughly corre-
spond to interleaved [1] and synchronous parallel execution of rules [6]. It is
not immediately clear how our submachine concept could be encoded by such
a decomposition, since events in Event-B have no internal control structure (al-
though a construction with program counters and explicit call/return events for
subrules may be possible).

7 Conclusion

We have defined a refinement theory for ASMs with submachines, which respect
information hiding. The theory has been key to enable modular, incremental
development of the Flash case study.

So far we have used forward simulations for our proof only. As noted in related
work, backward simulation is not a sound proof technique in the presence of
infinite runs. A completeness proof will therefore be possible only along the lines
of [24], by replacing choose with choice functions, but such a proof is still future
work.

Althoughwehave no need for guards in theFlash case study (the toplevelPOSIX
specification has total operations, all intermediate layers have preconditions),

202

it would be interesting to analyze, whether our refinement definition for subma-
chines is compatible with the main machine having guards.

Finally, it should be noted that our definition of refinement does not solve
all problems in the Flash case study. One important extension is necessary to
deal with power failures and recovery. A paper on this issue based on the same
semantic setting (with the idea that runs of a rule may be aborted in any in-
termediate state) is currently in preparation. Another important issue, which
we will have to consider, is that the actual implementation uses concurrency to
do work in the background: As an example, actually erasing blocks is done in a
concurrent thread that calls back to the main thread, when it has finished.

References

1. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundamenta Informaticae 77 (2007)

2. Abrial, J.-R.: The B Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996)

3. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press (2010)
4. Börger, E.: The ASM Refinement Method. Formal Aspects of Computing 15(1-2),

237–257 (2003)
5. Börger, E., Stärk, R.F.: Abstract State Machines — A Method for High-Level

System Design and Analysis. Springer (2003)
6. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.

(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)
7. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods

and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47.
Cambridge University Press (1998)

8. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and Ad-
vanced Applications. FACIT, 2nd revised edn. Springer (2014)

9. Ernst, G., Pfähler, J., Schellhorn, G.: Web presentation of the Flash Filesystem
(2014), https://swt.informatik.uni-augsburg.de/swt/projects/flash.html

10. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: A Formal Model of
a Virtual Filesystem Switch. In: Proc. of Software and Systems Modeling (SSV),
pp. 33–45 (2012)

11. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: Verification of a
Virtual Filesystem Switch. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013.
LNCS, vol. 8164, pp. 242–261. Springer, Heidelberg (2014)

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
13. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,

Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986)

14. Hunter, A.: A brief introduction to the design of UBIFS (2008),
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

15. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing 19(2) (June 2007)

16. Moszkowski, B.: Executing Temporal Logic Programs. Cambr. Univ. Press (1986)
17. Moszkowski, B.C.: An automata-theoretic completeness proof for Interval Tempo-

ral Logic. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 223–234. Springer, Heidelberg (2000)

https://swt.informatik.uni-augsburg.de/swt/projects/flash.html
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

203

18. Pfähler, J., Ernst, G., Schellhorn, G., Haneberg, D., Reif, W.: Formal Specification
of an Erase Block Management Layer for Flash Memory. In: Bertacco, V., Legay,
A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 214–229. Springer, Heidelberg (2013)

19. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University (1981)

20. Reeves, G., Neilson, T.: The Mars Rover Spirit FLASH anomaly. In: Aerospace
Conference, pp. 4186–4199. IEEE Computer Society (2005)

21. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications, vol. II, pp. 13–39. Kluwer, Dordrecht (1998)

22. Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Sim-
ulation. Journal of Universal Computer Science (J.UCS) 7(11), 952–979 (2001),
http://www.jucs.org

23. Schellhorn, G.: ASM Refinement and Generalizations of Forward Simulation in
Data Refinement: A Comparison. Journal of Theoretical Computer Science 336(2-
3), 403–435 (2005)

24. Schellhorn, G.: Completeness of Fair ASM Refinement. Science of Computer Pro-
gramming, 76(9) (2009)

25. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of a
Verified Flash File System. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014.
LNCS, vol. 8477, pp. 9–24. Springer, Heidelberg (2014)

26. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: A Temporal
Logic Framework for Compositional Reasoning about Interleaved Programs. In:
AMAI (2014), appeared online first, draft available at https://swt.

informatik.uni-augsburg.de/swt/projects/RGITL.html

27. Stärk, R.F., Nanchen, S.: A Complete Logic for Abstract State Machines. Journal
of Universal Computer Science (J.UCS) 7(11), 981–1006 (2001)

28. The Open Group. The Open Group Base Specifications Issue 7, IEEE Std
1003.1, 2008 Edition (2008), http://www.unix.org/version3/online.html (login
required)

29. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996)

http://www.jucs.org
https://swt.informatik.uni-augsburg.de/swt/projects/RGITL.html
https://swt.informatik.uni-augsburg.de/swt/projects/RGITL.html
http://www.unix.org/version3/online.html

