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A dynamics between Newton and Langevin formalisms is elucidated within the framework of the general-
ized Langevin equation. For thermal noise yielding a vanishing zero-frequency friction the corresponding
non-Markovian Brownian dynamics exhibits anomalous behavior which is characterized by ballistic diffusion
and accelerated transport. We also investigate the role of a possible initial correlation between the system
degrees of freedom and the heat-bath degrees of freedom for the asymptotic long-time behavior of the system
dynamics. As two test beds we investigate �i� the anomalous energy relaxation of free non-Markovian Brown-
ian motion that is driven by a harmonic velocity noise and �ii� the phenomenon of a net directed acceleration
in noise-induced transport of an inertial rocking Brownian motor.
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I. INTRODUCTION

The phenomenon of Brownian motion has assumed a fun-
damental and influential role in the development of thermo-
dynamical and statistical theories and continues to do so as
an inspiring source for active research in various fields of
natural sciences �1�. The Brownian motion dynamics can
conveniently be described by a generalized Langevin equa-
tion �GLE�. The GLE was originally derived by Mori �2�,
Kawasaki �3�, and Zwanzig �4� by use of the Gram-Schmidt
procedure. It was further investigated by Lee using the recur-
rence relations method �5�. Starting out from the well-known
system-plus-oscillator-reservoir model as, e.g., detailed in
Refs. �4,6�, one obtains the GLE derived from first prin-
ciples. The validity of a thermal GLE is typically restricted
to the case with a thermal equilibrium; e.g., see in Refs.
�6–9�. Specifically, such a GLE dynamics reads �3,4,6�:

mv̇�t� + m�
0

t

��t − t��v�t��dt� + �xU�x,t� = ��t� . �1�

Notably, the thermal noise ��t� is not correlated with the
initial velocity, i.e., �v�0���t��=0, see in Refs. �4,6� and in
Sec. III below. In contrast, the initial position x�0� typically
is correlated with ��t�. The memory friction ��t− t�� is in
thermal equilibrium related to the correlation of stationary
random forces �7,8�. Kubo �7� has addressed the common
behavior of a classical equilibrium bath by setting
���t���t���=mkBT��t− t��. Here kB is the Boltzmann constant
and T denotes the bath temperature. The one-sided Fourier
transform of ��t� obeys Re �̃����0 for real-valued �. This
correlation result for the thermal noise ��t� is commonly
termed the fluctuation-dissipation theorem �FDT� of the sec-
ond kind �8�. The nonlinear GLE can also be extended to
account for a nonlinear system-linear bath interaction

�4,6,10�, yielding a structure as in Eq. �1�, but now with a
nonlinear, coordinate-dependent friction function. It even can
be generalized to arbitrary nonlinear system-nonlinear bath
interactions containing then the potential of mean force �11�.

With this work we aim at extending the theory of classical
Brownian motion by focusing on the intricacies of a possible
non-Markovian with an incomplete, non-Stokesian dissipa-
tive dynamics �12–18�. We will demonstrate that the com-
monly stated conditions for the equilibrium bath are gener-
ally not complete within the framework of linear response
theory. This is so because the existence of anomalous diffu-
sion has not been considered in the original treatment by
Kubo and others. Moreover, we discuss also the influence of
initial correlation preparation between the system and the
heat bath upon the asymptotical behavior of the force-free
system.

II. BIASING GENERALIZED BROWNIAN MOTION

Let us first consider a free Brownian dynamics with
U�x , t�=0, possessing via the FDT of the second kind a
finite-valued zero-frequency friction. If this dynamics is next
subjected to a constant external force, i.e., −�U�x , t� /�x=F,
the acceleration vanishes in the case of a Stokesian friction
because the external force balances the friction force. A prob-
lem of broad interest is whether there exists an intermediate
situation between the Newtonian mechanics and such an or-
dinary Langevin formalism. This in turn necessitates a non-
Stokesian dissipation mechanism such that the asymptotic
long-time statistical probability will typically approach a sta-
tionary state that explicitly depends on the initial preparation.
It is thus of great practical interest to research what kind of
heat bath can take on this role. Such nonergodic nonequilib-
rium thermodynamics presents a timely subject that is pres-
ently hotly debated, both within theory �12–15,19–21� and
experiment �22–24�.

For a GLE subjected to a constant force; i.e.,
U�x , t�=−Fx, the solution of Eq. �1� can be written as*Electronic address: jdbao@bnu.edu.cn
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x�t� = x�0� + v�0�H�t� +
1

m
�

0

t

dt�H�t − t�����t�� + F� ,

v�t� = v�0�h�t� +
1

m
�

0

t

dt�h�t − t�����t�� + F� , �2�

where H�0�=0 and h�0�=1. The two response functions H�t�
and h�t� are the inverse of the Laplace transforms

Ĥ�s�= �s2+s�̂�s��−1 and ĥ�s�= �s+ �̂�s��−1, respectively,
where �̂�s� is the Laplace transform of memory friction ker-
nel, i.e., �̂�s�=�0

���t�exp�−st�dt. Under the assumption
that the characteristic equation s+ �̂�s�=0 possesses a zero
root, i.e., s=0, the residue theorem implies that h�t�=b

+	i res�ĥ�si��exp�sit� and H�t�=c+bt+	isi
−1res�ĥ�si��

�exp�sit�. Here, si �Re si�0� denotes the nonzero roots of
the above characteristic equation and res�¯� are the
residues. Within this context, the two relevant, generally
nonvanishing quantities b and c are determined to read

b =
1

1 + �̂��0�
, c = −

1

2
b2�̂��0� . �3�

This result then requires that �̂�0�=�0
���t�dt=0, i.e.,

implying a vanishing effective friction at zero frequency.
The average velocity and the average displacement under

the external bias F emerge at long times as


�v�t → ���� = b�
v�0�� +
F

m
t +

F

m
c , �4�


�x�t → ���� = 
x�0�� + b�
v�0��t +
1

2

F

m
t2

+ c�
v�0�� +
F

m
t +

F

m
d , �5�

where d=−	i res�ĥ�si�� /si
2 is a noise-dependent quantity.

Herein, we indicate by 
¯� the average with respect to the
initial preparation of the state variables, i.e., an average over
their initial values and �¯� is the noise average. The dissi-
pative acceleration of a Brownian particle of mass m
subjected to a constant force F then reads

a =
F

m
b , �6�

where generally 0�b�1. This quantity b will be termed the
dissipation reducing factor, the dissipation is reduced as b is
increased. This result is intermediate between a purely New-
tonian mechanics �obeying b=1� and an ordinary Langevin
dynamics �with b=0� including GLEs.

The two limiting results for the asymptotic dynamics are
found to read: �i� The Newton case with b=1 implying no
dissipation, i.e., ��t��0 with c=d=0, yielding: a=F /m,
v�t�=v�0�+ F

m t, and x�t�=x�0�+v�0�t+ 1
2

F
m t2. �ii� The

commonly known, ordinary Langevin situation is obtained
with b=0; i.e., Eq. �3� then loses validity because of �̂�0�
�0. For this case c= �̂−1�0� where �̂�0� denotes the Markov-
ian friction strength, resulting in a=0, �v�t→���

=F / �m�̂�0��, and 
�x�t→����= 
x�0��+ 
v�0�� / �̂�0�
+ F

m t / �̂�0�+ F
md.

In the unbiased case, we derive the two-time velocity cor-
relation function �VCF� of free generalized Brownian motion
in a generic form, i.e.,


�v�t1�v�t2��� =
kBT

m
h��t1 − t2�� + �
v2�0�� −

kBT

m


� h�t1�h�t2� . �7�

Here we used only the condition �v�0���t��=0. Note that
depending on the specific choice for the initial preparation
this velocity correlation generally is not time-homogeneous.
The stationary velocity correlation function becomes again
only a function of �t1− t2� for the case that we use the
equilibrium preparation with an initial velocity variance
in accordance with the thermal equilibrium value, i.e.,

v2�0��=kBT /m �21�. The deduced asymptotic stationary

VCF then reads Cvv���=b
kBT

m �0. This causes a breakdown
of the ergodic equilibrium state because of the initial
preparation-dependence, which is encoded in the
v�0�-dependent asymptotic results: �v�st=bv�0��0 and

�v2��st=kBT /m+b2�
v2�0��−kBT /m�.

Likewise, the mean square displacement �MSD� of the
force-free particle is written as


�x2�t��� = 
x2�0�� + 
v2�0��H2�t� + 2
x�0�v�0��H�t�

+
2

m
�

0

t

dt�H�t − t��
�x�0���t����

+
kBT

m �2�
0

t

H�t��dt� − H2�t� , �8�

where the fourth term denotes the effect of initial coupling
between system and heat bath. We will discuss the correla-
tion preparation in the following section. Note that here the
largest power in the temporal variation of the MSD involves
the square of time. The averaged displacement can be related
to the MSD via the generalized Einstein relation, reading

	2/
2�F → 0� = kBTeff. �9�

The ballistic diffusion coefficient is
	2=limt→�
�x2�t���F=0 / �2t2�, being related to the increasing
rate of linear mobility 
2�F→0�=limt→�
�x�t��� / �Ft2�F=0.
Here, this effective temperature formally reads
TeffªT+b�m
v2�0�� /kB−T�, where T is the temperature for
the common case with b=0.

To assure the equilibrium behavior of this generalized
Brownian motion the usual condition of Kubo’s FDT of the
second kind for the thermal noise must be complemented as
follows: Consider the Fourier transform �̃��� of the memory
damping kernel, i.e.,

�̃��� = �̂�s = − i�� . �10�

The real part of the former quantity is the spectral density of
noise. A ballistic diffusion with b�0 thus requires that the
lowest power of �̂�s� is of first-order in s, implying that the
lowest power of Re �̃��� is proportional to �2 at low fre-
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quencies. Therefore for a genuine thermal noise driven,
force-free particle approaching at the equilibrium state the
usual conditions must be completed by lims→0��̂�s� /s�→�
or lim�→0�Re �̃��� /�2�→�.

III. INITIAL CORRELATION BETWEEN SYSTEM
AND BATH

Starting from the system-plus-reservoir model, one knows
that in the coupling between the system and environmental
degrees of freedom there exist four kinds of coupling forms
which do not involve a renormalization of potential or mass
of the system. In these cases the heat bath consists of a set of
independent harmonic oscillators with masses m j and oscil-
lation frequencies � j. Previous work �21� has shown that the
random force is independent of the system variables for the
coordinate-velocity coupling. Nevertheless, however, the ex-
pression of thermal noise will depend on the initial prepara-
tion of system for the coupling between the system coordi-
nate �velocity� and the environmental coordinates
�velocities� considered here. To the best of our knowledge,
only a small number of prior studies �25,26� have considered
the general consequences of the detailed initial preparation
procedure in view of the asymptotic statistical results of the
system.

A. The coordinate-coordinate coupling

For a bilinear coupling between the system coordinate x
and the heat bath’s coordinates q j, the total Hamiltonian can
be written as

H =
Px

2

2m
+ U�x,t� + 	

j
� p j

2

2m j
+

1

2
m j� j

2�q j −
c j

m j� j
2x2� .

�11�

Here and below the momenta of the system and bath’s oscil-
lators are related to Px=mv and p j =m jq̇ j, respectively, and
the set c j denotes the coupling constants. The equation of
motion of the system obeys the form of the GLE �1� and the
thermal noise appearing in Eq. �1� emerges as �4,6,21�

��t� = − m��t�x�0� + �bath�t� , �12�

where ��t�= 1
m	 j

c j
2

m j� j
2 cos � jt and �bath�t� is determined by the

initial coordinates and the velocities of the oscillators of the
heat bath. The bath part �bath�t� of the noise explicitly reads

�bath�t� = 	
j

c j�q j�0�cos � jt +
q̇ j�0�

� j
sin � jt . �13�

Physically, this thermal noise ��t� obeys statistical prop-
erties that derive from the canonical, thermal equilibrium
distribution of the total, combined system-plus-bath �4,6,27�:
this thermal noise then again yields a vanishing mean and its
correlation obeys the thermal FDT �6�. The statistical quan-
tities involving noise of the system variables are strictly
determined by the joint probability �25�. The correlation
involving the initial position of the system and the thermal
noise ��t��, i.e., the fourth term in Eq. �8�, reads

2

m
�

0

t

dt�H�t − t��
�x�0���t����

= − 2
x2�0���
0

t

dt�H�t − t����t��

= − 2H�t� � ��t�
x2�0��

= − 2�1 − h�t��
x2�0�� , �14�

wherein “�” denotes the convolution integral. It reads,

H�t����t�= 1
2�i �dsĤ�s��̂�s�exp�st�=1− Ḣ�t�=1−h�t�. Here

we have used the relation below Eq. �2�, i.e., Ĥ�s��̂�s�=s−1

−sĤ�s�. This contribution assumes a finite value, i.e.,
−2�1−b�
x2�0�� in the long-time limit.

Under the usual assumption that the thermal noise ��t�
and the initial velocity v�0� of the system are not correlated,
we find from Eq. �12� that the initial coordinate of the system
must be uncorrelated with its initial velocity for the
coordinate-coordinate coupling case, namely, 
x�0�v�0��=0,
being the case for a canonical thermal equilibrium, cf. the
Hamiltonian in Eq. �11�. Therefore the third term in Eq. �8�
also vanishes. In the following we shall not consider prepa-
rations with such initial correlations between the initial
coordinate x�0� and the initial velocity v�0�.

B. The velocity-velocity coupling

For a bilinear coupling between the system velocity and
the velocities of the bath oscillators the total Hamiltonian
reads

H =
Px

2

2m
+ U�x,t� + 	

j
� 1

2m j
�p j −

d j

m
Px2

+
1

2
m j� j

2q j
2� ,

�15�

where d j denotes the corresponding coupling constants. We
can derive again the GLE �1� describing the motion of the
system with the thermal noise term now given by

��t� = v�0�	
j

d j
2� j

m j
sin � jt

+ 	
j

d j� j
2�q j�0�cos � jt +

q̇ j�0�
� j

sin � jt�
= v�0�m�

0

t

��t��dt� + �bath�t� , �16�

where ��t�= 1
m	 j

d j
2� j

2

m j
cos � jt and in addition we have


�x�0��bath�t���= 
�v�0��bath�t���=0. We require that the
FDT of the second kind is obeyed, namely that ���t��=0
and ���t���t���=mkBT��t− t��. This is guaranteed when

�q j�0��= �q̃̇ j�0��= �qi�0�q̃̇ j�0��=0, �qi�0�q j�0��=
kBT

m� j
2 ij, and

�q̃̇i�0�q̃̇ j�0��=
kBT

m j
ij, where q̃̇i�0�= q̇i�0�−d j /m jv�0� �21�.

In the case of velocity-velocity coupling, the fourth term
in Eq. �8� vanishes if again 
x�0�v�0��=0. An additional term
emerges, however, for the mean squared displacement
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�MSD� of the force-free particle due to the thermal noise ��t�
which now depends on the initial particle velocity v�0�.
From Eq. �2�, we obtain


�x2�t���add =
2

m
H�t��

0

t

dt�H�t − t��
�v�0���t����

= 2H�t�
v2�0���
0

t

dt�H�t − t���
0

t�
du��u�

= 2�t − H�t��H�t�
v2�0�� . �17�

Indeed, the ballistic diffusion arises also in this case. Nota-
bly, an additional contribution to the mean square velocity of
the force-free particle �c.f., Eq. �7� at t1= t2� emerges in this
case. It reads


�v2�t���add =
2

m
h�t��

0

t

dt�h�t − t��
�v�0���t����

= 2
v2�0��h�t��
0

t

dt�h�t − t���
0

t�
��u�du

= 2h�t��1 − h�t��
v2�0�� , �18�

where we have used the inverse Laplace transform of the
convolution integral in Eq. �18� by making use of the relation

ĥ�s��̂�s�=1−sĥ�s�.
In particular, the mean squared velocity of the force-free

particle emerges in the long-time limit as


�v2�t → ���� = 2b�1 − b�
v2�0�� +
kBT

m
+ �
v2�0�� −

kBT

m
b2.

�19�

This result evidences that the system cannot arrive at the
equilibrium state for any initial preparation of the particle
velocity if b�0. Therefore for the validity of FDT one has to
use at initial time a preparation of thermal equilibrium for
the system and the heat bath. Nevertheless, one needs not to
worry that the noise is uncorrelated with the initial velocity
of the system for a common non-Markovian dynamics with
b=0. Then, the FDT is valid independent of the coupling
form between system and bath whenever the effective Mar-
kovian damping of the system is finite at zero frequency.
This is so because the first and the third term in Eq. �19�
vanishes for b=0.

IV. TEST BED FOR NON-STOKESIAN
DISSIPATIVE DYNAMICS

Given the FDT of the second kind by Kubo we investigate
next unbiased, non-Markovian Brownian motion in Eq. �1�
that is driven by colored noise known as the harmonic ve-
locity noise �HVN� ��t� �28�, which, however, does not obey
the above additional requirements. The HVN itself is
produced from a linear Langevin equation, namely,

ẏ = �, �̇ = − �� − �2y + ��t� , �20�

where ��t� denotes Gaussian white noise of vanishing
mean with ���t���t���=2��2kBT�t− t��. The coefficient

� denotes the damping coefficient of the system correspond-
ing to the thermal white noise; � and � denote the damping
and the frequency parameters. The second moments and
the cross-variance of y�0� and ��0� obey 
y2�0��
=���−2kBT, 
�2�0��=��kBT, and 
y�0���0��=0. The
Laplace transformation of the memory damping kernel reads
�̂�s�=��s / �s2+�s+�2� with

Re �̃��� =
��2�2

��2 − �2�2 + �2�2 , �21�

respectively. The latter corresponds to the spectrum of
HVN which indeed vanishes identically at zero-frequency.
In this case the dissipation reducing factor emerges as
b= �1+���−2�−1, and likewise, c= �1−b�2 /�,
d= �1−b�2�����−1− �1−b��−2�.

Using models with a bilinear coordinate system-bath
coupling the dynamics can be characterized by the spectral
density of bath modes, J���, being related to
Re �̃���=J��� /m� �29–32�. Thus, for a weak coupling to a
bath, as it can be realized either with optical-like bath modes
�12,31�, broadband colored noise �33�, or also for the cel-
ebrated case of a black-body radiation field of the Rayleigh-
Jeans type �34� the static friction vanishes. Yet other physical
situations that come to mind involve the vortex diffusion in
magnetic fields �35�, or open system dynamics with a
velocity-dependent system-bath coupling �21,34,36,37�.

The non-Markovian Brownian motion can equivalently be
recast as an embedded, higher-dimensional Markovian pro-
cess. The Fokker-Planck equation �FPE� for the probability
density P�x ,v ,w ,u ,y ,� ; t� corresponds then to the dynamics
of a set of coupled Markovian LEs involving the auxiliary-
variables �w ,u ,y ,��: It obeys �tP=LFPP, where LFP is the
associated FPE operator; when being formally supplemented
here with a nonvanishing potential U�x , t�, it explicitly reads

LFP = − v
�

�x
− m−1�− U��x,t� + w�

�

�v
+ ��w + ��v + �2y

+ u�
�

�w
− �2�w − ��

�

�u
+ �

�

�y
+ ��� + �2y�

�

��

+ ��2kBT
�2

�w2 + ��2kBT
�2

��2 . �22�

A. The energy relaxation

We use this form for the analysis of the energy relaxation.
The mean total energy of the thermal HVN-driven force-free
particle reads


�E�t��� =
1

2
m
�v2�t��� =

1

2
m
�v�t��2� +

1

2
m
��v�t� − �v�t���2�� .

�23�

The first part describes the remnant initial kinetic energy of
the particle, being dissipated partly by the heat bath environ-
ment. This part vanishes in the ordinary case with b=0. The
second part denotes the energy provided from the heat bath.
It is independent of the initial particle velocity, but does not
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relax, however, towards equilibrium. The absorbed power of
the particle from the heat bath, namely, the rate of work
being done by the fluctuation force �38�, is

Pabs = lim
t→�

�
0

t

��t − t��
�v�t�v�t����dt�

=
�kBT

1 + �/�2�� + 2�2/����
. �24�

Note that it falls short of the equilibrium value �kBT. All
quantities plotted are dimensionless. Our numerical results
are depicted with Fig. 1. These results are obtained via the
simulation of a set of Markovian LEs which are equivalent to
the FPE in Eq. �22� with U�x , t�=0.

B. Brownian motor exhibiting accelerated transport

A most intriguing situation refers to Brownian motors
�39� when driven by Brownian motion that exhibits ballistic
diffusion. Take the case of thermal HVN driving a Brownian
particle according to Eq. �1� with a periodic potential that
breaks reflection symmetry, namely

U�x,t� = U0�sin�2�x� + c1 sin�4�x� + c2 sin�6�x�� + A�t�x ,

�25�

where U0=0.461, c1=0.245, and c2=0.04 �40�. A�t� is a
square-wave periodic driving force that switches forth
and back among A�t�=A0 when 2ntp� t� �2n+1�tp and
A�t�=−A0 when �2n+1�tp� t�2�n+1�tp. The key challenge
is whether a nonvanishing nonequilibrium current emerges
that can be put to a constructive use in order to direct,
separate, or shuttle particles efficiently �39�.

Figure 2 depicts the ensemble- and driving-phase-
averaged velocity �with the latter being equivalent to an
average over the temporal driving period, see in Ref. �41��,
i.e.,


�v�t��� = �2tp�−1�
t

t+2tp

dt�
�v�t���� �26�

for various strengths of the driving force A0, as obtained via
the simulation of the Markovian LEs corresponding to the
equivalent higher-dimensional FPE in Eq. �22�. A startling
finding is that this averaged velocity is now no longer a
constant but rather increases linearly with time. This is in
clear contrast to the behavior of ordinary Brownian motors
�39�. This directed acceleration is presented by the slope
�see dashed lines in Fig. 2� of the average velocity. For a
weak rocking �i.e., small A0� the phenomenon of directed
motion involves the surmounting of barriers, thus hindering
transport. In contrast, for a strong superthreshold rocking the
averaged displacement is related to the mean square dis-
placement via the modified Einstein relation in Eq. �9�, yield-
ing 
�x�t����−Fefft

2 in the long-time limit. Here Feff is
an effective tilting force stemming from the rocking of
the ratchet potential. Amazingly, this Brownian motor can be
accelerated because the driving and the noise-induced
effective tilting force supersedes the acting friction force.

V. CONCLUSIONS

We have researched within the GLE-formalism in Eq. �1�
an intermediate dynamics proceeding between Newton
and Langevin. The emerging nonequilibrium features are
manifested by the initial preparation-dependent asymptotic
stationary state, which is directly related to a non-Stokesian
dissipative phenomenon which stems from a vanishing
effective Markovian friction at zero-frequency. It has
been found that the fluctuation-dissipation theory is valid
and independent of the coupling form between system
and bath when the effective Markovian damping is finite
at zero frequency. In order to assure the equilibrium behavior
of a system, the usual condition for the heat bath, i.e., the
Kubo’s fluctuation-dissipation theorem of the second kind,
must be completed by an additional requirement:

FIG. 1. �Color online� Behavior of diverse mean energies �see
text� for a nonergodic, force-free Brownian particle vs time t. The
parameters used are m=1.0, kBT=1.0, �=0.2, �=5.0, �=1.0,
x�0�=0, and �i� v�0�=�2 and �ii� 1.0, respectively, for the total
energies given by the solid lines and the remnant energies by the
dashed lines, from top to bottom. The open circles are the adsorbed
energy from the bath for all cases and also the total energy for the
v�0�=0 case.

FIG. 2. �Color online�. Accelerated, �time and ensemble�-
averaged Brownian motor velocity in a rocking ratchet that is
driven by HVN. The used parameters are x�0�=v�0�=0, m=1.0,
kBT=0.5, �=5.0, �=22.0, �2=40.0, tp=25.0, and A0=2.0, 4.0, 6.0,
10.0, and 15.0, from top to bottom. The particles undergo a finite
acceleration a �times 100� vs temperature T, being depicted with the
inset for A0=10.0.
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lims→0��̂�s� /s�→� or lim�→0�Re �̃��� /�2�→�, where �̂�s�
and �̃��� are the Laplace and Fourier transforms of the
memory damping. However, the system cannot arrive at the
equilibrium state for any initial preparation of the system if
the condition is not obeyed for the bilinear coupling between
the system velocity and the velocities of environmental
oscillators.

Our findings exhibit anomalous superdiffusion in the form
of a ballistic diffusion. Yet another riveting result is that the
corresponding Brownian dynamics for a rocking Brownian
motor exhibits a distinct, accelerated velocity, rather than the
constant drift which typifies the situation with a Stokesian

finite zero-frequency dissipation. We are also confident that
our present results will serviceably impact other quantities of
thermodynamic and quantum origin. Thus this field is open
for future studies that in turn may reveal further surprising
findings.
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