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Escape driven by a-stable white noises
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We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential
when the Brownian particle is driven by white Lévy noise in a dynamical regime where inertial effects can
safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing
to the special character that underpins the noise-induced discontinuity which is caused by the generalized
Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the
boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local
boundary conditions that characterize the case with normal diffusion. By numerically implementing properly
the set up boundary conditions, we investigate the survival probability and the average escape time as a
function of the corresponding Lévy white noise parameters. Depending on the value of the skewness S of the
Lévy noise, the escape can either become enhanced or suppressed: a negative asymmetry parameter (3 typically
yields a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the
stability index « that characterizes the jump length distribution of Lévy noise, exhibiting a marked disconti-
nuity at a=1. We find that the typical factor of 2 that characterizes for normal diffusion the ratio between the
MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently
high barriers the survival probabilities assume an exponential behavior versus time. Distinct non-exponential

deviations occur, however, for low barrier heights.
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I. INTRODUCTION

The noise driven escape from a deterministically meta-
stable state is a theme that impacts many phenomena in di-
verse fields of natural sciences [1-4]. In particular, as a no-
table model for a chemical reaction Kramers [1] pioneered
the problem of an escape of a Brownian particle of mass m
moving in a potential V(x) with local minima corresponding
to an initial reactant and a final product state. In this sce-
nario, both states are assumed to be separated by a barrier
located at a position x,. In the spatial-diffusion-limited re-
gime, the Kramers rate theory is based on a stochastic dy-
namics that does not involve inertial effects and thus is de-
scribed by an overdamped Langevin dynamics, reading
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Here, Z(t) constitutes a white Gaussian noise process with

correlations (Z(1)Z(s))=28(t—s), representing thermal fluc-
tuations whose intensity is scaled by the friction 7. The es-
cape problem then concerns the surmounting of an energetic
barrier for stochastic trajectories that predominantly dwell
the neighborhood of separating attractors which in this case
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are made of two neighboring potential wells. The imposed
quasistationarity condition is realized by assuming special
boundary conditions with respect to the time evolution equa-
tion for the probability density. In the overdamped regime,
the evolution equation for the probability density p(x,7) fol-
lows the Smoluchowski dynamics
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J(x,t) =~ lV’(X)p(x,t) - MM, (3)
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and the stationarity approximation describes escape events
which correspond to a constant, nonvanishing flux of prob-
ability J,=J(x). Those stochastic realizations of the process
that have surpassed the barrier top are immediately absorbed
and reinserted into the original attractor region. In this way a
steady probability flow across the activated barrier state lo-
cated between the locally stable states of “reactants” and
“products” is established. Escaped trajectories, absorbed at a
position larger than the barrier location x,>x, require that
p,(x,)=0 on the whole half-line x,>x,. The rate formulation
is then based on the “flux over the population” method [2,5],
yielding in this case of a Smoluchowski dynamics the cel-
ebrated result [1-4]
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with AV denoting the activation energy AV=V(x,)-V(x,)
and w,,, w, representing the frequencies of the particle’s mo-
tion near the metastable potential minimum x,, and at the top
of the crossed barrier x;, respectively. This result represents a
feasible estimate for the actual reaction rate, if all trajectories
ejected by the source properly thermalize before eventual
thermal fluctuations drive them out of the initial well and,
most importantly, a distinct time-scale separation between
escape dynamics and intrawell relaxation holds true. This
latter requirement of a clear-cut time-scale separation is at
the basis for the description of the escape dynamics in terms
of a (time-independent) rate coefficient [2,5].

Yet another alternative to the approaches discussed above
is rooted in the concept of the mean first passage time
(MFPT), i.e., the average time that a random walker starting
out from a point x, inside the initial domain of attraction,
assumes in order to leave the attracting domain for the first
time [2-4]. Put differently, the MFPT is the average time
needed to cross the deterministic separatrix manifold for the
first time [2,6,7]. At weak noise the MFPT becomes essen-
tially independent of the starting point, i.e., #(xy) = Tygpr for
all starting configurations away from the immediate neigh-
borhood of the separatrix. Given the fact that the crossing of
the separatrix in either direction equals for normal diffusion
one half, the total escape time equals 27\ppr and thus the
rate of escape k itself becomes in this case

1

k (5)
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Characterization of the escape rate by use of the MFPT is
a rather complex notion for a general class of stochastic pro-
cesses. In particular, the MFPT analysis requires the choice
of a correct boundary condition [6,7]. These are well known
for one-dimensional stochastic diffusion Markov processes
x(r) which are of the Fokker-Planck form, Egs. (2) and (3) or
for one dimensional master equations with birth and death
kinetics. With generally non-Gaussian white noise the
knowledge of the boundary location alone typically cannot
specify in full the corresponding boundary conditions for,
say, absorption or reflection, respectively [6,8]. In particular,
the trajectories driven by non-Gaussian white noise depict
discontinuous jumps. As a consequence, the location of the
boundary itself is not hit by the majority of discontinuous
sample trajectories. This implies that regimes beyond the lo-
cation of the boundaries must be properly accounted for
when setting up the boundary conditions. Most importantly,
returns (i.e., so termed recrossings of the boundary location)
from excursions beyond the specified state space back into
this very finite interval where the process proceeds must be
excluded.

Following our reasoning in discussing Lévy-Brownian
motion on finite intervals [8], we present in this paper the
analysis of escape events of a noninertial, generalized diffu-
sion process which is driven by Lévy noise dwelling a sym-
metric double-well potential. Our investigation thus comple-
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ments and extends earlier studies of the escape problem
driven by symmetric Lévy white noises [9-11].

II. WHITE LEVY NOISE

The standard definition of the Gaussian white noise speci-
fies the latter as a time derivative of the Wiener process [i.e.,
a derivative of a stationary process with independent and
Gaussian-distributed increments whose covariance is given
by (W(r)W(s))=min(z,s)]. A classical Brownian motion (the
Wiener process) can be therefore represented as a limit in
distribution of independent Gaussian jumps taken at infini-
tesimally short time intervals of nonrandom length 1/n. Al-
ternatively (following, e.g., the definition of Feller [12-14]),
the Wiener process can be thought of as a limiting process of
random Gaussian jumps at random Poissonian jump times

[tn] 1 N(nt) N(tn)
W(f) = lim 2, Wk<—) = lim W( ) =lim >, W,.
n

n—o =1 n n—o n—% j_q

(6)

The symbol [n] stands for an integer number of jumps
which for a Poisson counting process N(nt),t=0 with the
mean (N(nt))=nt are assumed to be independent (decoupled)
of i.i.d random variables W, sampled from the Gaussian dis-
tribution. The equality sign in Eq. (6) denotes a limit in dis-
tribution sense. For n— o, the Poisson distribution becomes
peaked around k=nt and the limiting process W(z),r=0
tends to a Brownian motion diffusion for which the cumula-
tive distribution function reads [15]

Prob{W(z) < w} = lim >, Prob{ W(lj < w)}

n—% k= n

XProb{N(nt) = k}
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Here, we introduce a non-Gaussian white noise as a de-
rivative of the generalized Wiener process Wa,ﬁ(t), ie., a
non-Gaussian random process with stationary and indepen-
dent increments. The increments of such generalized Wiener
process have the a-stable distribution with the stability index
« and the time increment Ar"® as a scale parameter

N-1

W p(0) = j {(s)ds = f dLqg(s) = 2 (As)"°¢;,  (8)
0 0

i=0

where {; are independent random variables distributed with
the stable, Lévy probability density function (PDF)
L, g(¢;0,1=0) and NAs=t~t,. The parameter a denotes the
stability index, yielding the asymptotic power law for the
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jump length distribution for «<<2 being proportional to
|¢|~1+%). The parameter o characterizes a scale, 8 defines an
asymmetry (skewness) of the distribution, whereas w denotes
the location parameter. Throughout the paper, we deal only
with strictly stable distributions not exhibiting a drift regime;
this implies a vanishing location parameter u=0 in the re-
maining part of this work. For «# 1, the characteristic func-
tion (k)=[" dle ™ L, s({;o,p) of an a-stable random
variable { can be represented by

Blk) = exp[— o“lkl“(l — i3 sgn(k)tan %)} NG

while for a=1 this expression reads

d(k) = exp[— 0'|k|(1 + iﬁ% sgn(k)ln|k|)} . (10)

The three remaining parameters vary within the allowed re-
gimes a € (0,2], Be[-1,1], o€ (0,°). Random variables
corresponding to the characteristic functions (9) and (10) can
be generated using the Janicki-Weron algorithm [16,17].

For a=2 [and an arbitrary skewness parameter 3, cf. Eq.
(9)], the generalized Lévy-Brownian motion W, 4() be-
comes a standard Gaussian Wiener process whose time de-
rivative leads to the well known Gaussian white noise limit.
Following this interpretation, the stochastic source term in
Eq. (1) can be represented as a sum of independent pulses
(having stable distribution) acting on equally spaced times.
As a consequence, such Lévy noise is white, i.e., its autocor-
relation function is formally a Dirac-delta function of time.

For the sake of clarification, we mention here that there
exist different representations of other Lévy noises that are
non-Markovian in nature. As an example, so called fractional
Gaussian (or Lévy) noise is sometimes defined in literature
as the time derivative of a fractional Brownian motion pro-
cess [18-22]. In contrast to the Gaussian (or our Lévy) white
noise, the fractional Gaussian noise (fractional Lévy stable
motion) may exhibit slowly decaying time correlations. This
is however not the case with the type of Lévy noise ad-
dressed in this work, where the noise source at the level of
the Langevin equation is a white noise process.

II1. ESCAPE IN A DOUBLE WELL: SURVIVAL
PROBABILITY AND MEAN FIRST PASSAGE TIME

Let us consider a Brownian, overdamped particle in an
external potential V(x), i.e.,

a b
V(x) = — —x> + —x*, 11
(x) SX*7 (11)
which is driven by Lévy stable white noise. The sample tra-
jectories are then obtained by a direct integration of Eq. (1):

t t

x(t) =xy - f V' (x(s))ds + J dL, g(s), (12)
lo fo

using the standard techniques of integration of stochastic dif-

ferential equation with respect to the Lévy stable PDFs
[8,9,16,17,23-25]. The first passage time problem has been
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FIG. 1. The generic double well potential V(x)=—§x2+f-:x4

for inspection of the Kramers problem discussed in the paper.
To assure sufficiently high barrier separating the stationary
states —x,,,x,,, the following set of parameters has been chosen:
a=128,b=512,AV=V(0)=V(=\a/b)=38.

analyzed as 7=inf{t=0|x(¢)=x,} with trajectories x() start-
ing at x=x, and subject to corresponding boundary condi-
tions. In particular, an absorbing boundary condition is real-
ized by stopping the trajectory whenever it reaches the
boundary, or, more typically, whenever it has jumped beyond
that very boundary location. The role of reflection, which in
the case of a free diffusion [8] has been assured by wrapping
the hitting (or crossing) trajectory around the boundary loca-
tion, while preserving its assigned length, see in Refs. [8,25],
is taken over naturally here by the confining potential walls
of the symmetric double well. The details of our employed
numerical scheme for stochastic differential equations driven
by Lévy white noise has been detailed elsewhere [8]. In
the following we shall omit cases when a=1 with S#0. In
fact, this parameter set is known to induce instabilities in
the numerical evaluation of corresponding trajectories
[9,16,17,23,25].

In the following we consider several differing situations.
For a particle that starts out at a well bottom xy=-x,,, see
Fig. 1 and makes excursions toward the neighboring well
bottom, taken as an absorbing boundary we use the subscript
notation w-w. Likewise, for a particle staring out at well
bottom and being absorbed at barrier top location we use the
notation w-b. Using the statistics of the first passage time
events we shall next study the two corresponding survival
probabilities:

Sh()=1-F"(p), (13)

S ()=1-F""(1), (14)

where F-(f) is the corresponding cumulative first passage
time distribution, i.e.,

XXy
J'f‘W—b,W—W(t) — j pw'b’w'w(x,t)dx, (15)

with p"?**(f) being the corresponding first passage time
density.

In order for the escape to become dominated by a clear-
cut, single time scale we use a sufficiently high potential
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FIG. 2. Sample trajectories of random walks in the generic
double well potential subjected to Lévy stable noise with a=1.9
(left panel) and a=0.9 (right panel) with various 8 (8=0, top panel,
B=1.0, bottom panel). The scale parameter is o=v2, the chosen
time step of integration is df=107%.

barrier, thereby enforcing rare escape events. A too low
barrier would involve too many recrossing events with the
escape then being ruled by many time scales. Our used
parameters for the potential are the parameter set a,b
with a=128,b=512, yielding a barrier height of AV=V(0)
—V(=\a/ b)=Z—Z=8. This symmetric potential well is sche-
matically depicted with Fig. 1.

A. Case of normal diffusion

For a=2, the process driven by white Lévy stable noise
approaches the Brownian limit. The a-stable white Lévy
noise, as used in this study, then leads to the standard Gauss-
ian white noise with intensity 202, ie., ({(){(5))an
=2028(t-s). In this case, the corresponding values of the
MFPT from the potential minimum —x,, to the top of the
absorbing potential barrier, i.e., x;, or to the neighboring, ab-
sorbing minimum, x=x,,, can be calculated from the follow-
ing quadrature formulas:

1 X
Tyepr(= X, — X) = P .

X—f

Note that for a system driven by white Gaussian noise the
energy difference AV measured in units of kg7 may be di-
rectly related to the intensity of the noise o2. In contrast, for
Lévy stable noises with <2, the scale parameter o is no
longer “thermodynamically” related to the system tempera-
ture and consequently becomes a free parameter of the
modeJ. We have set throughout this study this value to
o=v2.

exp[V(z)/d?]

exp[— V(y)/d*]dydz. (16)

B. Survival probabilities for a-stable noise driven escape

Typical sample trajectories of the stochastic process de-
fined by Eq. (1) are depicted in Fig. 2. We observe that a
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FIG. 3. Survival probability densities $"**(r) (left panel) and

S"¥(¢) (right panel) for a particle dwelling the generic double well

potential subjected to Lévy stable noise with a=1.9 (top panel) and

a=0.9 (bottom _panel). The simulation parameters are df= 1075, N
=2X10%, o=12.

nonzero (3 parameter induces a dynamical asymmetry for the
escape dynamics occurring in a symmetric double well po-
tential. It is reflected in our numerical simulations by the
emergence of stochastic trajectories that spend more time in
the vicinity of one of the potential minima. As a conse-
quence, one of the attracting states of the process (+x,,) be-
comes favored over the other. This kind of behavior can be
also detected in our other figures. Notably, for a decreasing
value of the stability index a we observe larger fluctuations
of the particle positions. These occasional long jumps of tra-
jectories may be of the order of, or even larger than the
distance 2x,, separating the two minima of the symmetric
potential V(x).

From the ensemble of single trajectories, which are sub-
ject to the boundary conditions discussed above, and pre-
sented in Fig. 2, we estimated the survival probability den-
sities §b(¢) and S""(¢), see Fig. 3. The behavior of the
survival probability is consistent with the results as predicted
by inspection of the corresponding stochastic trajectories: We
clearly detect from Fig. 3 that at a chosen value of « a
decrease of the skewness S parameter of a driving white
noise causes a distinct decrease the rate of escape of the
particle from the left potential minimum; thus stabilizing the
starting position at x=-x,,. Most importantly, at sufficient
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high barrier heights a visible exponential decay of the sur-
vival probability occurs,—according to S(¢)=exp(—t/ Typpr)-
This is the expected exponential behavior for regular Brown-
ian motion and has been detected already previously for
symmetric Lévy noises [10,11] and for totally skewed (with
B=1) one sided Lévy motions [26]. Here we observe it as
well for skewed stable noises. Notably, the characteristic ex-
ponent Typpr clearly depends on both noise parameters, i.e.,
on the value of the stability index « and also on the skewness
parameter 3.

Our numerical analysis indicates that typically the
survival probability $""(¢) for the “well-bottom-to-well-
bottom” setup exceeds the survival probability $**(¢) for the
“well-bottom-to-barrier-top” setup. This observation can be
explained by features of a noise-driven dynamics: A particle
performing the motion under the influence of noise needs
more time to dwell the neighboring potential minimum than
is needed to reach the top of the barrier. This kind of behav-
ior can be nevertheless weakened by diminishing the stabil-
ity parameter a. For <2 the trajectory of the random par-
ticle becomes discontinuous and at sufficiently small « a
particle, on average, completes its escape from the left po-
tential minimum by a long jump which can overpass the
right potential minimum. Consequently, both survival curves
start to overlap converging to the same function at a given
small stability index a.

For the Cauchy limit, i.e., a=1, an approximate result for
the mean crossing time as a function of the noise strength o
has been given in Ref. [10] by use of the fractional Fokker-
Planck equation. In order to compare results obtained in this
work with the former studies presented by Chechkin et al.
[10], we have used a rescaled form of Eq. (1)

%=<x—x3>+g(z>, (17)

obtained by a set of transformations x—x/x,,, t—>t/7 with

x2 =alb, T=nla and consequently o“=D— _T/X In
these units o— —_= 128”‘“ thus, ()'a=2=‘1-1 and 0'a_1—64 From the
approximate formula derived in Ref. [10] for a strictly weak
noise case at a=1 one obtains Typy= 141.71, whereas our
simulations for this noise strength yield Typpr=132.86,
which differs only by around 7%. Exemplary survival prob-
abilities $*(¢) and §"*(f) for this Cauchy-Lévy noise are
presented in Fig. 4. The data indicate that for the Cauchy
noise the MFPT for well-bottom-to-barrier-top scenario is
somewhat smaller than the MFPT for the case of well-
bottom-to-well-bottom, see Fig. 4.

Our prior studies of a free Lévy-Brownian motion driven
by a stable noise has shown that for some parameterizations
of the Lévy noise (totally skewed stable distributions with
a<1) a non-exponential survival probability density
emerges. Therefore, in this study we tested whether for a
particle driven by a Lévy-Smirnoff noise, i.e., with setting
a=0.5, B=1, a decrease of the potential barrier may induce
visible deviations from the exponential distribution. The re-
sults of the test are displayed in Fig. 5 where the survival
probability densities $*-*(f) and $"~*(¢) for various heights of
the potential barrier AV are presented. For decreasing AV the
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FIG. 4. Survival probability densities $¥-*(r) and §""(7) for a
particle wandering in the generic double well potential subjected to
Cauchy noise, ie., Lévy stable noise with a=1.0. Tyer
=1.038+0.008 and Typpy=1.086+0.008. The simulation param-
eters are dr=107>, N=2 X 10% 0'—\2

motion of a particle indeed approaches the behavior of a free
diffusion; consequently also distinct deviations from the ex-
ponential character of survival distributions do show up.

C. Behavior for the MFPT

From the ensembles of collected first passage times we
have also evaluated directly the mean values of the distribu-
tions. Our findings for MFPTs are presented in Figs. 6 and 7.
The depicted results corroborate with the decrease of the
escape rate (i.e., the inverse of the MFPT) upon increasing
the skewness [B. Moreover, for the stability index a=2
(normal Brownian white noise) and for any skewness param-
eter 3, the Gaussian case is properly reconfirmed, see Figs. 6
and 7.

The statistics of first passage times for well-bottom-to-
barrier-top cases was collected solely on those trajectories
which reached or overcame the barrier top (the half-line be-
yond the location of the barrier top was then treated as an
absorbing interval), therefore no recrossings were registered

10° . - 100

Av=2® — S av=2} —
av=2" AvV=2' -
av=21 - av=2l -
= vzl -l = av=zs -
3 \ AV=2 s AV=2
% \ %
X

102 R T S 102 .
0 1 2 3 0 1

FIG. 5. Survival probabilities $"-?(f) (left panel) and S**(t)
(right panel) for various barrier heights separating two wells of the
potential: AV={2321 2-! 273 2-5} (from the top to the bottom).
The system is driven by Lévy-Smirnoff noise, i.e., Lévy stable
noise with @=0.5 and B=1. The simulation parameters are dt
=107, N=2X 10, o=12.
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FIG. 6. Mean first passage times for well-bottom-to-barrier-top
T&'{pr (left panel) and mean first passage times for well-bottom-to-
well-bottom Typpy (right panel) as a function of the skewness pa-
rameter 8. Simulation parameters dt=107, N=2 X 10*, o=2. The
error bars are estimated using bootstrap method with N,=2 X 103.
The white Lévy stable noise with the stability index @=2 and any
allowed value of B is equivalent to the white Gaussian noise, what
is manifested by the independence of Typr(B) for a=2. The vari-
ous symbols represent the various values of the stability index a:
(+) a=2.0, (A) @=1.9, (O) a=1.5, () @=1.3, and (W) a=1.1.

in these situations. In turn, trajectories traversals contributing
to the well-bottom-to-well-bottom statistics included also the
recrossings events (i.e., possible multiple traversals over the
barrier before reaching the left/right potential minimum).
Note, that our method of simulating skewed stable white
noises assumes a specific representation of an « stable vari-
able whose characteristic function is described by four pa-
rameters «, 3,0, u. Two of these have been preset in the
simulations to o=v2 and u=0 resulting in the noise intensity
(as interpreted at the level of a discrete form of the Langevin
equation) changing with various « [see Egs. (8)—(10)] and
fulfilling the PDF scaling La’lg(g’;a,O):ﬁLa,B(g/a; 1,0). Al-
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FIG. 7. Mean first passage times for well-bottom-to-barrier-top
TK,[’}[;’PT (left panel) and mean first passage times for well-bottom-to-
well-bottom Typpy (right panel) as a function of the stability index
. Simulation parameters dt=107, N=2X 10*, o=12, and N,=2
X 10°. The black squares indicate equality of MFPTs for a=2 with
any B. The various symbols represent the various values of the
skewness parameter B: (+) B8=1.0, (A) B=0.5, (O) 8=0.0, and (OJ)
B=-0.5.
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ternatively, one can use a constant noise intensity which,
with varying «, effectively yields a corresponding change for
the scale parameter o. For symmetric Lévy stable white
noises both procedures comfort with a diffusion analogy
[28], when the intensity of the noise (o parameter of the
Lévy distribution) corresponds to the diffusion coefficient of
a fractional Fokker Planck equation D=c¢*“. This analogy
breaks down, however, for asymmetric noises when the scal-
ing noise parameter at the level of the Langevin (or random
walk) description does no longer relate in any obvious way
to the “noise intensity,” understood here as the strength of
the diffusion parameter on the level of the FFPE. More pre-
cisely, the asymmetry of Lévy-noise impacts on the trajec-
tory x(r) implies, on one hand side, a contribution to the drift
of the probability flow (which intuitively can be understood
as a consequence of the biased directionality of the Lévy
flight) and, on the other, adds to the diffusion term with a
fractional derivative [27,28]. This nontrivial noise contribu-
tion composed of a mixed drift and diffusive term calls for a
more detailed analysis of a relationship between the noise
intensity entering the integral Eq. (12) and fractional diffu-
sion for asymmetric Lévy sources; a task that is the subject
for future studies.

In line with the above comment, the MFPTs, as observed
in Firgs. 6 and 7, have been estimated based on a constant
o=v2 which results in a changing “noise intensity,” depend-
ing on a value of parameter a. For =0 our results suggest
that Typy for a well-bottom-to-barrier-top is essentially in-
dependent of «, see left panel of Fig. 6

Moreover, for a=1, or adequately «= 1, the procedure of
simulating skewed random variables becomes unstable, as
reported elsewhere [16,17,23]. It can be readily explained by
examining the form of the noise-term characteristic function
¢(t)—see Egs. (9) and (10). The exponentiated functions are
no longer continuous functions of the parameters and exhibit
discontinuities when a=1, 8+ 0. This feature in turn induces
the discontinuities for Typpr(a), as it can be observed with
Fig. 7.

D. MFPT ratio no longer obeying normal diffusion behavior

Next, we investigate the behavior of the value for the ratio
R=Tywr! Trikor of the Ty between the case with well-to
well and well-to-bottom. Note that from the exact expression
in Eq. (16), for a symmetric potential V(x) with normal
Gaussian white noise fluctuations (i.e., for =2 and an arbi-
trary value of the skewness parameter B) this ratio yields the
commonly known factor of R=2. Put differently, in this case
the random walker needs twice the time to reach the other
potential minimum than to reach to the top of the potential
barrier. In contrast, with a decreasing value of « the ratio R
now distinctly deviates from 2, being always smaller than for
a Gaussian diffusion case. Our numerical results are depicted
in Fig. 8. This deviation can be understood by noticing that
for @<<2, the stochastic escape trajectories of the random
walks in the double well potential become discontinuous,
meaning that the continuous movement of a particle becomes
interrupted with long jumps. These occasional jumps are
more probable to occur for small stability index « and ex-
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FIG. 8. RatioszTﬁg‘i,T/Tﬁng of MFPTs tghthe neighboring po-
tential well (Typpr) and to the barrier top (Typpr) as a function of

the skewness parameter 8. The simulation parameters are dr= 107,
N=2X10% =12, and N,=2 X 10°.

plain the observable statistics of the first passage times, im-
plying in turn that R<<2. In particular, an increasing prob-
ability of long jumps over the barrier in the overall statistics
of passages tends to equalize Tyjppy With Ty, yielding R
values approaching 1. The effect of the skewness parameter
B which is responsible for the asymmetric stochastic dynam-
ics can be interpreted as an additional contribution to the
directionality of random impact pulses which push the Lévy-
Brownian particle within the potential well. For negative
(positive) B= +1 with a<1, the driving Lévy white noise
becomes a one-sided Lévy process with strictly negative
(positive) increments which stabilize trajectories around the
starting position x=*ux,,.

IV. CONCLUSIONS

In this paper we have studied the survival probabilities
and the mean values of the mean first passage times for es-
cape from a symmetric double well potential when the over-
damped dynamics is driven by general Lévy white noise. The
statistics of escaping trajectories is investigated by a numeri-
cal analysis of a Lévy noise driven Langevin equation with
properly implemented boundary conditions. Extending
former studies on the escape problem driven by symmetric
Lévy white noise [9-11] the first passage problem for one-
sided Lévy motions [26], our work provides an analysis of
the Kramers problem with an arbitrary set of «, and asym-
metry (3 parameters that characterize the white stable noise-
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source entering the Langevin dynamics. Following the Mar-
kovian character of the stochastic dynamics—at sufficiently
high barriers—the time dependence of the survival probabili-
ties within the potential well assume an exponential law. As
can be expected, distinct deviations from the exponential be-
havior become detectable, however, for low barrier heights
when, similarly to a normal Gaussian diffusion case, many
recrossing of the barrier are possible.

An asymmetry of the Lévy noise perturbing the dynamics
is shown to either enhance or also suppress the escape events
and corroborates the intuitive influence of the B parameter
which yields an additional, biasing contribution to the par-
ticles” motion due to the directionality of stochastic impact
pulses. Moreover, the rate of escape is shown to exhibit a
nonmonotonic behavior as a function of the stability index a,
with a discontinuity occurring at the value a=1.

In clear contrast to a normal diffusion behavior as typified
by systems driven by white Gaussian noise, for which the
random walker requires twice the time to reach the other
potential minimum as compared to the mean time to reach to
the (absorbing) top of the barrier, Lévy white noise with «
<2 now causes a decrease in this ratio of the mean first
passage times: The ratio R=Tjmr/ Tarber lies consistently
below the “normal” value of R=2. This remarkable result
holds true for any chosen value of the skewness parameter 3.

In summary, our numerical considerations demonstrate
the richness of the bistable kinetics resulting from driven
a-stable white noises. The observed features are rooted in
the non-local jump lengths taken from a distribution which
exhibits fat tails which in turn rule the random passages be-
tween the attracting states of a double well potential.
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