
         

                                   
                              

Self-organized, noise-free escape of a coupled nonlinear
oscillator chain

D. Hennig
1
, L. Schimansky-Geier

1 and P. Hänggi2

1 Institute of Physics, Humboldt-University at Berlin - Newton Str. 15, D-12489 Berlin
2 Institut für Physik, Universität Augsburg - Universitätsstr. 1, D-86135 Augsburg, Germany

                                                  
                          

                                                                         
                                  
                                                        

                                                                                
                                                                                 
                                                                                     
                                                                                    
                                                                                 
                                                                                     
                                                                                            
                                                                                   
                                                                                   
                                                                                 
                                                                

                    

Ever since the benchmark work by Kramers (for a
comprehensive review see ref. [1]), there is continued and
growing interest in the dynamics of escape processes of
single particles, of coupled degrees of freedom or of small
chains of coupled objects out of metastable states. It is
realized by the passage of the considered objects over
an energetic barrier which separates the local potential
minimum from a neighboring attracting domain.
A common situation in statistical physics is that of a

stochastic escape for which the total energy remains a
constant on average only. The later circumstance assumes
the existence of a thermal bath, causing dissipation and
local energy fluctuations. Thus, in this situation the escape
necessitates the creation of an optimal fluctuation trigger-
ing the escape [1]. Put differently, when such an optimal
fluctuation is transferred to the chain it provides sufficient
energy to the chain to statistically overcome the energetic
bottleneck. Characteristic time-scales of these processes
are determined by the calculation of corresponding rates
of escape out of the corresponding domain of attraction.
Consequently, many generalizations of Kramers escape
theory [1] in over- and underdamped versions have been
widely exploited. First extensions to multi-dimensional
systems date back to the late ’60s [2]. Nowadays, this

method is commonly utilized in biophysical contexts and
for a great many applications occurring in physics and
chemistry [3–10].
The objective of this letter is to elaborate on a differ-

ent scenario of the possible exit from a metastable domain
of attraction; the main mechanism is based on the assis-
tance of a strongly nonlinear deterministic dynamics. The
model we shall investigate is a purely deterministic dynam-
ics of a bi-linearly coupled chain of nonlinear oscillators.
Thus, no additional coupling to a thermal bath assists the
escape. This set-up thus implies a vanishing dissipation.
We consider macroscopic discrete, coupled nonlinear oscil-
lator chains with up to 1000 links, as these may appear
as realistic models in neuroscience, in various biophysical
contexts or also in networks of coupled superconductors,
e.g. see refs. [11–14]. An efficient deterministic escape that
is driven in the absence of noise is particularly impor-
tant when dealing with low temperatures for which the
activated escape becomes far too slow, or also for situa-
tions with many coupled nonlinear units in the presence of
non-thermal intrinsic noise that scales inversely with the
square root of the system size. If the chain is brought into
the nonlinear regime it may exhibit a spontaneous energy
localization. This is due to a modulational instability [15]
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of the homogeneous chain in the metastable state and the
possibly subsequent interaction of breather solutions.
An escape is related with a crossing of a saddle point in

configuration space, corresponding to bottlenecks [1]. We
shall assign a potential energy of interaction and exter-
nal force for this transition state Ecrit which has has
to be concentrated at the critical mode. We intend to
show that the latter can be reached in the microcanon-
ical situation spontaneously. Hence we encounter a self-
organized creation of critical states in clear contrast to
noise-activated escape. In particular, we find that intrin-
sic nonlinear effects on a long discrete chain of N units
induces a transition over an energetic barrier by enhancing
one, or several localized breather states [13,16,17]. With
this mechanism the initially almost uniformly distributed
energy can become dynamically concentrated by internal
redistribution without the need of an assistance of energy
exchange with a thermal bath. With this work we demon-
strate that the mechanism of nonlinear energy localization
may promote a faster escape dynamics as compared to
the noise-assisted situation where the system experiences
a continual stochastic forcing.
Each chain member is positioned in a cubic, metastable

potential,

U(q) =
ω20
2
q2− a

3
q3 , (1)

where a> 0 measures the nonlinearity. The metastable
equilibrium of the potential is located at qmin = 0 and the
maximum is at qmax = ω

2
0/a. Each nonlinear oscillator is

harmonically coupled to its neighbors. The situation is
thus modeled by a one-dimensional lattice system of N
coupled oscillators with the total Hamiltonian reading:

H =
N∑
n=1

{
p2n
2
+U(qn)

}
+
κ

2

N∑
n=1

[qn+1− qn]2 . (2)

The coordinate qn quantifies the position of the n-th
unit from a rest value in the direction perpendicular to
the axis of the chain and pn denotes the canonically
conjugated momentum. Throughout this work we shall
impose periodic boundary conditions.
The deterministic dynamics of the coupled oscillators

emerges as

d2qn
dt2
+ω20qn− aq2n−κ [qn+1+ qn−1− 2qn] = 0. (3)

The chain is linear in the coupling which distinguishes our
situation from a Fermi-Pasta-Ulam dynamics [18].
In a linear regime the chain solutions can be

expressed in terms of plane waves (phonons); i.e. qn(t) =
q0 exp[i(kn−ωt)] + c.c. obeying the dispersion relation
ω2 = ω20 +4κ sin

2(k/2) with wave numbers k= 2πk0l/L.
Therein l denotes the chain spacing, L is the length of
the chain yielding L= lN and k0 are the integers in the
interval k0 ∈ (−N/2, N/2].

The potential barrier in our set-up is given by

∆E =
ω60
6a2
. (4)

A linear regime holds true in the considered poten-
tial (1) for sufficiently small energy of all chain members
as compared to the potential barrier, yielding a quasi-
harmonic motion in phase space. A chain located initially
in the metastable potential minimum will remain there
for a very long time and jumps over the barrier occur at
time scales of the Poincaré recurrence time. For a set-up
with interacting strength κ the barrier height can be
estimated by assuming that only one unit of the chain
is elongated which yields a value ∆E = (ω20 − 4κ)(ω20 +
2κ)2/(6a2). Compared to the isolated unit a unit coupled
to its neighbors experiences an increase of the barrier
height ∆E of the order 4κ2.
In clear contrast, in the nonlinear regime an initial state

near the metastable minimum is structurally unstable as
will be elucidated below. In order to enhance the nonlinear
modes in the dynamics (3) with the potential (1) we
propose the following scenario:

– An amount of energy E0 =Etotal/N is applied
per unit which allows the activation of nonlinear,
cooperative excitations of the chain.

By doing so, the units evolve nonlinearly and these
nonlinear modes localize energy and do not interact with
the low-energy phonon modes which prevents that the
total energy becomes homogeneously re-distributed [13].
Thus, the chain possesses a total energy Etotal =NE0.

For an escape to take place we must require that Etotal >
Ecrit >∆E. These inequalities convey the fact that more
than just one unit governs the escape mechanism. The
initial energy E0 is supplied as follows: i) First, the whole
chain is elongated homogeneously along a fixed posi-
tion q0 near well bottom. ii) Then, the position of all
units and their momenta are iso-energetically randomized
while keeping the total energy a constant; i.e. Etotal =
NE0 = const. The random position values are chosen from
a bounded interval |qn(0)− q0|�∆q and, likewise the
random, initial momenta, |pn(0)|�∆p. The whole chain
is thus initialized close to an almost homogeneous state
but yet sufficiently displaced (∆q �= 0) in order to gener-
ate non-vanishing interactions, enabling the exchange of
energy among the coupled units.
The initial energy per unit obeys E0�∆E, but is still

sufficiently large to initiate the excitation of nonlinear
modes. Then, the nonlinear part of the potential causes
a modulational instability; perturbations with a wave
number Q may grow exponentially, resulting in a subse-
quent accumulation of energy at the expense of the energy
from the other units. For our described initial set-up this
growth proceeds with the rate [19]

Γ = sin

(
Q

2

)
(8κ)1/4

√(
10a2

3ω20
q20 −

κ√
2
sin2
(
Q

2

))
. (5)
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Fig. 1: Density plot of the energy of individual units n,
illustrating the formation of a localized structure upon evolving
time t. The color scale indicates the energy content, with
dark grey corresponding to a high-energy regime. The chain
consists of 100 units and the initial set-up is realized by setting:
q0 = 0.35, ∆q= 0.01, p0 =∆p= 0. The remaining parameters
are ω20 = 2, a= 1, and κ= 0.3. The total energy amounts to
Etotal = 8.1×∆E. Note the strong energy localization due to
breather coalescence around the units with number n= 45 and
n= 69.

Because the argument of the square root must assume
positive values the equipartition is unstable whenever

a2q20
κω20

− 3

10
√
2
sin2
(
Q

2

)
> 0 . (6)

To investigate the formation of intrinsically localized
modes in our discrete system the set of coupled equa-
tions (3) has been numerically integrated by use of a
fourth-order Runge-Kutta scheme. The accuracy of the
calculation is tested by monitoring the conservation of
the total energy at a precision level of 10−5. In our simu-
lations the chain consists of N = 100 coupled nonlinear
oscillators.
Starting out from an initial, nearly homogeneous state

with an approximate equipartition of energy among all
units the attainment of an array of breathers is observed.
More precisely, due to the emergence of a modulational
instability a pattern evolves in the course of time (of
the order of t∼ 2× 103) where for some lattice sites
the amplitudes grow considerably remaining small in the
adjacent regions. This feature is depicted with fig. 1. The
breather states possessing a relatively high energy occur
spontaneously at an average distance of the inverse wave
numbers Q−1max, corresponding to the maximal growth
rate Γmax in (5). Upon moving, these breathers tend to
collide inelastically with others. In fact, various breathers
merge to form larger amplitude breathers, proceeding
preferably such that the larger amplitude breathers grow
at the expense of the smaller ones. As a result, a certain
amount of the total energy becomes strongly concentrated
within confined regions of the chain. This localization
scenario, as demonstrated here for the case of a metastable
cubic potential, is characteristic for other nonlinear lattice
systems as well [15,19,20]. By construction the initial total
energy Etotal = 10.821 is almost uniformly shared among
all units. In fig. 1 the ratio of initial energy E0 and the
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Fig. 2: Typical behavior of the chain placed in the cubic poten-
tial. Snapshots of the potential energy U({qn(t)}) illustrate the
formation of several breathers, which subsequently merge to
concentrate the energy so that at least one unit can approach
the barrier. Parameters are as in fig. 1 but here we have
∆q= 0.1. Top panel: t= 0, initial state of nearly homogeneous
energy distribution; central panel: t= 913, emergence of local-
ized structures; and, bottom panel: t= 1922, strongly localized
state with one unit near the barrier.

barrier energy is E0/∆E = 0.081. Thus, a single unit must
acquire the energy content of more than 12 other units
before it can overcome the barrier.
A breather solution may grow sufficiently strong in

amplitude so that the energy barrier can be surmounted.
To relate the energy localization with escape over the
barrier we depict in fig. 2 snapshots of U({qn(t)}) at
different instants of time. In the beginning the energy
is virtually equally shared among all units (not shown).
After a certain time, the local energy accumulation is such
enhanced that at least one of the involved units possess
enough energy to overcome the barrier. The question then
is: does an escaped unit continue its flight beyond the
barrier or can it even be pulled back into the bound chain
formation (qn < qmax) by the restoring binding forces
exercised by its neighbors? On the other hand, the unit
that has already escaped from the potential well might
drag neighboring ones closer to or in the extreme even
over the barrier. Thus, concerted escape of at least parts
of the chain, if not the whole chain, from the potential
valley seems possible.
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Fig. 3: The amplitude profile is depicted for a critical chain
configuration, being symmetrically centered at n= 0, for differ-
ent coupling strengths: κ= 0.1 (dash-dotted line), κ= 0.5
(dashed line), and κ= 1 (solid line). Note that for better
illustration only a small part of the lattice chain with seiz-
able elongations is shown. The chosen parameters are ω20 = 2,
a= 1 for a chain with N = 100.

Whether a single unit of growing amplitude can escape
from the potential well or merely is dwelling the well
region via the action of the restoring forces of its neighbors
depends both on the corresponding amplitude ratio and on
the coupling strength.
An individual critical chain configuration q̃n, reach-

ing the transition state that separates bounded from
unbounded solutions is determined by solving ¨̃qn(t) = 0
and ˙̃qn(t) = 0. The relation in (3) reduces to −∂U/∂q̃n+
κ[q̃n+1+ q̃n−1− 2q̃n] = 0 . This equation can be derived
from the potential energy function Epot({q̃n}) =∑
n

(
U(q̃n)+

κ
2 [q̃n− q̃n−1]2

)
, yielding in the critical

configuration a vanishing force, i.e. ∂Epot/∂q̃n = 0. The
corresponding solution of this minimal critical energy
assumes on the lattice chain the form of a localized hump
which resembles the form of a hairpin.
In fig. 3 profiles of this hairpin-like, stationary criti-

cal localized mode (c.l.m.), or critical nucleus, with posi-
tions located at {q̄n} and total energy Ecrit are depicted
for several coupling strengths. Note also that a kink-like
c.l.m.-configuration, being possible with open-end bound-
ary conditions [21], is ruled out here in our case with peri-
odic boundary conditions. We observe that the stronger
is the coupling the larger is the maximal amplitude of
the hump and the wider is the spatial extension of the
latter. We underline that on a sufficiently extended lattice
this (c.l.m.)-mode represents a narrow chain formation
with its width being much smaller than the total chain
length. Apparently, rising the coupling strength κ causes
an increase of the critical energy, Ecrit. Because this unsta-
ble critical equilibrium solution {q̃n} constitutes a “force-
free” chain configuration we find that upon evolving time
an overall positive force acts on all units which in turn
yield a unidirectional escape into the neighboring attract-
ing well region.
Therefore, if the kinetic energy overcomes the critical

nucleus the subsequent escape of the neighbors is initiated,
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Fig. 4: Noise-free, mean escape time Tesc as a function of the
coupling strength κ. The remaining parameters are as in fig. 1
except for q0 = 0.45, ∆q= 0.1. The averages are performed over
1000 realizations of the initial conditions.

which progress on the chain to the left and to the right
of the hair pin as a propagating kink and anti-kink, re-
spectively, see refs. [6,22,23]. In this manner an efficient
lowering of the total potential energy is accomplished.
Since the kinetic energy of this outward motion conse-
quently increases a return backwards over the barrier into
the original well is prevented.
The escape time Tesc for the chain is defined as the

average of the moments at which the N amplitudes of the
escaping units pass a certain value q beyond the barrier
location. Here, we chose q= 10, i.e. q= 2.5qmax. Tesc
vs. the coupling strength is displayed in fig. 4. An efficient
escape is crucially influenced by the fast growing pertur-
bational mode with the wave number Qmax = 2πNmaxl/L
determining the number of units, Nmax, which belong to
the emerging localized pattern, cf. eq. (5). The optimal
strategy for fast escape is then that one of the emerg-
ing humps accumulates an energy larger than Ecrit. In
this case the localized pattern is provided already by
the mechanism of modulational instability. Otherwise,
if NmaxE0 <Ecrit further energy accumulation due to
breather coalescence is needed which only will inhibit a
speedy escape process. The relation (5) reveals that for
the optimal coupling strength κ� 0.31 the growth rate
assumes a maximum Γmax at a wave number Qmax � 1.25.
This in turn induces the minimal escape time depicted
in fig. 4.
Let us also compare the noise-free escape process with

a corresponding thermally activated process [1,6–8,22,23].
The corresponding Langevin dynamics reads

d2qn
dt2
+ γ
dqn
dt
+
dU

dqn
−κ [qn+1+ qn−1− 2qn] + ξn(t) = 0.

(7)

Here γ is the friction parameter and ξn(t) denotes a
Gaussian distributed thermal random force of vanishing
mean and correlation 〈ξn(t)ξn′(t′)〉= 2γkBTδn,n′δ(t− t′).
Our numerical simulations results for the escape of the
chain are depicted with fig. 5. We took averages of
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Fig. 5: Mean escape time Tesc vs. the ratio of energy per unit
and barrier energy, i.e. E0/∆E for the noise-free case k= 0
mode (solid line), randomized initial conditions (diamonds)
and noise-assisted case (dashed line), respectively. The para-
meters are: q0 = 0.40, ∆q= 0.1, ω

2
0 = 2, a= 1, κ= 0.3 and

γ = 0.1, N = 100.

1000 realizations of random initial conditions in the
microcanonical case and for the noisy escape trajectories
of the Langevin equations, respectively. The Langevin
equations were numerically integrated using a two-order
Heun stochastic solver [24] as a function of the ratio
E0/∆E. For the noise-free, deterministic system (3) E0
is given by the initial energy per unit which is chosen to
correspond to thermal energy kBT in case of the Langevin
dynamics (7). In both cases there occurs an increasingly
fast escape, i.e. Tesc becomes increasingly shorter upon an
increasing ratio E0/∆E. Most remarkably, for low ratios
E0/∆E (the region indicated as the “breather region”
in the figure) the escape occurs distinctly faster for the
noise-free case as for a situation of a chain that is coupled
to a heat bath. This implies a large enhancement of the
rate of escape as compared to the thermal rate. Near
E0/∆E � 0.36 there occurs a crossover, with the mean
escape time of the deterministic system at even higher
ratios closely following that of the Langevin dynamics.
To sharpen our finding that the escape proceeds typi-

cally faster in the noiseless situation as compared to the
case with a heat bath, we investigated also the escape
process of chain patterns starting out from non-flat and
even purely randomized initial conditions. First, we briefly
report on our simulations performed for non-flat initial
structures, i.e. for which the initial state is represented
by a plane wave qn = u0 exp(ikn)+ c.c. with wave number
k �= 0 yielding a pattern that complies with the periodic
boundary conditions. The value of the amplitude u0 was
chosen such that for all considered k values the system

assumes the same total energy. To summarize the results
concerning the mean escape time, we found that for larger
wave numbers k the escape process becomes prolonged.
For k= π/10, as the largest wave number for which escape
was observed within our simulation time-span of 105, we
found that Tesc = 7839, which lies still markedly below
the escape time in the thermally activated situation corre-
sponding to an equal ratio E0/∆E = 0.1. Note also that
there is no modulational instability for short wavelength
patterns belonging to wave numbers k ∈ [π/2, π] [19,21].
For randomized initial conditions, where the coordinates

and momenta are distributed in a fairly broad range
∆q and ∆p, the initial energy contents of the individual
units are widely distributed around a mean value E0. In
comparison for the above-discussed case with the k= 0
mode, the differences in the initial energy content of the
individual units are small due to a narrow distribution
range ∆q. The findings for the mean escape time as
a function of the mean initial energy content of the
units relative to the barrier height E0/∆E are included
in fig. 5 as diamond symbols. For each ratio E0/∆E
the averages were taken over 100 realizations of the
random distributions of the coordinates and momenta.
Most importantly, even for random initial conditions
the mean escape time assumes smaller values in the
microcanonical situation as compared to the Langevin
dynamics. This underpins our general statement that
noiseless escape indeed proceeds faster than thermally
activated escape.
We note that the breathers present robust chain config-

urations that are formed rather fast as compared to the
escape time. In contrast, the forever impinging stochastic
forces impede such a fast growth of the critical nucleus and
cause even the possible destruction of the critical chain
formation, causing re-crossings of the transition region
which only hamper a speedy escape. This inhibition for
escape is most effective at small ratios of E0/∆E, being
induced either by high barrier heights, or low temper-
atures (implying a small E0). A deterministic scenario
thus presents a more favorable route towards speedy
escape in situations with very weak noise or very large
barrier heights. Having performed also simulations for
more general situations with i) non-harmonic, nonlinear
chain interactions, ii) in higher dimensions and iii) differ-
ing on-site potentials we find [21] that the phenomenon of
an enhanced, noise-free escape remains robust in regimes
of small ratios between initial energy per unit E0 and
corresponding barrier height ∆E.
We in addition also studied systems which are more

complex than the case of a one-dimensional chain model
with harmonically interacting units [21]. It turned out
that i) for chain systems with more than one degree-of-
freedom per unit (e.g. taking into account also motions
of the units along the direction of the chain axis) and
ii) for interactions going beyond the linear (harmonic) one
(such as, e.g., with Morse-type interaction potentials) the
escape time in the microcanonical situation typically is

20002-p5



             

100 200 300 400 500 600 700 800 900 1000
300

400

500

600

700

800

900

number of oscillators N

T
es

c

last escape time
mean escape time
first escape time

Fig. 6: First, mean and last escape time Tesc as a function of
the chain length N . The parameters are: q0 = 0.50, ∆q= 0.01,
ω20 = 2, a= 1, κ= 0.2.

significantly shorter than for the situation with the system
being coupled to a heat bath.
The interesting role of the chain length on the escape

process has been studied with fig. 6: Therein, the first, the
average and the last escape time are depicted vs. varying
chain length with constant energy density ρ=Etotal/N =
const. Apparently the longer the chain, the more humps
(breathers) are formed due to the modulational instability.
This in turn offers the possibility that an enlarged number
of interacting breathers contribute to an enhanced energy
localization in a confined region of the chain that enhance
the formation of the critical localized mode. Thus, the time
it takes for the first unit to escape shrinks with increas-
ing chain length; but eventually saturates with increasing
chain length, see in fig. 6. Because the kink-antikink pro-
pagates with a constant velocity, the mean escape time
becomes insensitive to variations of the chain length for
sufficiently large lengths N � 500.
In summary, we studied noise-free escape in a chain of

coupled oscillators. While at weak thermal noise the rate
of thermal escape is exponentially suppressed, a determin-
istic nonlinear breather dynamics yields a robust critical
nucleus configuration, which in turn causes an enhance-
ment of the noise-free escape rate. Thus, the freezing-
out of noise may prove advantageous for transport in
metastable landscapes, whenever the deterministic escape
dynamics can be launched in a single shot via an initial
energy supply.
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