МИКРОСКОПИЧЕСКАЯ ВЫСОКОЧАСТОТНАЯ ДИНАМИКА В СТЕКЛАХ

А. В. Мокшин^{1, 2, *}, Р. М. Юльметьев^{1, 2}, Р. М. Хуснутдинов^{1, 2}, Р. Hanggi³

¹Казанский государственный университет ²Казанский Государственный Педагогический Университет ³University of Augsburg, D-86135 Augsburg, Germany E-mail: mav@theory.karan-spu.ru Поступила в редакцию 11.01.2006

На основе формализма функций памяти Цванцига–Мори развивается микроскопическая теория динамических процессов в стеклах и переохлажденных жидкостях. Получено выражение для динамического структурного фактора $S(k, \omega)$, содержащее только микроскопические релаксационные параметры системы. Вычисленные частотные спектры $S(k, \omega)$ аргонового стекла при T = 5 К для диапазона значений волновых чисел от 1.74 до 8.0 нм⁻¹ хорошо согласуются с результатами компьютерного моделирования молекулярной динамики.

Динамические процессы с теклообразующих системахотносятся к одной из наиболее актуальных проблем в современной физике конденсированных сред [1–5]. Известно, что такие системы кроме температуры плавления T_m характеризуются также температурой T_g , в которой происходит калориметрический переход в стеклообразное состояние. Состояние вещества при $T < T_g$ называется стеклом, а стеклообразующую систему при $T_g < T < T_m$ принято называть переохлажденной жидкостью [6, 7].

В последнее время особый интерес вызывают исследования физических механизмов, отвечающих за релаксационные процессы в микроскопической динамике переохлажденных жидкостей [8–10]. Хотя многие детали динамики этих систем уже хорошо изучены, некоторые вопросы остаются неразрешенными до сих пор. Так, например, несмотря на обнаруженную взаимосвязь между стеклованием (расстекловыванием) и особенностями долговременной динамики [11–14], влияние так называемого "эффекта структурного ареста" на высокочастотные коллективные возбуждения (звуковые волны) до конца не изучено [8, 15, 16].

Наиболее простой и удобный способ получения детальной информации о динамических процессах в конденсированных средах заключается в нахождении динамического структурного фактора $S(k, \omega)$ или соответствующих им спектров продольного потока плотности, $\tilde{G}_L(k, \omega)$. Величина $S(k, \omega)$ может быть определена как теоретически, так и экспериментально в опытах по рассеянию света, нейтронов и рентгеновских лучей. Для стекол и переохлажденных жидкостей экспериментально установлено [16], что в этих системах акустические возбуждения наблюдаются вплоть до значений волнового числа k, соответствующих межатомарным расстояниям. Причем ширина высокочастотных пиков в $S(k, \omega)$, характеризующая затухание этих коллективных возбуждений, описывается степенным законом $\Gamma(k) \sim Dk^{\alpha}$, где $\alpha \approx 2$ и значение коэффициента D практически не зависит от температуры. Аналогичные свойства были обнаружены и в динамике флуктуаций локальной плотности в жидких металлах [17–20]. Это указывает на единую природу высокочастотной коллективной динамики на микроскопических пространственных масштабах в жидкостях и стеклах.

Рассмотрим нормированную временнуœю корреляционную функцию (ВКФ)

$$\phi(k, t) = \frac{\langle \delta \rho_{-k}(t) \delta \rho_{k}(0) \rangle}{\langle |\delta \rho_{k}(0)|^{2} \rangle}$$

флуктуаций локальной плотности

$$\delta \rho_k = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \exp(i \mathbf{k} \mathbf{r}_j).$$

Здесь N – число частиц, **k** – волновой вектор и **r**_{*j*}(*t*) – радиус-вектор положения *j*-ой частицы. Лапласобраз функции $\phi(k, t)$ непосредственно определяет динамический структурный фактор

$$S(k, \omega) = \frac{S(k)}{\pi} \lim_{\epsilon \to 0} \operatorname{Re}[\tilde{\phi}(k, s = i\omega + \epsilon)], \qquad (1)$$

где $S(k) = \langle |\delta \rho_k(0)^2| \rangle$ – статический структурный фактор системы.

Другая важная характеристика высокочастотной динамики исследуемой системы – временная корреляционная функция продольного потока [21]:

$$G_L(k,t) = \frac{\langle J_L(k,0)J_L^*(k,t)\rangle}{\langle |J_L(k,0)|^2\rangle} = -\frac{m}{k_B T} \frac{S(k)\partial^2 \phi(k,t)}{\lambda^2},$$

где m – масса частицы, k_B – постоянная Больцмана, T – температура. Применяя лаплас-преобразование к уравнению (2) и учитывая (1), получаем

$$\tilde{G}_L(k,\omega) = \frac{\omega^2}{k^2} \frac{m\pi}{k_B T} S(k,\omega).$$
(3)

Временна́я корреляционная функция $\phi(k, t)$ может быть найдена формально точно из следующего интегродифференциального уравнения [8, 16, 22, 23]:

$$\frac{d^{2}\phi(k,t)}{dt^{2}} + \Omega_{1}^{2}(k)\phi(k,t) + \\ + \Omega_{2}^{2}(k)\int_{0}^{t} d\tau M_{2}(k,t-\tau)\frac{d\phi(k,\tau)}{d\tau} = 0,$$
(4)

где $M_2(k, t)$ – функция памяти второго порядка, а $\Omega_1^2(k)$ и $\Omega_2^2(k)$ – частотные релаксационные параметры. Последние выражаются через частотные моменты динамического структурного фактора

$$\omega^{(n)}(k) = \frac{\int d\omega \omega^n S(k, \omega)}{\int d\omega S(k, \omega)}, \quad n = 2, 4, 6, \dots, \quad (5)$$

следующими соотношениями:

$$\Omega_{1}^{2}(k) = \omega^{(2)}(k) = \frac{k_{B}T}{m} \frac{k^{2}}{S(k)},$$

$$\Omega_{2}^{2}(k) = \frac{\omega^{(4)}(k)}{\omega^{(2)}(k)} - \omega^{(2)}(k) = 3\frac{k_{B}T}{m}k^{2} + \qquad (6)$$

$$+ \frac{N}{mV} \int d\mathbf{r}g(r) [1 - \cos(\mathbf{kr})] \nabla_{l}^{2} U(r) - \Omega_{1}^{2}(k).$$

Здесь g(r) – функция распределения двух частиц, U(r) – потенциал межчастичного взаимодействия.

Применяя преобразование Лапласа к уравнению (4), для неэргодичной системы с учетом (1) получаем [16, 15]

$$S(k,\omega) = S(k) \left[f(k)\delta(\omega) + \frac{1 - f(k)}{\pi} \frac{[\Omega_1^2(k) + \Omega_2^2(k)]M'_2(k,\omega)}{[\omega^2 - \Omega_1^2(k) + \omega\Omega_2^2(k)M'_2(k,\omega)]^2 + [\omega\Omega_2^2(k)M'_2(k,\omega)]^2} \right],$$
(7)

+

где $M_2(k, i\omega) = M'_2(k, \omega) + iM''_2(k, \omega)$. Следует отметить, что в уравнении (7) появляется параметр неэргодичности (параметр f(k) Дебая–Валлера), который может быть выражен через частотные релаксационные параметры [8, 22]:

$$f(k) = \lim_{t \to \infty} \phi(k, t) = 1 - \frac{\Omega_1^2(k)}{\Omega_1^2(k) + \Omega_2^2(k)}$$

Таким образом, определение динамического структурного фактора $S(k, \omega)$ и, соответственно, частотного спектра продольного потока $\tilde{G}_L(k, \omega)$ сводится к нахождению функции памяти $M_2(k, t)$ второго порядка (или ее лаплас-образа).

В формализме Цванцига–Мори [23, 24] ВКФ флуктуаций локальной плотности, $\phi(k, t)$, соответствует набор функций памяти $M_n(k, t)$, n = 1, 2, 3, ..., которые также являются временные ми корреляционными функциями соответствующих динамических переменных. Младшая функция памяти $M_1(k, t)$ связана с ВКФ флуктуаций продольной компоненты импульса, функция памяти второго порядка $M_2(k, t) - c$ ВКФ флуктуаций энергии, а функция памяти третьего порядка $M_3(k, t) - c$ ВКФ флуктуаций потока энергии [25]. Лаплас-образы функций памяти взаимосвязаны следующим рекуррентным соотношением:

$$\tilde{M}_{n}(k,s) = [s + \Omega_{n+1}^{2}(k)\tilde{M}_{n+1}(k,s)]^{-1},$$

$$n = 1, 2, 3, ...,$$
(8)

где соответствующие частотные релаксационные параметры $\Omega_n^2(k)$ выражаются через частотные моменты $\omega^{(n)}(k)$, определенные уравнением (5). Таким образом, стохастическая динамика рассматриваемой системы характеризуется иерархией различных релаксационных процессов, которые описываются функциями $\phi(k, t), M_1(k, t), M_2(k, t), \ldots$ Временные релаксационные масштабы этих процессов можно определить как

$$\tau_n(k) = \int_0^\infty dt M_n(k,t) = \lim_{s \to 0} \tilde{M}_n(k,s).$$
(9)

Следуя принципу Н. Боголюбова о сокращенном описании статистических систем [26], в соответствии с масштабно-временной инвариантностью релаксационных процессов [25] можно предположить, что на некотором *n*-ом уровне происходит выравнивание (сближение) временныœх масштабов "соседних" релаксационных процессов:

$$\tau_{n+1}(k) = \tau_n(k). \tag{10}$$

Фактически это означает переход к конечному набору переменных, требуемых для сокращенного описания динамики системы. Следуя подходу, развитому ранее для описания микроскопической динамики жидких металлов вблизи температур плавления [17–20], предположим, что такое выравнивание возникает при n = 3. Это означает, что основной вклад в микроскопическую динамику оказывают переменные, связанные с флуктуациями плотности, импульса, энергии и их потоков. Отметим, что это соответствует обычному гидродинамическому подходу. Учитывая (10) и (9), можно записать $\tilde{M}_4(k, s) = \tilde{M}_3(k, s)$. С учетом этого равенства выражение (8) при n = 3 можно переписать в виде

$$\tilde{M}_3(k,s) = [s + \Omega_4^2(k)\tilde{M}_3(k,s)]^{-1}.$$
 (11)

Получая из уравнения (11) функцию $M_3(k, s)$ и подставляя ее в соотношение (8) при n = 2, находим

~ . . .

$$M_{2}(k, s) = \frac{2\Omega_{4}^{2}(k)}{\Omega_{3}^{2}(k)[s^{2} + 4\Omega_{4}^{2}(k)]^{1/2} + s[2\Omega_{4}^{2}(k) - \Omega_{3}^{2}(k)]},$$

или

$$\tilde{M}_2(k, i\omega) = M'_2(k, \omega) + iM''_2(k, \omega),$$
 (12)

где

$$M_{2}(k, \omega) =$$

$$= \frac{2\Omega_{3}^{2}(k)\Omega_{4}^{2}(k)[4\Omega_{4}^{2}(k) - \omega^{2}]^{1/2}}{\Omega_{3}^{4}(k)[4\Omega_{4}^{2}(k) - \omega^{2}] + \omega^{2}[2\Omega_{4}^{2}(k) - \Omega_{3}^{2}(k)]^{2}},$$
(13)
$$M_{2}^{"}(k, \omega) =$$

$$= \frac{2\omega\Omega_{4}^{2}(k)[2\Omega_{4}^{2}(k) - \Omega_{3}^{2}(k)]}{\Omega_{3}^{4}(k)[4\Omega_{4}^{2}(k) - \omega^{2}] + \omega^{2}[2\Omega_{4}^{2}(k) - \Omega_{3}^{2}(k)]^{2}}.$$
(14)

Соотношения (12)–(14) совместно с (7) определяют частотный спектр динамического структурного фактора $S(k, \omega)$. В частном случае, когда частотный спектр функции памяти второго порядка $\tilde{M}_2(k, i\omega)$ определяется *белым шумом*, спектры $S(k, \omega)$ согласно уравнению (7) содержат центральный пик (при $\omega = 0$) и два боковых пика, симметрично расположенных относительно центрального на частотах $\pm \omega_c(k)$. Отметим, что существование высокочастотных пиков зависит лишь от безразмерной величины–отношения $\Omega_1^2(k)/\Omega_2^2(k)$ [21]. В общем случае, ширина $\Gamma(k)$, положение

Рис. 1. Двухчастичная функция радиального распределения аргона при T = 5 К и $\rho = 1680$ кг/м³ (сплошная линия), при T = 96.78 К и $\rho = 1426$ кг/м³ (точечная линия).

 $\omega_c(k)$ и высота боковых пиков определяются четырьмя частотными параметрами $\Omega_n^2(k)$, n = 1, 2, 3, 4. Важно отметить, что развитый нами подход позволяет получить функцию памяти $M_2(k, t)$ второго порядка в виде линейной комбинации элементарных релаксационных функций [20]. Подобная $M_2(k, t)$ структура полностью согласуется с идеями теорий взаимодействующих мод, широко используемых в анализе экспериментальных данных для стекол [27].

Численные расчеты развитой теоретической модели были выполнены для аргонового стекла при температуре T = 5 К и плотности $\rho = 1680$ кг/м³. На рис. 1 представлена полученная нами с помощью моделирования молекулярной динамики функция радиального распределения двух частиц для аргона при T = 5 К, $\rho = 1680$ кг/м³ и при T = 96.78 К, $\rho = 1426$ кг/м³. Из рисунка видно, что для первого состояния главный максимум в радиальной функции становится более острым, а второй максимум расщепляется на два пика. Как известно, такие особенности в поведении радиальной функции характерны для стеклол [28].

С помощью уравнений (7), (13) и (14) были найдены динамический структурный фактор $S(k, \omega)$ и частотные спектры $\tilde{G}_L(k, \omega)$ (см. уравнение (3)). Параметр $\Omega_1^2(k)$ был найден с помощью уравнения (6), численные значения второго релаксационного параметра $\Omega_2^2(k)$ и статического структурного фактора S(k) были взяты из работы [8]. Ча-

Статический структурный фактор S(k) и частотные релаксационные параметры $\Omega_n^2(k)$ (10²⁴ c⁻²), n = 1, 2, 3 и 4, используемые в теоретических расчетах для нахождения динамического структурного фактора $S(k, \omega)$ аргонового стекла при T = 5 K

k, нм ⁻¹	$S(k), 10^{-4}$	$\Omega_1^2(k)$	$\Omega_2^2(k)$	$\Omega_3^2(k)$	$\Omega_4^2(k)$
1.74	6.23	5.1033	3.6581	6.980	15.12
4.40	7.12	27.917	23.502	50.09	131.17
5.40	7.42	40.750	33.689	81.23	239.34
8.00	9.35	70.560	64.407	189.75	688.85

стотные параметры $\Omega_3^2(k)$ и $\Omega_4^2(k)$ находились из сопоставления теоретических результатов с данными молекулярной динамики. Численные значения статического структурного фактора и частотных релаксационных параметров, используемых в расчетах, представлены в таблице. На рис. 2 полученные теоретические результаты для $S(k, \omega)$ и $\tilde{G}_L(k, \omega)$ при волновых числах k = 1.74, 4.4, 5.4 и 8.0 нм⁻¹ сравниваются с данными компьютерного

моделирования молекулярной динамики, взятыми из работы [8]. Следует отметить, что молекулярно-динамические исследования были выполнены авторами [8] для системы с периодическими граничными условиями, состоящей из N = 2048, 10976 и 32000 атомов аргона с потенциалом Леннарда-Джонса (глубина потенциальной ямы $\varepsilon/k_B =$ = 125.2 К, межчастичное расстояние $\sigma = 3.405$ Å) [8]. Из рис. 2 видно, что теоретические кривые хорошо воспроизводят данные молекулярной ди-

Рис. 2. Спектры (слева (динамического структурного фактора $S(k, \omega)$ и соответствующие им спектры (справа) потоковой корреляционной функции $\tilde{G}_L(k, \omega)$ аргонового стекла для T = 5 К при k = 1.74, 4.4, 5.4 и 8.0 нм⁻¹ (снизу вверх): точки – данные компьютерного моделирования молекулярной динамики [8], сплошная линия – теоретические результаты.

намики для всех значений волновых чисел. Некоторое расхождение теоретических результатов с данными компьютерного моделирования молекулярной динамики, наблюдаемое на рис. 2 в низкочастотных областях $S(k, \omega)$, связано с погрешностями, возникающими при численном фурье (лаплас-)-преобразовании данных моделирования для коррелятора плотности [8]. О наблюдаемом хорошем количественном согласии теории и результатов компьютерного моделирования можно судить по дисперсии высокочастотного пика $\omega_c(k)$ динамического структурного фактора застеклованного аргона, представленной на рис. 3.

Учитывая то, что подобная зависимость частоты бокового пика от волнового числа наблюдается также в системах, находящихся в жидком состоянии, особый интерес вызывает сравнение результатов для жидкостей и стекол. На рис. 3 представлена также дисперсия высокочастотного пика для жидкого аргона, жидких щелочных металлов (лития, рубидия, цезия) и застеклованного лития в приведенных единицах. В качестве масштабных единиц были взяты волновое число, соответствующие атомарному радиусу r_0 : $k_0 = 2\pi/r_0$, и частота, соответствующая тепловым колебаниям частиц, находящихся в системе при температуре плавления T_m : $\omega_0 = 2\pi k_0 (m/k_B T_m)^{-1/2}$. Из рис. 3 видно, что частота коллективных возбуждений в случае жидкого аргона меньше частот $\omega_c(k)$, наблюдаемых в застеклованном аргоне. Это свидетельствует об уменьшении периода соответствующих колебаний при переходе системы из жидкого в стекольное состояние. Данный вывод подтверждается также результатами, полученными для щелочных металлов.

Таким образом, в настоящей работе показано, что теоретический подход, развитый ранее для описания релаксационных процессов в жидких металлах вблизи температур плавления [14], эффективен также в исследовании динамики стеклообразующих систем. Численные расчеты динамического структурного фактора $S(k, \omega)$ и частотных спектров временной корреляционной функции продольного потока $G_L(k, \omega)$, выполненные для аргонового стекла при температуре T = 5 К и значений волновых чисел, соответствующих микроскопическим пространственным масштабам, хорошо согласуются с результатами компьютерного моделирования молекулярной динамики. Недавно в работе [9] была высказана гипотеза о том, что динамические процессы и связанные с ними коллективные возбуждения, которые наблюдаются в террагерцовой области частотных спектров динамического структурного фактора, имеют единую природу как в жидком состоянии, так и в стекольной фазе. Результаты настоящей работы убедительно свидетельствуют в пользу этой гипотезы. В работе также установлено, что в отличие от

Рис. 3. Дисперсия бокового пика в динамическом структурном факторе в приведенных единицах $\omega_c^*(k^*) = \omega_c(k^*)/\omega_0$ ($k^* = k/k_0$): (•) – аргоновое стекло при T = 5 К [8], • – жидкий аргон при T = 300 К [29], (Δ) – жидкий литий при T = 475 К, (*) – застеклованный литий при T = 5 К, (\odot) – жидкий цезий при T = 308 К, \Box – жидкий рубидий при T = 320 К [30]; сплошные линии – теоретические результаты.

ширины высокочастотных пиков динамического структурного фактора, которая практически не зависит от температуры, частота $\omega_c(k)$ соответствующих коллективных возбуждений имеет сильно выраженную температурную зависимость.

Авторы выражают искреннюю благодарность проф. В. Гетце (W. Götze), М. Сперлу (M. Sperl) за содействие в работе и полезные замечания.

Работа поддержана Российским фондом фундаментальных исследований (грант № 05-02-16639а) и МОН РФ (грант РНП р 2.1.1.741).

СПИСОК ЛИТЕРАТУРЫ

- 1. Anderson P.W. // Science. 1995. V. 267. P. 1615.
- 2. Sokolov A.P. // Science. 1996. V. 273. P. 1675.
- 3. Debenedetti P.G., Stillinger F.H. // Nature. 2001. V. 410. P. 259.
- Grigera T.S., Martin-Mayor V., Parisi G., Verrocchio P. // Nature. 2003. V. 422. P. 289.
- 5. *Novikov V.N., Sokolov A.P. //* Nature. 2004. V. 431. P. 961.
- 6. *Götze W.* Liquids, Freezing, and the Glass Transition. Amsterdam: North-Holland. 1991.
- 7. Крупянский Ю.Ф., Гольданский В.И. // УФН. 2002. Т. 172. С. 1247.
- Ruocco G., Sette F., Di Leonardo R. et al. // Phys. Rev. Lett. 2000. V. 84. P. 5788.

- Scopigno T., Ruocco G., Sette F., Monaco G. // Science. 2003. V. 302. P. 849.
- Ediger M.D., Angell C.A., Nagel S.R. // J. Phys. Chem. 1996. V. 100. P. 13200.
- 11. *Matic A., Börjesson L., Ruocco G. et al.* // Europhys. Lett. 2001. V. 54. P. 77.
- 12. *Masciovecchio C., Monaco G., Ruocco G. et al. //* Phys. Rev. Lett. 1998. V. 80. P. 544.
- Fioretto D., Buchenau U., Comez L. et al. // Phys. Rev. E. 1999. V. 59. P. 4470.
- 14. Mokshin A.V., Yulmetyev R.M., Hänggi P. // Phys. Rev. Lett. 2005. V. 95. P. 200601.
- Mossa S., Monaco G., Ruocco G. et al. // J. Chem. Phys. 2002. V. 116. P. 1077.
- Ruocco G., Sette F. // J. Phys.: Condens. Matter. 2001. V. 13. P. 9141.
- Yulmetyev R.M., Mokshin A.V., Hänggi P., Shurygin V.Yu. // Phys. Rev. E. 2001. V. 64. P. 057101.
- 18. Yulmetyev R.M., Mokshin A.V., Hänggi P., Shurygin V.Yu. // JETP Lett. 2002. V. 76. P. 147.

- Yulmetyev R.M., Mokshin A.V., Scopigno T., Hänggi P. // J. Phys.: Condens. Matter. 2003. V. 15. P. 2235.
- 20. Mokshin A.V., Yulmetyev R.M., Hänggi P. // J. Chem. Phys. 2004. V. 81. P. 7341.
- 21. *Balucani U., Zoppi M.* Dynamics of the Liquid State. Oxford.: Clarendon Press. 1994.
- 22. Götze W., Sjögren L. // Rep. Prog. Phys. 1992. V. 55. P. 241.
- 23. Zwanzig R. // Phys. Rev. 1961. V. 124. P. 1338.
- 24. Mori H. // Prog. Theor. Phys. 1965. V. 33. P. 423.
- 25. Yulmetyev R.M., Mokshin A.V., Hänggi P., Shurygin V.Yu. // Письма в ЖЭТФ. 2002. Т. 76. С. 181.
- 26. Боголюбов Н.Н. Динамические проблемы в статитстической физике. М.: Гостехиздат, 1946.
- 27. Das S.P. // Rev. Mod. Phys. 2004. V. 76. P. 785.
- 28. Саркисов Г.Н. // УФН. 2002. Т. 172. С. 647.
- 29. Bafile U., Verkerk P., Barocchi F. et al. // Phys. Rev. Lett. 1990. V. 65. P. 2394.
- Scopigno T., Ruocco G., Sette F. // Rev. Mod. Phys. 2005. V. 77. P. 881.