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We study the quantum version of a tilting and flashing Hamiltonian ratchet, consisting of a periodic potential
and a time-periodic driving field. The system dynamics is governed by a Floquet evolution matrix bearing the
symmetry of the corresponding Hamiltonian. The dc-current appears due to the desymmetrization of Floquet
eigenstates, which become transporting when all the relevant symmetries are violated. Those eigenstates that
mostly contribute to a directed transport reside in phase space regions corresponding to classical resonances.
Quantum dynamics leads to the dependence of the average velocity on the initial phase of the ac-field. A
resonant enhancement �or suppression� of the dc-current, due to avoided crossings between different Floquet
states, takes place upon tuning some control parameters. Our studies are predominantly aimed at experimental
realizations of ac-driven quantum ratchets with cold atoms.
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I. INTRODUCTION

Ratchets are viewed as realizations of systems which pro-
duce a directed current from a fluctuating environment in the
absence of gradients and net forces �1–5�. Initially proposed
as an abstract physical model for the understanding of a mi-
cromolecular machinery �2�, ratchet systems have found di-
verse applications in many areas �3–5�, from mechanical de-
vices �6� up to quantum systems �7–11�. Among the areas
with growing interest is the study of ratchet dynamics for
cold atoms �12�. Hamiltonian ratchets �13–17� with the cor-
responding symmetry predictions �13� have recently been
successfully realized with cold rubidium and cesium atoms
in optical lattices with a two-harmonics driving and a tunable
weak dissipation �18�. In these experiments, the mechanism
of the Sisyphus cooling �19� has been used in order to fur-
nish initial conditions in the form of an optical lattice: an
ensemble of atoms localized in the wells of a periodic poten-
tial created by laser beams. In the momentum space this
corresponds to a narrow distribution near the momentum p
=0. This is essential for the observation of the rectification
effect, since the asymptotic current tends to zero for broad
initial distributions in momentum space.

To describe the ratchet dynamics of the thermal cloud of
cold atoms in optical lattices �18�, a classical model has been
used �13–15�. However, as the cloud of atoms in a far de-
tuned optical potential �20� is cooled further down, one can
obtain a system where quantum effects become relevant.
Many studies of quantum ratchets are based on the kicked
rotor model �7,16,21,22�, which is readily treated numeri-
cally. In reality kicks may heat the system and degrade quan-
tum effects. It is perhaps for that reason that other successful
experiments �18� use a time continuous drive, which is also
the choice in the present work.

The paper is organized as follows. In Sec. II we introduce
the model for the quantum tilting ratchet and discuss its
properties. The dynamics of the system is studied within the
Floquet theory. We use the Husimi representation in order to
link eigenstates to manifolds in the classical phase space. In
Sec. III we study the relevant symmetries, whose violation

leads to the directed current, and the desymmetrization
mechanisms. Section IV is devoted to the dynamics of cur-
rent rectification. We begin by discussing the dependence of
the current on the initial condition. Then we investigate the
appearance and controlling of quantum resonances that lead
to a significant enhancement of directed transport. In Sec. V
we introduce the realization of a quantum flashing ratchet
system. Finally, in Sec. VI we summarize our results. Some
of our important technical details are deferred to the Appen-
dixes A–C.

II. MODEL SETUP

Let us start with a cloud of atoms, placed into a periodic
potential �formed by an optical standing wave� and exposed
to an external ac field. Assuming a low density, we neglect
the interactions among the atoms. Hence our problem can be
described by the Schrödinger equation

i�
�

�t
���t�� = H�t����t�� , �1�

where the Hamiltonian H is of the form �18�

H�x,p,t� =
p2

2
+ �1 + cos�x�� − xE�t� . �2�

Here E�t� is an external periodic field of zero mean, E�t
+T�=E�t�, �0

TE�t�dt=0. We start the integration at initial time
t0.

The Hamiltonian �2� is periodic in time with period T.
The solutions ���t+ t0��=U�t , t0����t0�� of the Schrödinger
equation �1� can be characterized by the eigenfunctions of
U�T , t0� which satisfy the Floquet theorem: ����t��
=e−i�E�/T�t����t��, ����t+T��= ����t��. The quasienergies
E��−��E���� and the Floquet eigenstates can be obtained
as solutions of the eigenvalue problem of the Floquet opera-
tor
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U�T,t0�����t0�� = e−iE�����t0�� . �3�

The Floquet eigenstates provide a complete orthonormal ba-
sis and the stroboscopic quantum state can be expressed as
�23�

���mT,t0�� = �
�

C��t0�e−imE�����t0�� , �4�

where the coefficients 	C�
 depend on t0. For later conve-
nience the integer �=0,1 ,2 , . . . , sorts the states ���� such
that the mean kinetic energy �p2���1/T�0

T����p̂2����dt0

monotonically increases. The “kinetic energy” defined here
and throughout the text is two times the kinetic energy of the
system.

By using the gauge transformation,

��� → exp−
i

�
x��

0

t

E�t��dt� + I�0������ ,

where I�t� is primitive of E�t� with zero constant �24�, we
transform the original Hamiltonian �2� into a spatially peri-
odic one �see Appendix A�. Then the solution of the time-
dependent Schrödinger equation for the new Hamiltonian
may be written as

���t�� = e−i/��0
t 	1/2�p̂ − A�t���2+�1+cos x�
dt����0�� , �5�

with the vector potential A�t�=−�0
t E�t��dt�+A�0�, where the

constant A�0� has to be chosen such that �A�t��T=0 and �. . .�T

stands for the time average over a period T. Due to discrete
translational invariance and Bloch’s theorem all Floquet
states are characterized by a quasimomentum � with ����x
+2���=ei������x��.

Here we choose �=0 which corresponds to initial states
where atoms equally populate all �or many� wells of the spa-
tial potential. This allows us to use periodic boundary con-
ditions for Eq. �1�, with spatial period L=2�, so that the
wave function can be expanded in the plane wave eigenbasis
of the momentum operator p̂, �n�= 1

�2�
einx, viz.

���t�� = �
n=−N

N

cn�t��n� . �6�

A detailed discussion of the two numerical procedures
used to integrate Eq. �1� is presented in Appendix B.

To examine the morphology of the quasienergy states we
use the Husimi representation �25�

	��x�,�p�� =
1

2�
����
�x�,�p���2, �7�

where


�x�,�p��x� =
1

�2��2�1/4 exp�−
��x� − x�2

4�2 + i�p�x/�� �8�

with �= �� /2�1/2. Here �x� and �p� stand for the average of
the position and momentum, respectively. The Husimi repre-
sentation provides an insightful, coarse grained description
in the phase space �25�.

III. RELEVANT SYMMETRIES AND THEIR VIOLATIONS

A. Classical limit

Let us briefly outline the classical case. In this limit the
system is generically characterized by a nonintegrable dy-
namics with a mixed phase space containing both chaotic
and regular areas in the three-dimensional phase space
�x , p , t� �27�. Due to time and space periodicity of the clas-
sical equation of motion ẍ=− �H

�x , we can map the original
three-dimensional phase space onto a two-dimensional cyl-
inder, T2= �x mod 1, p�, by using the stroboscopic Poincaré
section after each period T=2� /�, cf. Fig. 1�a�. This pro-
vides a helpful visualization of the mixed phase space struc-
ture. A stochastic layer, located near the line p=0, originates
from the destroyed separatrix of the undriven system, E�t�
=0. The chaotic layer is confined by transporting
Kolmogorov-Arnold-Moser-tori, which originate from per-
turbed trajectories of particles with large kinetic energies,
�p2�. The stochastic layer is not uniform and contains differ-
ent regular invariant manifolds—regular islands, unstable pe-
riodic orbits, and cantori �27�.

There are two symmetries which need to be broken to
fulfill the necessary conditions for the appearance of a dc-
current J=limt→

x
t = �ẋ� �13�. If E�t� is shift symmetric, i. e.,

E�t�=−E�t+T /2�, the symmetry
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FIG. 1. �Color online� �a� Poincaré section for the classical limit and �b�–�d� Husimi representations for different Floquet eigenstates for
the Hamiltonian �2� with �=0.2 �momentum is in units of the recoil momentum, pr=�kL, with kL=1�. The parameters are E1=E2=2, �
=2, �=−� /2, and t0=0.
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Sa:�x,p,t� → �− x,− p,t + T/2� �9�

is realized. Furthermore, if E�t� is symmetric, i.e., E�t+ ts�
=E�−t+ ts� at some appropriate point ts, the symmetry

Sb:�x,p,t� → �x,− p,− t + 2ts� �10�

holds. Any trajectory, when transformed using one of the
above mentioned symmetry operations, yields again a trajec-
tory of the system but with opposite velocity. Assuming that
ergodicity holds in the stochastic layer �which means that all
its average characteristics are independent on the initial con-
ditions, and that symmetry-related trajectories have the same
statistical weight, we conclude that the asymptotic velocity
within the chaotic layer is zero. So, whenever Sa and/or Sb
are realized, directed transport is forbidden inside the chaotic
layer �13�.

The two frequency driving,

E�t� = E1 cos��t� + E2 cos�2�t + �� , �11�

ensures that for E1 ,E2�0 Sa is always violated. In addition
Sb is violated for ��0, ±�. The appearance of a nonzero
dc-current Jch=limt→ 1/ �t– t0��t0

t p�t��dt� in this case is due
to a desymmetrization of the chaotic layer structure �Fig.
1�a��. It induces a desymmetrization of the events of directed
motion to the right and left �28�. Due to ergodicity inside the
layer, the asymptotic current is independent of the initial
time t0, for initial conditions located inside the chaotic layer.
With the specific choice of the driving �11� it follows
Jch���
=−Jch�−�� and Jch���=−Jch��+�� �13�. From perturbation
theory it follows Jch�E1

2E2 sin � �13,14�. An efficient sum
rule allows one to compute the average current Jch by proper
integration over the chaotic layer �16�.

B. Quantum case

If the Hamiltonian is invariant under the shift symmetry
Sa �9�, then the Floquet operator possesses the property, see
Eq. �179� in Ref. �23�:

U�T,t0� = �U�T/2,t0���TU�T/2,t0� . �12�

Here U� �seeing Appendix C� performs a transposition
along the codiagonal of U. With Eq. �11� Sa is always vio-
lated.

Likewise, one can show that, if the Hamiltonian is invari-
ant under the time reversal symmetry Sb �10�, then the Flo-
quet matrix has the property �29�

U�T,t0� = U�T,t0��. �13�

That symmetry will be recovered for �=0,�. More de-
tails about the derivation of the previous properties of the
operator evolution are explained in Appendix C.

We introduce the quantum asymptotic current as the mean
momentum expectation value

J�t0� = �p̄�t = lim
t→

1/�t – t0��
t0

t

dt����t�,t0��p̂���t�,t0�� ,

�14�

where p̄= ���p̂��� is the mean instantaneous momentum. Ex-
panding the wave function in the Floquet basis the current
becomes

J�t0� = �
�

�p���C��t0��2, �15�

where �p�� is the mean momentum of the Floquet state ����
�see Appendix D for more details�. Thus we have to study the
properties of Floquet states.

In general, the Floquet bands of the system �Eqs. �1� and
�2�� depend on the control parameters like amplitudes, fre-
quencies, and phase shifts of the components of the force
E�t�. We vary the parameter � while keeping the other fixed.
In Fig. 2 we present the quasienergy bands as a function of �.
There are two remarkable features. First, the spectrum exhib-
its two symmetries, E����=E��−�� and E����=E���+��,
which are consequences of the choice �11�. Second, while
some bands show strong dispersion upon the variation of �,
reaching the maximal dispersion at �= ±� /2, others have a
rather flat dependence. In Figs. 1�b�–1�d� we present Husimi
functions �25� for several Floquet states depicted by symbols
in Fig. 2. The Planck constant �=0.2 is in a range, where it
is possible to establish a correspondence between different
Floquet states and the invariant manifolds of the mixed phase
space for the classical limit. The states �b�–�d� are located in
various regular phase space regions.

On the other hand, from Fig. 2 we observe repulsion be-
tween some bands whereas others apparently cross each
other. These crossings are in fact avoided crossings which
lead to interesting effects.

For the symmetric case �=0, ±� the Floquet matrix has
an irreducible representation using even and odd basis states
�n�s,a= ��n�± �−n�� /�2−�n,0. All the Floquet states appear as
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Eα

FIG. 2. �Color online� A part of the quasienergy spectrum as a
function of the parameter �. The symbols indicate the correspond-
ing Floquet states shown in Figs. 1�b�–1�d�. The empty �red� circle
indicates the existence of an avoided crossing between two eigen-
states. The empty square encloses the region of the spectrum that
appears enlarged in Fig. 3.
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quasidegenerated doublets and �p��=0 for all � �see Figs. 2
and 3�. We especially note that this is true for states with
arbitrarily large kinetic energy, for which the corresponding
quasienergies become almost pairwise degenerated. Conse-
quently, following Eq. �15�, J=0 in this case.

For ��0, ±� the Floquet states become asymmetric and
the quasidegeneracies are removed �Fig. 3�. Floquet states
acquire a nonzero mean momentum, thus becoming trans-
porting. On the other hand, while in the symmetric case it is
possible to have coherent tunneling oscillations between dis-
connected regular islands, in the nonsymmetric case a pos-
sible dynamical tunneling is suppressed �30�. Thus a wave
packet initially located on a Floquet state with an asymmetric
distribution of momentum �similar to the state shown in Fig.
3�b�� will undergo a permanent directional transport.

This phenomenon of desymmetrization results in a non-
trivial dependence of the momentum upon �. We can gain
some understanding of this effect by modeling the evolution
of two eigenstates, which form a parity-related pair at the
point �=0, by neglecting their coupling with the rest of the
states.

To this end, we take two eigenstates, 
a and 
b, which
can be expanded in the plane wave basis ±�n�. The corre-
sponding propagator for such a reduced system is

Uab = �1 − � �

� 1 + �
� , �16�

where the nondiagonal term � refers to the interaction be-
tween the states. In general, this quantity depends upon the
momentum and driving field’s characteristics, i.e., �
=��p ,E1 ,E2 ,��. On the other hand, the parameter � breaks
the parity symmetry, and yields ��nE1

2E2 sin � at a first-
order of a perturbation theory. It is known that, in the ab-
sence of driving, E�t�=0, the asymptotic dependence of the

splitting value on n is ��n−n, i.e., a superexponential decay
�31�.

The eigenstates in a plane-wave basis are


s =
1

L���
�1�n� + �� + �1 + �2��− n�� , �17�


a =
1

L���
��� + �1 + �2��n� − 1�− n�� , �18�

where �=� /� and L���=�1+ ��+�1+�2�2. The symmetric
case, �=0, corresponds to the limit �→0. The eigenstate’s
momenta are

ps � − �n, pa � �n . �19�

At the opposite limit, �→, we have

ps � − n�1 −
1

2�2�, pa � n�1 −
1

2�2� . �20�

For large n, � is small, but for �=0 �symmetric case� it
follows �=0, and the eigenstates carry zero momentum. De-
viating from �=0, the moments quickly reach values ±n.
That happens for E1

2E2 sin ��n−n−1, which will hold for any
nonzero E1, E2, �, provided n is large enough.

Leaving the region corresponding to the chaotic layer, the
splitting between the doublets drops quite suddenly to zero.
This explains the momentum asymmetry in Fig. 3 for values
of � slightly deviated from �=0.

IV. AVERAGE CURRENT AND RESONANCES IN
CURRENT RECTIFICATION

The asymptotic current �14� depends on the initial condi-
tions, and, following Eq. �15�, only those Floquet states
which overlap with the initial wave function, ��t0�, contrib-
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FIG. 3. �Color online� Right panel: Quasien-
ergy spectrum in the vicinity of two quasidegen-
erated Floquet states. The symmetry is restored at
the points �=0, ±� where the splitting is rather
small. Left panels: Husimi function for different
�, �a� �=−0.05 and �b� �=0.
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ute to its subsequent time evolution. From now on, we re-
strict our analysis to the initial condition in the form of a
plane wave with wave vector n=0, i.e., ��t0�= �0�= 1

�2�
. This

initial condition spreads over Floquet states with low kinetic
energies, namely over those eigenstates for which the Husimi
representations lie in the chaotic layer’s region �Fig. 4�.

In the previous section we have discussed the mechanism
of the desymetrization when we tuned the system away from
the symmetry point �=0. In order to estimate a dc-current
value we need qualitative information about mean momen-
tum values acquired by Floquet states. As a suitable quantity
to study this issue, we use the cumulative average momen-
tum, P�=�s���p��. Figure 4 depicts the cumulative average
momentum, obtained from the recursive relation P�+2= P�

+ �p��+1+ �p��+2, with P0= �p�0 �26�. The asymmetry stems
mainly from Floquet states located in the chaotic layer region
of the classical phase space. The dependence has several
peaks. The Floquet states with higher values of the mean
momentum, which yields strong dc-currents, are located at
kinetic energy’s regions that correspond to classical trans-
porting resonance islands �see bottom part of Fig. 4�. A more
detailed analysis by using the Husimi distribution confirms
this finding. There are infinitely many high-order resonance
islands in the phase space of the Hamiltonian system �2� �27�
whose sizes shrink quickly as the resonance’s order increases
with �p2�→. The desymmetrization effect is observable
only when a resonance island can host more than one Flo-
quet state. With increasing �p2��, P� approaches zero in full
accordance with the fact that total current over the whole
momentum space should be zero �16�.

The asymptotic current for a fixed initial condition ���t0��
depends in general on the initial time t0. Note that this is

possible also in the classical case, since the initial distribu-
tion may overlap with different regular transporting mani-
folds �16�. However, if we start with a cloud of particles
located exactly inside the chaotic layer, the classical
asymptotic current will be independent of t0 for any choice
of the distribution function over the chaotic manifold. This is
not true for the quantum case where the current may even
change its sign with the variation of t0. It is a consequence of
the linear character of the Schrödinger equation �32�. We will
first discuss the results obtained after averaging over the ini-
tial time t0. Then we can assign a unique current value, J
=1/T�0

TJ�t0�dt0, for fixed parameters of the ac-field, E1, E2,
and �. Figure 5 shows the dependence of the average current
on the asymmetry parameter � for the initial condition ���
= �0�. The average current J shows the expected symmetry
properties J���=−J��+��=−J�−��. These symmetries for
the current imply that the results obtained for the interval
�−� ,−� /2� hold for other intervals as well.

The typical dependence of the average current J on � is
shown in Fig. 5. The curve presents a smooth profile with
several peaks. By comparing Fig. 5 with the quasienergy
spectrum Fig. 2, one can associate peaks with single sharp
avoided crossings �resonances� between two Floquet eigen-
states.

The Husimi function gives us additional insights for the
appearance of these peaks �see insets in Fig. 5�. It shows two
states that are located in the chaotic layer, one of them near
p=0, while the other is off the line p=0 with a strong asym-
metry in momentum, corresponding to a regular transporting
manifold. Off resonance the initial zero-plane wave state
mainly overlaps with the first eigenstate, which yields some
nonzero current due to desymmetrization. At resonance this
eigenstate mixes with the “transporting” one, resulting in a
strong enhancement of the current which is reflected in the
presence of peaks.

From an experimental point of view a too narrow reso-
nance may become undetectable due to resolution limita-
tions. We thus studied how to vary the width of the reso-

0 5 10 15
<p

2
>

0

2

4

0

3

6

x

0 10 20 30

<p
2
>

-2

0

2

4

6

8

P

α

α

α

FIG. 4. �Color online� Top: The line corresponds to the cumu-
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the eigenstates in the avoided crossing indicated in Fig. 2.
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nance without much affecting its amplitude. It turns out to be
possible by tuning another control parameter, e.g., the ampli-
tude E2. We decrease this field amplitude in order to disen-
tangle the two Floquet states and remove the avoided cross-
ing. That will happen for some value of E2 at �= ±� /2. The
details of the quasienergy spectrum around that critical point
are shown in the insets in Fig. 6�a�. The two quasienergy
spectra disentangle for E2=1 but stay close over a sufficient
broader range of � values. Thus the resonances become
broader, as seen in Fig. 6�a�. A further decrease of E2 to a
value of 0.95 leads to a strong separation of the two spectra,
and consequently to a fast decay of the amplitude of the
resonance.

As we already know, in resonance Floquet states mix.
Here the new eigenstate contains contributions both from the
original chaotic state as well as from the regular transporting
island state �see Fig. 6�. The Husimi distribution of this
mixed state shows strong asymmetry as expected. The states
from the chaotic sea and the regular transporting island are
connected by a narrow isthmus. Therefore it is possible to
leak from the nontransporting to the transporting island,
which, in principle, should reduce significantly the observa-
tion time for the detection of resonances. It was shown in
�28�, for the classical limit, that for a maximum desymme-
trization of the phase space, particles may stick to a regular
island leading to a ballistic flight. Hence, based on the clas-
sical analog, we can say that our hybrid state serves as a
quantum ballistic channel.

On the other hand, as already mentioned, the asymptotic
current depends on the initial time t0. The observed reso-
nance structures, due to resonant interaction between Floquet
states �avoided crossings of quasienergies�, are independent
of the initial time t0. In Fig. 7 we plot the nonaveraged cur-
rent as a function of both � and t0. While the smooth back-
ground is barely resolvable with the naked eye, the reso-
nances are clearly seen, and their position is not depending
on t0, while their amplitude does. That implies that one can
further maximize the resonant current by choosing properly
the initial values for t0.

So far, we have considered only the frequencies, �=2 and
3 �Figs. 1–7�. To gain a better understanding of the reso-
nances, we compute the dependence of the current as a func-
tion of the frequency of the driving force �see Fig. 8�. This
figure shows the appearance of peaks, whose amplitudes in-
crease as the frequency decreases. However, for larger fre-
quencies, peaks show up for specific frequencies, a result
which depends on the drive amplitudes. Interestingly, one
can notice the inversion of current.
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in the resonance region for E2=1 �top right� and E2=1.2 �bottom
left�. The parameters are E1=3.26 and �=3. �b� Husimi function
for the upper eigenstate that appears in �a� �top right inset� with �
=−� /2.

FIG. 7. �Color online� Current dependence on the initial time t0

and �. The parameters are the same as in Fig. 6. The current is in
units of the recoil momentum, pr=�kL.
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FIG. 8. The average of current J �in units of the recoil momen-
tum� versus frequency � of the driving force for �=−� /2. Inset:
The average of current J versus � for �=1. The plot of the current
is depicted for the interval �−� /2 ,0�, since the current is antisym-
metric with respect to a reflection at the origin. The other param-
eters are E1=3 and E2=1.5.
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In order to increase the current, we reduce the frequency
of the ac-force E�t�. The asymptotic current for �=1 is
shown in the inset of Fig. 8. We again observe a clear broad
resonance, but the maximum current value increases by an
order of magnitude up to 0.5 in units of recoil momenta.

Real experiments are always limited by a finite observa-
tion time. Therefore the rate of convergence to the
asymptotic current value, Eq. �12�, becomes a crucial issue.
To give a more realistic approach of our above results to
experiments, we perform numerical computations using the
running average momentum �current� definition,

P =
1

t
�

0

t

p̄dt . �21�

The time evolution for the instantaneous momentum P�t�
is shown in Fig. 9. The top of Fig. 9 shows that off resonance
the momentum rapidly evolves towards an asymptotic value,
while in resonance the momentum performs long term oscil-
lations which slowly approach the asymptotic value as the
time increases. To speed up the convergence of the momen-
tum towards the asymptotic value, we reduce the frequency.
Figure 9 shows large currents close to the recoil momentum
with relaxation times of the order of 100–200 periods for
�=1. The above results were obtained for �=0.2. We have
repeated the calculations using ��1 and observed similar
results.

V. QUANTUM HAMILTONIAN RATCHETS
WITH FLASHING POTENTIALS

Recent experiments have shown the possibility to achieve
an optical lattice with variable asymmetry �33�.

The Hamiltonian in this case is given by

H�x,p,t� =
p2

2
+ U�x�E�t� , �22�

where U�x+L�=U�x� and E�t+T�=E�t�.
Here, we take, as in �33�, the potential

U�x� = K�cos�x� + s cos�2x + �p�� , �23�

where � is the parameter which makes the potential asym-
metric for values different from 0, ±�. The relevant symme-
tries for the classical limit of the Hamiltonian �22� are

S1:�x,p,t� → �− x + 2xs,− p,t�

if U�x + xs� = U�− x + xs� for some xs, �24�

S2:�x,p,t� → �x,− p,− t + 2ts�

if E�t + ts� = E�− t + ts� for some ts, �25�

S3:�x,p,t� → �− x + 2xs,− p,t + T/2�

if E�t� = − E�t + T/2� and U�x + xs� = − U�− x + xs� ,

�26�

S4:�x,p,t� → �x + L/2,− p,− t + 2ts�

if E�t + ts� = − E�− t + ts� and U�x� = − U�x + L/2� .

�27�

It is easy to see that a two-harmonic potential Eq. �23� is
insufficient to break the time-reversal symmetry S2 �25�.
Thus an asymmetric ac-modulated function E�t� is needed to
desymmetrize the system. We use the two-harmonic function
�11�, which ensures that for �p�0, ±� and ��0, ±� all the
relevant symmetries, Eqs. �24�–�27�, are violated. As stated
before the quantum system inherits the same symmetries as
the classical limit. Therefore a current should appear as the
symmetries are broken.

Figure 10 shows the average current J versus � for the
asymmetric potential, �p=−� /2, at strong quantum limit �
=1. Since the current dependence possesses the symmetry
J���=−J��+��=−J�−��, it is sufficient to plot the current for
the interval �� �−� ,0�. As for the case of rocking ratchets,
we found evidence for quantum resonances and dependence
of the asymptotic current on the initial time t0 �see inset in
Fig. 10�.

VI. CONCLUDING REMARKS

In summary, we have investigated the mechanisms of the
emergence of an average current in ac-driven quantum sys-
tems. The key mechanism of the current rectification is the
desymmetrization of Floquet states. A peculiarity of the
quantum ratchet is its strong dependence of the current on
the chosen initial time t0 of the applied field. We identified
quantum resonances induced by avoided crossings between
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FIG. 9. �Color online� Mo-
mentum �in units of the recoil mo-
mentum� of state �0� as a function
of time �in units of periods�.
Left panel: On resonance cases �
=−� /2 for different t0. Off reso-
nance case �=−2.2. The param-
eters are �=3, and E1=3.26, E2

=1. Right panel: Case �=1 with
parameters E1=3 and E2=1.5.
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Floquet states which enhance the current drastically. Opti-
mizing the drive frequency, amplitude, and initial phase,
resonant currents easily reach the recoil momentum value
and should be experimentally observable using driven cold
atoms in optical lattices �18,33�.
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APPENDIX A: GAUGE TRANSFORMATION:
SOME RELEVANT QUANTITIES

We introduce the transformation

��̃� = exp i

�
xA�t�����

with A�t�=−�E1 /��sin��t�− �E2 /2��sin�2�t+��.
Substituting into Eq. �1� we can rewrite the Schrödinger

equation as

i�
�

�t
��̃�t�� = H̃�t���̃�t�� , �A1�

where H̃�t�= 1
2 �p̂−A�t��2+ �1+cos�x��.

To compute the momentum we start from the definition

p̃�t� = ��̃�− i�
�

�x
��̃� = − i��

−



�̃* �

�x
�̃dx = p�t� + A�t� ,

�A2�

where �p̃�T= �p�T.
The kinetic energy T is given by

T�t� = ���p̂2��� = ��� − �2 �2

�x2 ���

= �exp i

�
xA�t���̃�− �2 �2

�x2�exp−
i

�
xA�t���̃� . �A3�

After straightforward calculations

T�t� = T̃�t� − 2A�t�p̃�t� + A�t�2. �A4�

The average kinetic energy reads

�T �T = �T̃ �T − 2�A�t�p̃ �t��T + �A�t�2�T. �A5�

Recalling the Husimi distribution,

	��x�,�p�� =
1

2�
����
�x�,�p���2, �A6�

we can recast it in the new frame of variables as

	̃��x�,�p�� =
1

2�
��

−



e−ixA�t�/��*�x,t�

�eix�p�/�+��x� − x�2/4�2
dx�2

,

1

2�
��

−



�*�x,t�eix��p�−A�t��/�+��x� − x�2/4�2
dx�2

= 		�x�,�p� − A�t�
 . �A7�

Finally, after reversing the operations, we find

	��x�,�p�� = 	̃	�x�,�p� + A�t�
 . �A8�

APPENDIX B: NUMERICAL INTEGRATION
SCHEMES

In order to find the numerical solution for the time-
dependent Schrödinger equation we have used two different
methods of integration. The first method has been described
in �34�. It starts by using the expansion Eq. �6� and approxi-
mating

Â�t� =
�t

�
A�t��

k

��t − k�t� �B1�

for the time dependence of the vector potential A�t�
=−�E1 /��sin��t�− �E2 /2��sin�2�t+��, with �t=2� / ��Nt�,
where Nt is the number of integration steps per period.

The integration is carried out computing the coefficients
cn�tk+�t� �tk=k�t� by successive multiplication of the vector
c�tk� by a unitary matrix

c�tk + �t� = UQVQ−1c�tk� �B2�

where U and V are diagonal matrices with

Un,n = exp�− i�
�t

2
n2 − 2n

A�t�
�

+
A�t�2

�2 �� �B3�

and Vn,n=exp�−i�tṽn�.
ṽn are the eigenvalues of the matrix representation M of

the operator �1/��cos�x̂�. Q is an orthogonal �unitary� matrix

that transforms M into diagonal form �M=QṼQ−1�. Ṽ is a
diagonal matrix with elements ṽn.
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FIG. 10. The average current J �in units of the recoil momen-
tum� vs �. Inset: Asymptotic current as a function of the initial
condition t0 at �=−� /2. The parameters are E1=2, E2=1.5, �=1,
and �=1, K=1.5, s=0.25, and �p= –� /2.
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The symmetric matrix M has the structure Mn,m= ��m,n+1

+�m,n−1� / �2��. This method permits one to decrease the
number of steps per period �35�. Nevertheless, it involves
several matrix products and therefore its efficiency is de-
graded.

To check our results we use a second integration method
which is more efficient �29�. We expand again over plane
waves but this time we write down the expansion coefficients
as a product of two time dependent functions, viz.

���t�� = �
n=−N

N

an�t��n�t��n� . �B4�

Assuming that ��t� is a solution of the problem

i��t�n�t� =
�2

2
n −

A�t�
�
�2

��t� , �B5�

we obtain for �n�t� the solution

�n�t� = exp�− i
�

2n2t −
2n

�
�

0

t

A�t��dt� +
1

�2�
0

t

A�t��2dt��� .

�B6�

Then inserting Eq. �B4� into Eq. �A1� we obtain the set of
equations for the amplitudes an�t�,

ȧn = − i
1

2�
�n+1

t

�n
t an+1 +

�n−1
t

�n
t an−1� . �B7�

To obtain the propagator U�T ,0�, we start with the initial
states an

k�0�=�n,k, where −N�n ,k�N and integrate over one
time period T. Here the kth column of the matrix for the
propagator is given by an

k�T��n
k�T�. For the computation we

have neglected the contribution originating from A2�t� and
the constant term 1/� in the potential since they only yield
global phase factors.

APPENDIX C: SYMMETRIES OF FLOQUET OPERATOR

Let us first analyze the time reversal symmetry:

Sb:t → − t, x → − x .

In the momentum representation basis, �n�, this transforma-
tion implies several operations including complex conjuga-
tion, and inversions n→−n.

In that case the Floquet operator possesses the property

U�T,t0� � U�T,t0��,

whose matrix elements obey

�U�T,t0��n,m = �U�T,t0���n,m = �U�T,t0��−n,−m.

The latter relation holds whenever the transformation is done
around the symmetric points, namely t0= ts.

Let us analyze the symmetry

Sa:t → t + T/2, x → − x .

This corresponds to the transformation

t → t + T/2, n → − n .

For the Floquet operator we get

U�T,0� � U�T,T/2�U�T/2,0� � �U�T/2,0���TU�T/2,0� .

�C1�

This implies that

U → U�T,

or, equivalently,

�U�T,t0��n,m = ��U�T,t0���T�n,m = �U�T,t0��−n,−m.

APPENDIX D: ASYMPTOTIC CURRENT

The asymptotic current can be defined as follows:

J = lim
�→

1

�
�
m=1

�

���mT��p̂���mT��T = lim
�→

1

�
�
m=1

�

��p�mT���T.

�D1�

The wave function can be expanded over Floquet states as

���t�� = �
�

C����� . �D2�

Similarly, one can expand the Floquet states over the plane
wave function

����t�� = �
n

b�,n�n� . �D3�

Starting from an initial plane wave �0�, the coefficients
become C�=b�,0. In such a case we get

�p�mT�� = �
�,��

b�,0b��,0
* e−im�E�−E��������p̂���� . �D4�

It was shown for chaotic systems �36� that, as the time
goes on, nonlinear interference terms accumulate large and
larger phases, namely m�E�−E���. Finally, for long enough
times, contributions to the directed transport are only given
by diagonal terms,

J = ��
�

�b�,0�2����p̂�����
T
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