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1. Introduction

The study of dynamical time series is gaining ever increasing interest and is applied and used in diversified
fields of natural sciences, technology, physiology, medicine and economics [1–8], to name only a few. The
majority of natural systems can be considered dynamical systems, whose evolution can be studied by time
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series related to relevant variables on a suitable time scale. These series are often characterized by a
pronounced time and spatial synchronization or coherence, chaotic or robust behavior.

When analyzing time series data with linear methods, one can follow certain standard procedures.
Moreover, the behavior may be described by a relatively small set of parameters. For a nonlinear time series
analysis, this is not necessarily the case. While standardized algorithms exist for the analysis of the time series
data with nonlinear methods, the application of these algorithms requires considerable knowledge and skills
on the part of the user.

In a nonlinear time series analysis one starts out with a reconstruction of the state spaces from the observed
data [8–12]. Although the embedding theorems [13] provide an important means of understanding the
reconstruction procedure, likely none of them is formally applicable in practice. The reason is that they all deal
with infinite, noise free trajectories of a dynamical system. It is not obvious that the theorems should be
‘‘approximately valid’’ if only the requirements are ‘‘approximately fulfilled’’, for example, if the data
sequence is long, although finite and not completely noise-free.

A possible way to study the manifestation of physical properties of random processes (and the Markov
random processes (MRP) in particular) in time series originates from the theory of nonequilibrium statistical
physics. The history of the fundamental role of stochastic processes in physics dates back a century to the
Markov representations [14] of random telegraphic signals. Such processes still find application in models of
contemporary complex phenomena. A few typical examples of complex physical phenomena modeled by the
Markov stochastic processes are: kinetic and relaxation processes in gases [15] and plasma [16], condensed
matter physics (liquids [17], solids [18], and superconductivity [19]), astrophysics [20], nuclear physics [21], for
certain quantum relaxation dynamics [22] and in classical [23] physics. At present, we can make use of a
variety of statistical methods for the analysis of the Markov and the non-Markov statistical effects in diverse
physical systems. Typical examples of such schemes are the Zwanzig–Mori’s kinetic [24] generalized master
equations and corresponding statistical quantifiers [25], the Lee’s recurrence relation method [26], the
generalized Langevin equation (GLE) [27], etc.

In this paper we shall study the crucial role of relaxation and kinetic singularities in brain function of
healthy physiological and pathological systems for the case of photosensitive epilepsy (PSE). In particular, we
seek marked differences in large space and times scales in the corresponding stochastic dynamics of discrete
time series that could in principle characterize pathological (or catastrophic) violation of salutary dynamic
states of the human brain. As a main result, we show here that the appearance of distinct differences in the
relaxation time scales and extraordinary stratification of the phase clouds in the stochastic evolution of
neuromagnetic responses of the human brain as recorded by MEG may yield evidence of pronounced zones
responsible for the appearance of PSE.

2. Stratification in the phase space and stochastic processes in complex systems

The phase space plays a crucial role in determining the singularities of stochastic dynamics of the underlying
system. A set of the dynamical orthogonal statistical variables describing the dynamical state of the
complex system is a feature important in a proper construction of the phase space and analysis of the
underlying dynamics. Let us consider an k-dimensional vector of the initial state A0

k ¼ ðx1;x2; x3; . . . ;xkÞ and
an k-dimensional dynamic vector of the final state Am

kþm ¼ ðxmþ1;xmþ2;xmþ3; . . . ;xmþkÞ, where k þm ¼

N; k;m ¼ N;N � 1;N � 2; . . . ;N=2� 2;N=2� 1;N=2 and N denotes the sample length. From the discrete
equation of motion

Dxi

Dt
¼

xiþ1 � xi

tiþ1 � ti

¼
1

t
fD� 1gxi,

tiþ1 � ti ¼ t, (1)

we obtain the equation of motion of the dynamical vectors of state Am
mþk as

DAm
j

Dt
¼ ibLAm

j ,
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ibL ¼ 1

t
ðD� 1Þ, (2)

where the shift operator D acts as Dxj ¼ xjþ1 and j ¼ mþ k.

By applying successively the quasioperator bL to the dynamic variables Am
j ðtÞ; t ¼ mt, where t is a discrete

time step, j ¼ mþ k, we obtain the set of dynamic functions Bnð0Þ ¼ bLn
A0

kð0Þ, n41. By using the variables

Bnð0Þ one can find a formal solution of the evolution of these equations in the form

Am
mþkðmtÞ ¼ f1þ itbLgmA0

kð0Þ ¼
Xm

j¼0

m!ðitÞm�j

j!ðm� jÞ!
B0

m�j. (3)

However, the use of this structure is generally not the most convenient one. An advantageous approach
consists in the use of the orthogonal vectors W n, as detailed below, by use of the Gram–Schmidt
orthogonalization procedure [28] in place of the set of variables Bnð0Þ. Thus, we work with this new set of
dynamical orthogonal vector variables, where the average o � � �4 should be read in terms of scalar products
and dn;m is the Kronecker’s symbol. In doing so, we find the recurrence formula in which the ‘‘senior’’ variables

at order ‘‘n’’ W n ¼W nðtÞ are related through with the ‘‘junior’’ variables of order mon; i.e. [29,30]

W0 ¼ A0
kð0Þ; W1 ¼ fiL̂� l1gW0; . . . ,

hWnWmi ¼ dn;mhjWnj
2i,

Wn ¼ fiL̂� lngWn�1 þ Ln�1Wn�2 þ � � � ; n41. (4)

Here, we have used the kinetic parameters given by the Liouville’s quasioperator L as follows [30]:

ln ¼
hWn

bLWni

hjWnj
2i

,

Ln ¼
hjWnj

2i

hjWn�1j
2i
, (5)

where Ln ¼ O2
n�1, with the parameter On denoting a general relaxation frequency. The set of frequencies ln

describes the spectrum of the Liouville’s operator bL.
Besides these relaxation time measures, we in addition shall consider information measures that are based

on time correlation functions which assume the role of memory functions M iðtÞ; i ¼ 0; 1; 2; . . ., see in Ref. [30]; i.e.,

M iðtÞ ¼
hWið0ÞWiðtÞi

hjWið0Þj
2i

.

Note that the quantity with i ¼ 0 corresponds to the temporal autocorrelation function of the vector A0
k.

3. Analysis of time series for the experimental data of PSE

Now we can proceed directly to the analysis of the experimental data: the MEG signals recorded in a group
of nine healthy human subjects and a patient with (PSE) [31]. PSE is a common type of stimulus-induced
epilepsy, defined as recurrent convulsions precipitated by visual stimuli, particularly flickering light. The
diagnosis of PSE involves the detection of paroxysmal spikes on an EEG in response to the intermittent light
stimulation. To elucidate the color-dependency of PS in normal subjects, brain activities subjected to uniform
chromatic flickers with whole-scalp MEG have been measured in Ref. [31].

The same subjects and the data set were part of an earlier study in Ref. [31]; however, we shall mention the
relevant details for the sake of completeness. Nine healthy adults (two females, seven males; with age ranging
from 22 to 27 years) voluntarily participated. Two additional age-matched child control subjects, and one
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more photosensitive patient (age 14 yr) under medication (sodium valporate), were also studied. All subjects
were right handed and were explicitly informed that flicker stimulation might lead to epileptic seizures.
They gave their written informed consent before recording. The subjects were instructed to passively observe
visual stimuli with minimal eye movement. During the testing session for the photosensitive patient, pediatric
neurologists were present to monitor their health condition as a precautionary measure.

The subjects were screened for photosensitivity and personal or family history of epilepsy. The experimental
procedures followed the Declaration of Helsinki and were approved by the National Children’s Hospital in
Japan. The stimuli were generated by the two video projectors and delivered to the viewing window in the
shield room through an optical fiber bundle. Each projector continuously produced a single color stimulus.
Liquid crystal shutters were located between the optical device and the projectors. By alternative opening one
of the shutters for 50ms, 10Hz (square-wave) chromatic flicker was produced at the viewing distance of 30 cm.
Three color combination were used: red–green (R/G), blue–green (B/G), and red–blue (R/B). CIE coordinates
were x ¼ 0:496, y ¼ 0:396 for red; x ¼ 0:308; y ¼ 0:522 for green; and x ¼ 0:153; y ¼ 0:122 for blue. All color
stimuli had the luminance of 1:6 cd=m2 in otherwise total darkness. In a single trial, the stimulus was presented
for 2 s and followed by an inter-trial interval of 3 s, during which no visual stimulus was displayed. In a single
session, the color combination was fixed.

Neuromagnetic responses were measured with a 122-channel whole-scalp neuromagnetometer (Neuromag-122;
Neuromag Ltd. Finland). The neuromag-122 has 61 sensor locations, each containing two originally oriented
planner gradiometers coupled with DC-SCUID (superconducting quantum interference device) sensors. The
two sensors of each location measure two orthogonal tangential derivatives of the brain magnetic field
component perpendicular to the surface of the sensor array. The planner gradiometers measure the strongest
magnetic signals directly above local cortical currents. From 200ms prior responses were analog-filtered
(bandpass frequency 0.03–100Hz) and digitized at 0.5 kHz. Eye movements and blinks were monitored by
measuring an electro-oculogram.

The trials with MEG amplitudes 43000 fT=cm and/or electro-oculogram amplitudes 4150mV were
automatically rejected from averaging. The trials were repeated until 480 responses were averaged for each
color-combination. The averaged MEG signals were digitally lowpass-filtered at 40Hz, and then the DC offset
along the baseline (�100 to 0ms) was removed. At each sensor location, the magnetic waveform amplitude was
calculated as the vector sum of the orthogonal components. The peak amplitude were normalized within each
subject with respect to the subject’s maximum amplitude. The latency range from�100 to�1100ms was divided
into 100ms bins. Then, the peak amplitudes were calculated by averaging all peak amplitudes within each bin. It
would be important to mention that no clinical photosensitive seizures were induced during the experiment. This
also confirms the better detection power of this analysis than normal seizure detection procedure.

4. Results and discussion

Here we present the information–theoretic analysis for the presence of PSE, based on the time behavior of
the dynamical variables and the stratified structure of phase spaces. Some results of our quantities as derived
from the theory presented here, are depicted in Figs. 1–7. Our results for nine healthy subjects and for the
patient with PSE in comparison are shown in Figs. 8–10. Among them are: (1) the time traces of the MEG
signals ðW 0Þ, and for the three junior dynamical orthogonal variables ðW iÞ, i ¼ 1, 2 and 3; (2) the phase space
created by the points with coordinates ðW iÞ, i ¼ 0; 1; 2 and 3; (3) the phase space, filled by the trajectories
ðW iðtÞÞ, i ¼ 0; 1; 2 and 3; and (4) the time dependence of the first four quantifiers: the time correlation
functions (TCF) M0ðtÞ and the first three junior memory functions (MF) M iðtÞ, for i ¼ 1; 2 and 3. The results
of the experiment for a red–blue (R/B) and a red–green (R/G) combination of color signals are used in all of
the figures.

As an example, the analogous results for the patient with PSE (sensor No. 10) are presented in Fig. 1. The
obtained results possess the clearly visible inconsistent character. The comparison clearly shows a
characteristic behavior of the dynamic variables ðW iðtÞÞ (i ¼ 1; 2 and 3). The time dependence of the
variables ðW 1ðtÞÞ presents the time behavior of the orthogonal velocity of the signal recording in discrete form.
The next-order dynamic variable ðW 2ðtÞÞ describes the orthogonal acceleration, the variable ðW 3ðtÞÞ depicts
the longitudinal orthogonal energy current, etc. The signals ðW iðtÞÞ in the patient with PSE can be
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Fig. 1. The single phase planes of the phase portrait of the patient with PSE for MEG signals from an R/B combination of the light

stimulus: (a) plane ðW 0ðtÞ;W 1ðtÞÞ; (b) plane ðW 0ðtÞ;W 2ðtÞ); (c) plane ðW 0ðtÞ;W 3ðtÞ); (d) plane ðW 1ðtÞ;W 2ðtÞ); (e) plane ðW 1ðtÞ;W 3ðtÞ); and

(f) plane ðW 2ðtÞ;W 3ðtÞÞ.
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characterized as regular noise. The phase clouds formed by manifold phase points drastically differ from the
healthy ones in comparison with the patient with PSE, see, Fig. 1.

The stratification of the phase clouds and the existence of the stable pseudoorbits are more visible for the
healthy. In the patient with PSE (see, Fig. 1) the phase stratification disappears. The phase clouds can be
characterized by symmetrical nuclei, they have spatial homogeneity. The phase trajectories for the healthy
form broken lines.

For the patient with PSE the pictures of the phase trajectories contrast sharply with the case of the healthy.
The phase trajectories are packed tightly within the restricted areas of the phase space. The drastic difference
in the typical scales of the dynamic variables ðW iðtÞÞ and in the size of the phase space for the healthy and for
the patient with PSE (Fig. 1) are striking. This difference ranges from three times (for ðW 0ðtÞÞ) to 10 times
(for ðW iðtÞÞ; i ¼ 1; 2; and 3) and from 10 times (for the phase plane ðW 0ðtÞ;W 1ðtÞÞ to 80 times in the
corresponding clouds of phase planes ðW 0ðtÞ;W iðtÞÞ, i ¼ 2; 3 and ðW iðtÞ;W jðtÞÞ with 1pi, jp3.

Thus, the signals in the patient with PSE with sensor number 10 differ from the healthy subjects consists in
the drastic change of the fluctuation scales of the dynamic orthogonal variables and the space sizes of the
phase clouds. The similar difference of the scales constitutes the values from 10 to 80 times. This observation
let us note the specific role and behavior of the sensor with number n ¼ 10 in the formation of PSE
mechanisms! The difference in the scales of the orthogonal dynamic variables and in the sizes of the phase
clouds is more drastic for sensors with numbers n ¼ 10; 5; 23; 40 and 53.

From the time dependence of the initial TCF M0ðtÞ and the first three MFs of the junior order M iðtÞ; i ¼

1; 2 and 3 it is possible to see great difference in the behavior of the time functions for the healthy and for the
patient with PSE. One can observe a large-scale time correlation in the healthy subjects in the time dependence
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of MFs M iðtÞ; i ¼ 0; 1; 2 and 3, whereas the similar functions demonstrate a small-scale fluctuation and a
small-amplitude oscillation in case of the patient with PSE.

One can note that the sensors with numbers n ¼ 10; 5; 23; 40 and 53 are specific points in the brain core of
the patient with PSE. It is interesting to observe a dynamical picture for the usual and the nonspecific points at
the human cerebral cortex. To this aim, the results for the nonspecific sensor with number n ¼ 13 are
submitted in Figs. 2–6. Figs. 2 (for the healthy) and 5 (for the patient with PSE) present the time dependence
of the first four dynamical orthogonal variables. One can detect a smooth behavior of the variables for W iðtÞ

in the healthy and, in clear contrast, a sharp or irregular dynamics of W iðtÞ in the patient with PSE. Figs. 3
(for the healthy) and 6 (for the patient with PSE) show the construction of the phase space made up by
separate phase points. We depict stratified phase space for the healthy person and for the patient with PSE.
Fig. 4 shows the nonlinear dynamics of the formation of the phase space by the phase trajectories for the
healthy.

Here one can observe the pseudoperiodic orbital movement for the phase trajectory in the healthy and the
quasi-strange attractors in the patient with PSE. In this context one must note the small time scales in the
dynamics in the healthy and the larger time scales in nonlinear dynamics in the patient with PSE. Fig. 7 depicts
the time dependence of the initial TCF and the first three memory functions M iðtÞ; i ¼ 1; 2 and 3 for the
patient with PSE. Large scale fluctuations and oscillations are visible in the time dependence of M iðtÞ; i ¼

0; 1; 2 and 3 in the healthy and small scale deformation are evident in the patient with the PSE.
Fig. 8 shows the topographic dependence as a function of SQUID-number of the first relaxation parameters

l1 for a red–blue (R/B) combinations of the light stimulus for the healthy subjects in comparison with the
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patient with PSE. Similar results one can see for a red–green (R/G) combinations of the light stimulus. One
can observe a large difference of the numerical values of this parameter in the healthy as compared to the
patient with PSE. The parameter l1 differs on average 6–7 times in the all the sensors. One can note a specially
strong difference in the data between the healthy and the patient in numerical values of parameter l1 especially
in the sensors with numbers n ¼ 10; 12; 46; 51 and 56 (for an R/B combination of the light stimulus) and
n ¼ 10; 12; 46; 51 and 53 (for an R/G combination of light stimulus). Both combination of the light stimulus
(an R/B and an R/G) yield approximately identical results for the sensor’s location.
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Figs. 9 (for an R/B combination of the light stimulus) and 10 (for an R/G combination) demonstrate the
behavior of relaxation parameter l1 for each individual of nine healthy subjects averaged on all sensor location in
cerebral cortex in comparison with the patient with PSE. A remarkable difference of l1 appears in healthy
subjects, this being approximately 4–8 times, on average 7 times for an R/B combination in Fig. 9, and 4, 4 times
for an R/G combination of the light stimulus in Fig. 10. This difference is a reliable indicator of serious
destruction in functioning of the human organism with PSE. It is important that the behavior of the coefficients of
l1 specifies the singularities of relaxation mechanisms in the MEG’s signals. From the physical point of view
parameter R1 ¼ jl1j mimics a relaxation rate. We see the drastic distinction in relaxation rates for a healthy
person as compared to the patient with PSE. This fact indicates the crucial role of the specific relaxation processes
in the pathological functioning of the human cerebral cortex for the patient suffering from PSE.

One notes that the sensors with the numbers n ¼ 10; 12; 46 and 51 locate specific points in the patient’s brain
with PSE. It is necessary to mention the overall positions of the sensors. This indicates that the potential
abnormality is not confined to the occipital region but distributed over the entire brain.

5. Conclusions

Our discussion in this work make it evident that physiological models typically possess a great number of
parameters, each with their natural range of variability and uncertainty in measurement. Relaxation and
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dynamic behavior of the system signals can vary widely from one chosen set of parameters to another. The
presented information–theoretic memory-function analysis provides one possibility of extracting interrelations
within this complicated parameter space. The study of the physical and dynamical boundaries between
different types of behavior is a necessity, both for a better understanding of brain function and for the
application of a diagnosing procedure and treatment of patients suffering PSE.

Control can be applied at preventing the brain from entering an undesirable, pathological state such as a
seizure [32]. Here we have shown that the parameter space of MEG activity in the patient with PSE gives rise
to a robust chaotic behavior. In order to study spatiotemporal cortical dynamics we need to analyze the global
MEG data. In this paper we could cognize that the relaxation and dynamic singularities may account for the
registration of the relevant pathological zones in the human cerebral cortex which are responsible for epilepsy.

Many natural phenomena can be described by distributions exhibiting a time scale-invariant behavior
[33,34]. The suggested approach allows the stochastic dynamics of neuromagnetic signals in human cortex to
be treated in a statistical manner and to search for its characteristic statistical identifiers. From the physical
point of view, the obtained results can be put to use as a possible test to identify the presence or absence of
brain anomalies as they occur in a patient with PSE. The set of our quantifiers is uniquely associated with the
emergence of time-scale and relaxation effects in the chaotic behavior of the neuromagnetic responses of the
human brain core. The registration of the behavior of those indicators discussed here is thus of beneficial use
in order to detect pathological states of separate areas (sensors 10, 5, 23, 40 and 53 in our case under
consideration) in the human brain of a patient with PSE.

PSE is a type of reflexive epilepsy which originates mostly in visual cortex (both striate and extra-striate) but
with high possibility towards propagating to other cortical regions [35]. Healthy brain may possess an inherent
controlling (or defensive) mechanism against this propagation of cortical excitations, the breakdown of which
makes the brain vulnerable to trigger epileptic seizures in patients [36]. However, the exact origin and
dynamical nature of this putative defensive mechanism is not fully known. Earlier we showed [31] that brain
responses against chromatic flickering in healthy subjects represent strong nonlinear structures whereas
nonlinearity is dramatically reduced to minimal in patients.

There are other quantifiers of a different nature, such as the Lyapunov’s exponent, Kolmogorov–Sinai
entropy, correlation dimension, etc., which are widely used in nonlinear dynamics and related applications, see
in Ref. [8]. In the present context, we find that the employed statistical and dynamical measures are not only
convenient for analysis, but are also suitable for identification of anomalous brain behavior. The search for
other quantifiers, and foremost, the optimization of such measures when applied to complex discrete time
dynamics presents a true challenge. This objective particularly holds true when attempts are made to identify
and quantify an anomalous functioning in living systems. This study presents a first stepping stone towards
understanding of nonlinear brain processes defending against hyper excitation to flickering stimulus by new
analysis techniques based on non-Markov random processes.
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