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We study Landau-Zener transitions in a qubit coupled to a bath at zero temperature. A general formula that
is applicable to models with a nondegenerate ground state is derived. We calculate exact transition probabilities
for a qubit coupled to either a bosonic or a spin bath. The nature of the baths and the qubit-bath coupling is
reflected in the transition probabilities. For diagonal coupling, when the bath causes energy fluctuations of the
diabatic qubit states but no transitions between them, the transition probability coincides with the standard
Landau-Zener probability of an isolated qubit. This result is universal as it does not depend on the specific type
of bath. For pure off-diagonal coupling, by contrast, the tunneling probability is sensitive to the coupling
strength. We discuss the relevance of our results for experiments on molecular nanomagnets, in circuit QED,
and for the fast-pulse readout of superconducting phase qubits.
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I. INTRODUCTION

Nonadiabatic transitions at avoided level crossings play
an essential role in numerous dynamical phenomena in phys-
ics and chemistry. They have been studied both theoretically
and experimentally in various contexts such as spin-flip pro-
cesses in nanoscale magnets,1–4 molecular collisions,5 optical
systems,6,7 quantum-dot arrays,8 Bose-Einstein condensates,9

the control of chemical reactions,10 and recently, in particu-
lar, in quantum information processing.11–20

The “standard” Landau-Zener �LZ� problem describes the
ideal situation in which the dynamics is restricted to two
levels that are coupled by a constant tunnel matrix element
and cross at a constant velocity. The quantity of primary
interest is the probability that finally the system ends up in
one or the other of the two states. This classic problem was
solved independently by several authors in 1932.21–24 In
quantum devices, not only the transition probability but also
the nonadiabatic relative phase �Stokes phase� between the
two states is important.8,12,15 This phase leads to observable
interference effects, for example, in superconducting
qubits.17,20

In an experiment, the two-level system will be influenced
by its environment, which may affect the quantum phase of
the superposition, alter the effective interaction between the
levels, or may cause spontaneous decay. For qubits in a
solid-state environment,25–29 all these processes may occur
simultaneously and hinder qubit manipulation. Thus, in the
context of solid-state quantum information processing, a re-
alistic study of qubit manipulation via Landau-Zener transi-
tions should include the influence of environmental degrees
of freedom.

The environment of a quantum system can often be de-
scribed as a bath of harmonic oscillators.30–34 In some situa-
tions, it is known that the dominant environmental effects
can be best modeled as a spin bath instead,35–37 for example,
for molecular magnets3,4 and for Josephson phase qubits27–29

at very low temperatures.

In the presence of a heat bath, the Landau-Zener dynam-
ics will sensitively depend on the qubit operator to which the
bath couples.38 Ao and Rammer39,40 studied the LZ problem
for the special case in which an Ohmic heat bath couples to
the same operator as the driving and derived the transition
probabilities in the limit of high and of low temperatures. In
the limits of very fast and very slow sweeps at zero tempera-
ture, they found that the transition probability is the same as
in the absence of the heat bath, as was confirmed by numeri-
cal studies.41,42

This zero-temperature result was recently proven to hold
exactly for arbitrary Landau-Zener sweep speeds, as a spe-
cial case of an exact expression for arbitrary qubit-bath cou-
plings and spectral densities.38 Very recently, Pokrovsky and
Sun43 developed an interesting finite-temperature formalism
valid for baths with short correlation times, in which the
exact transition probabilities of Ref. 38 indeed show up in
the zero-temperature limit. At sufficiently high temperatures,
the qubit experiences essentially classical Gaussian white
noise and the Landau-Zener problem can be solved
exactly.44,45

A qubit that undergoes a Landau-Zener sweep while
coupled to another quantum system is equivalent to a multi-
level Landau-Zener problem in which two groups of levels
cross. If all avoided crossings are sufficiently well separated,
the dynamics consists of effectively independent transitions
and one can compute the transition probabilities by transfer-
matrix techniques.8,15,46,47 Independent level crossings do not
occur for the dissipative Landau-Zener problem, for which
the adiabatic energy spectrum is continuous. Other methods
are therefore required, for example, the exact summation of a
perturbation series.44

Brundobler and Elser48 considered a special multilevel
Landau-Zener problem in which the system starts out in the
diabatic state whose energy changes faster than that of all
other diabatic levels. They conjectured that the transition
probabilities are then given by an expression that only con-
tains the velocities of the diabatic levels and off-diagonal
matrix elements of the Hamiltonian. The conjecture has long
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been known to be true for the exactly solvable Demkov-
Osherov model, where one level crosses several parallel
levels.48,49 Analytical proofs of the Brundobler-Elser conjec-
ture have been given recently for several multilevel crossing
situations.50–54

The physically important situation of a two-level system
coupled to a heat bath corresponds to two continuous bands
of diabatic levels, with the same energy-level velocities
within each band. A generalization of the theorem by Brun-
dobler and Elser to this case will be considered. This general
formula applies to dissipative Landau-Zener problems for all
those kinds of baths at zero temperature for which the initial
qubit-plus-bath ground state is unique. We discuss the impli-
cations of our results for a wide range of experiments for
which these conditions are met. As one of our main results,
we present a universal aspect of dissipative Landau-Zener
transitions, independent of the precise nature of the bath.

The paper is organized as follows. In Sec. II we review
the standard LZ formula for a two-level system and general-
ize it to the multilevel case; the explicit calculations have
been deferred to the Appendix. Section III is devoted to the
derivation of the LZ transition probability for both a
harmonic-oscillator bath and a spin bath. In Sec. IV, we iden-
tify a universality in Landau-Zener tunneling that holds true
even for baths of nonlinear oscillators. Finally, we discuss
several promising applications and experiments in Sec. V.

II. LANDAU-ZENER TUNNELING PROBABILITIES

A. Landau-Zener transitions in an isolated qubit

To set the stage and to introduce our notation, we first
review the standard Landau-Zener problem for an isolated
qubit. By “isolated” we mean not coupled to an environment
but nevertheless driven by a deterministic classical field,
whose physical origin will be specified and discussed in
Sec. V. The two-level Hamiltonian reads

HLZ�t� =
vt

2
�z +

�

2
�x, �1�

where �z= �↑ ��↑�− �↓ ��↓� and �x= �↑ ��↓�+ �↓ ��↑� are Pauli
matrices while �↑� and �↓� denote the so-called diabatic states
with the energies ± 1

2vt which cross at t=0. Two parameters
determine the dynamics: the constant sweep velocity v�0,
by which the energies of the diabatic states cross, and the
coupling matrix element � between these states. Without loss
of generality, we assume � to be real and non-negative. For
��0, the diabatic states are not eigenstates of the Hamil-
tonian �1�, so that generally, a population transfer is induced.
The Hamiltonian �1� is time dependent and so are its �adia-
batic� eigenstates. In the limit �t��� /v, the adiabatic eigen-
states coincide with the diabatic states.

The diabatic energies cross, but the adiabatic energies
± 1

2
�v2t2+�2 for ��0 form an avoided crossing, as sketched

in Fig. 1. The adiabatic theorem55 states that the splitting �
prevents transfer of population between the adiabatic eigen-
states in the adiabatic limit �v��2, in other words, if the
sweep occurs slowly enough. A qubit prepared at t=−� in
the initial ground state �↑� will then end up in the final

ground state �↓�. Beyond the adiabatic regime, the dynamics
can be rather complex. Nevertheless, the population of the
diabatic states at t=� can be calculated exactly and is deter-
mined by the Landau-Zener transition probability21–23

P↑→↓ � �������↓��2 = 1 − exp�−
	�2

2�v
	 , �2�

which denotes the probability for a transition to the opposite
diabatic state, i.e., the probability to stay in the adiabatic
eigenstate. Accordingly, P↑→↑=1− P↑→↓ denotes the prob-
ability for a nonadiabatic transition, i.e., a jump across the
avoided crossing.

B. Landau-Zener transitions in nonisolated qubits

We now turn to situations where the qubit is no longer
isolated. The Hamiltonian of the driven qubit plus its envi-
ronment has the general form

H�t� = HLZ�t� + Hq-env + Henv, �3�

where Henv describes the environment Hamiltonian with
Hilbert space of dimension M
�. We assume the most gen-
eral linear coupling between the qubit operators �x, �y
=−i��↑ ��↓�− �↓ ��↑��, and �z and the environment operators

Xx,y,z
; in other words, we take the qubit-environment cou-

pling

Hq-env = 

�=x,y,z

��X�. �4�

We denote by �k� the eigenstates of the environment Hamil-
tonian Henv.

An important assumption underlying our model Hamil-
tonian �3� is that the qubit-bath coupling �4� and the bath
itself are not affected by the driving. Then, at very large
times t→ ±�, the qubit Hamiltonian is dominated by the
time-dependent part, so that all states of the system-plus-
environment belong to one of two bands: an “up cluster”
�↑ ��k� and a down cluster �↓ ��k�, with energies moving
upward and downward, respectively.

1. Diabatic basis

The dissipative Landau-Zener problem is a scattering
problem in the restricted sense that changes in the qubit’s
state will occur only during a finite time interval around t
=0. In order to exploit this fact that the qubit will not flip for

time

|↑� |↓�

|↑�

FIG. 1. �Color online� Adiabatic �solid� and diabatic �dashed�
energies for the standard Landau-Zener problem.
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sufficiently large �t�, we decompose H�t� into its diabatic
states. These are the eigenstates of the total Hamiltonian �3�
in the limits t→ ±�. Initially and finally, the Hamiltonian is
dominated by the term proportional to �z, so that the diabatic
basis for the qubit is simply given by the states �↑� and �↓�.

For the environment, by contrast, there is no correspond-
ing growing energy scale for large �t�. Its diabatic states are
influenced by the coupling to the qubit and depend on the
qubit’s state. For the up cluster, these diabatic eigenstates of
the environment are those which diagonalize the Hamil-
tonian projected to the subspace �↑�, i.e., �↑�H�↑ �. They are

eigenstates of Henv+Xz
, and we denote them by �k+� and

their energies by �k+
. The diabatic bath states for the down

cluster, �k−�, are defined likewise so that

�Henv ± Xz��k±� = �k±�k±� . �5�

The diabatic states of the qubit plus the bath read

�↑k+� � �↑��k+� , �6a�

�↓k−� � �↓��k−� , �6b�

where the labels k±=0,1 ,2 , . . ., are assigned such that the
energies �k±

are in increasing order, see the sketch in Fig. 2.
At asymptotically large times, t→ ±�, the diabatic states di-
agonalize the total Hamiltonian �3� and hence coincide with
adiabatic eigenstates which diagonalize H�t� at a given time
t. Note that �↓k− � ↑k+�=0, although in general �k+ �k�−�
�kk�. A state of particular interest is the adiabatic ground
state �↑0+� which has energy �vt /2+�0+

�. At zero tempera-
ture, it is the natural initial state for the Landau-Zener dy-
namics.

We now split the Hamiltonian �3� into two parts, one that
is diagonal in the spin index while the other is off-diagonal.
The former part consists of all terms proportional to �z and
is diagonal in the diabatic basis �6�. The latter part reads

V =
�

2
�x + �xX

x
+ �yX

y �7�

and will be called the bit-flip interaction, since it contains all
interaction terms of the Hamiltonian �3� that induce a popu-
lation change in the state of the qubit.

An important feature of the diabatic basis �Eq. �6�� is that
all matrix elements of V vanish within each cluster, i.e.,

�↑k+�V�↑k+�� = �↓k−�V�↓k−�� = 0. �8�

This relation will be essential for the application of the gen-
eral formula for the nonadiabatic transition probabilities as
derived in the Appendix.

2. Nonadiabatic transition probabilities

We have now achieved a useful formulation of the dissi-
pative Landau-Zener problem in terms of two groups of di-
abatic states. If the group of upward moving parallel levels
would consist of merely one state, then transition probabili-
ties could be computed with the simple independent-crossing
formula, for which Brundobler and Elser48 conjectured that it
holds even when successive level crossings are not indepen-
dent. Recent proofs show that the independent-crossing for-
mula indeed holds exactly, even in more general
situations.50–54 As stated above, for dissipative Landau-Zener
transitions, there are two continua of states that cross with
constant velocity. This physically important situation is ad-
dressed in the Appendix, where exact nonadiabatic transition
probabilities are derived in a fairly general setting, with the
crossing of two continua of parallel states as a special case.
This setting is a generalization of our recent studies in Refs.
18 and 38.

For the dissipative Landau-Zener problem, we can deduce
the following from Eqs. �A11� and �A21�: If at t=−� the
system starts in a state �↑k+� whose diabatic energy is non-
degenerate, then the following transition probabilities at t
=� are exact:

P↑k+→↑k+�
= exp�−

2	�↑k+�V2�↑k+�
�v

	 for k+� = k+

0 for k+�� k+.
�

�9�

For the transition to lower states within the initial band of
states �k+��k+�, we cannot make any statement. The second
line of Eq. �9� asserts that states of the up cluster that lie
above the initial state will finally be unpopulated. This no-go
theorem was formulated in Refs. 56 and 57 and we think that
it is more aptly described by the name “no-go-up theorem.”

A case of particular interest is that of the initial state
�↑0+�, which is the ground state of the entire system. For all
bath models employed below, the ground state is unique, so
that relation �9� applies. Then, final states with k+��k+ do not
exist, while the occupation of final states with k+��k+ is for-
bidden by the no-go-up theorem. Thus, provided that the
final qubit state is �↑�, the environment will end up in its
ground state.

It is the final transition probabilities P↑→↑ and P↑→↓ for
the qubit that interest us most, irrespective of the final state
of the environment. By tracing out the environment, i.e., by
performing the sum over k+�, we find

time

|↑, 0+�

|↑, 0+�

|↑, 2+�

|↓, 1−�

|↓, 3−�

FIG. 2. �Color online� Sketch of the diabatic energy levels as a
function of time for a qubit coupled to a single harmonic oscillator.
Energies of the states in the up cluster increase. These states corre-
spond to the qubit state �↑�. Energies decrease in the down cluster,
where the qubit state is �↓�. According to the no-go-up theorem
�A11�, the initial state �↑ ,0+� evolves to a superposition in which
�↑ ,0+� is the only “up” state. Energies within a band are separated
by the oscillator energy ��. For a qubit coupled to an oscillator
bath, the corresponding crossing clusters would be continuous
bands of states.
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P↑→↑ = exp�−
	W2

2�v
	 = 1 − P↑→↓, �10�

with the ground-state expectation value

W2 = 4�↑0+�V2�↑0+� . �11�

These are the two central equations for dissipative Landau-
Zener transitions at zero temperature. The ground-state ex-
pectation value W2 formally replaces the squared tunnel ma-
trix element �2 in the original Landau-Zener expression �Eq.
�2��.

III. DISSIPATIVE LANDAU-ZENER TRANSITIONS
IN VARIOUS ENVIRONMENTS

We are now in the position to study Landau-Zener transi-
tions for specific baths with linear couplings to the qubit. We
will focus on the two most important bath models in quan-
tum dissipation, namely, a bath of harmonic oscillators and a
spin bath. In both cases, we will restrict ourselves to zero
temperature, so that the natural initial state is the diabatic
ground state �↑0+� of the system plus the environment. Both
for the harmonic-oscillator bath and for the spin bath, the
ground state is nondegenerate, so that formula �10� can be
applied. The essential steps that remain are first to identify
and characterize the diabatic ground state �↑0+� and then to
compute the expectation value �11�. Applications to specific
experiments will be discussed in Sec. V.

A. Harmonic-oscillator bath

We first consider the case in which a qubit interacts with
a standard bosonic bath consisting of harmonic oscillators.
The Hamiltonian is as in Eq. �3�, with the environment
Hamiltonian

Henv = 

j=1

N

�� jb j
†b j �12�

consisting of N harmonic oscillators with frequencies � j.
Zero-point energies do not play a role here and are ignored.
The b j

† and b j denote the usual creation and annihilation op-
erators of the oscillator j. We leave the number of oscillators
N finite at first but eventually take it to infinity in a con-
tinuum limit. Furthermore, we assume the most general lin-
ear qubit-oscillator coupling

Hq-env = 

�=x,y,z

��

j=1

N
� j

2
� j
��b j + b j

†� , �13�

where the second sum specifies the environment operators
X� defined in Eq. �4�. Since the coupling �13� also includes
the �y interaction, this constitutes a generalization of the
spin-boson model that we considered in Ref. 38. The param-
eters � j determine the coupling strengths, while the param-
eters � j

� define the “coupling directions” and are conve-
niently expressed by the spherical coordinates � j and � j as

� j
x = sin � j cos � j , �14a�

� j
y = sin � j sin � j , �14b�

� j
z = cos � j . �14c�

The bit-flip interaction �7� then becomes

V =
�

2
�x + 


j=1

N
� j sin � j

2
��x cos � j + �y sin � j��b j + b j

†� .

�15�

The diabatic states of the environment are determined by
diagonalizing the Hamiltonian

Henv + Xz
= 


j

�� jb j
†b j + 


j

� j

2
cos � j�b j

† + b j� �16�

=

j

�� jb j+
† b j+

− 

j

E j . �17�

In order to obtain the diagonal form in the last line, we
introduced the shifted annihilation operators

b j+
= b j +

� j cos � j

2�� j
�18�

and the reorganization energy of the jth oscillator, E j
= ��2 /4�� j�cos2 � j. The latter quantity denotes the energy
shift of the oscillator ground state owing to the coupling to
the qubit. From Eq. �17�, it becomes immediately clear that
the diabatic ground state has to fulfill the relation

b j+
�↑0+� = 0, �19�

while the excited diabatic states are created by applying the
operators b j+

† to this diabatic ground state.
We now write the bit-flip interaction V with the shifted

operators b j+
and employ relation �19� to evaluate the

ground-state expectation value �11�. After some algebra, we
obtain38

W2 = �� − 

j

� j
2 sin�2� j�e−i�j

2�� j
�2

+ 

j

� j
2 sin2 � j , �20�

which allows one to compute the Landau-Zener transition
probabilities �10�. Note the � j dependence, generalizing our
recent work,38 which shows that for ��0, it makes a differ-
ence for Landau-Zener transition probabilities what types of
off-diagonal qubit-oscillator couplings exist.

Identical coupling angles

For system-bath models, it is frequently assumed that all
bath oscillators couple to the central quantum system via the
same coordinate. In our model, this corresponds to the case
in which all coupling angles are identical, � j =� and � j =�.
Then, Eq. �20� becomes

W2��,�� = �� −
1

2
E0 sin�2��e−i��2

+ S sin2 � , �21�

in terms of the integrated spectral density58
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S = 

j

� j
2 =
�2

4	
�

0

�

d�J��� �22�

and the energy

E0 = 

j

� j
2

�� j
=
�

4	
�

0

�

d�
J���
�

, �23�

which equals four times the total reorganization energy E
=
 jE j. These quantities S and E0 were presented as fre-
quency integrals over the spectral density J��� of the bath,
with the latter defined as

J��� = 	

j=1

N �2� j

�
	2

�� −� j� . �24�

In a continuum limit, the spectral density becomes a smooth
function of frequency. At low frequencies, one typically ob-
serves a power-law behavior for J���, whereas the qubit be-
comes insensitive to high frequencies, as characterized by a
cutoff frequency �c. An important class of spectral densities
is therefore31,34

J��� = ��se−�/�c. �25�

For such spectral densities, one immediately obtains the two
global quantities whereby the bath influences LZ transition
probabilities:

S =
��2

4	
�c

s+1��s + 1� , �26�

E0 =
��

4	
�c

s��s� , �27�

where ��x� denotes the Euler gamma function.
(a) Off-diagonal coupling. For �=	 /2, the qubit interacts

via its off-diagonal operators �x and �y with the environ-
ment, whereas the LZ driving affects the qubit only via �z.
Equation �21� becomes

W2�	/2,�� = �2 + S . �28�

Interestingly enough, the Landau-Zener tunneling probability
is then fully determined by the integrated spectral density S.
In particular, there is no dependence on the oscillator fre-
quencies � j. This result is nicely illustrated in the simple
example of Fig. 3, showing Landau-Zener dynamics of a
qubit that is coupled to only three oscillators. The oscillator
frequencies are varied, while the qubit-oscillator couplings
are kept constant. The dynamics at intermediate times de-
pends on the oscillator frequencies, but the final transition
probability does not.

Note that W2�	 /2 ,�� in Eq. �28� is independent of �, so
that in case of only off-diagonal coupling, the relative weight
of the interactions via �x and �y drops out of the final oc-
cupation probability. Since S�0, it is clear from Eqs. �11�
and �28� that an off-diagonal coupling always enhances the
occupation of the final ground state �↓� as compared to the
case without dissipation. This has an intuitive explanation:
the zero-temperature oscillator bath partially succeeds in

cooling the qubit down to its instantaneous ground state at
any time during the level crossing.

(b) Diagonal coupling. For �=0, the qubit interacts with
the environment through the diagonal Pauli matrix �z. This
interaction induces pure dephasing between the states �↑� and
�↓�. This driven spin-boson model with diagonal interaction
has so far been the standard model for discussing Landau-
Zener transitions in dissipative environments.39,41,44,45,59 For
diagonal coupling, the bit-flip interaction �15� simply be-
comes V= �� /2��x, so that

W�0,��2 = �2, �29�

and the Landau-Zener transition probability �10� coincides
with the standard expression �2� for an isolated qubit. This
bath independence of the transition probability for diagonal
coupling was predicted by Ao and Rammer in the limits of
fast and slow Landau-Zener sweeps.39 Here, we find that at
zero temperature, it holds exactly for all diagonally coupled
harmonic-oscillator baths and for all coupling strengths �
and sweep velocities v.38

(c) General coupling. When the oscillators neither couple
purely off diagonally ��=	 /2� nor purely diagonally ��
=0�, the Landau-Zener probability generally exhibits a non-
monotonic dependence on the tunnel coupling �. This is
shown in Fig. 4 for various angles � and �. Most interesting
is the comparison to the nondissipative case, which, as we
saw, coincides with the result for diagonal coupling ��=0�:
Any dissipative Landau-Zener probability lower than the
curve for �=0 is counterintuitive. Such situations do occur:
for several values of � and for a sufficiently large tunnel
splitting �, the bath coupling reduces P↑→↓���, i.e., dissipa-
tion enhances the population of the final excited qubit state.38

This counterintuitive behavior is most significant for the
angles �=0 and �=	 /4 and when the squared reorganiza-
tion energy is large compared to the integrated spectral den-
sity E0

2�S. This means that the counterintuitive behavior
would be observable only in rather exceptional situations,
which did not shape our intuition. For example, for the spec-
tral density �25�, a significant reduction of the ground-state
population by increase of � requires a very strong qubit-bath
coupling ��1. In the opposite limit ��1, which is relevant

0

0.25

0.5

0.75

1

P
↑→

↓(
t)

P
↑→

↓(
t)

−20 0 20 40 60 80

t [
�

h̄/v]t [
�

h̄/v]

Ωj = {0.2, 0.5, 1}
Ωj = {4, 8, 16}
Ωj = {10, 20, 30}

FIG. 3. �Color online� Landau-Zener dynamics for a qubit with
�=0, in all three cases shown off-diagonally coupled via �x to three
oscillators. The various oscillator frequencies � j are given in units
of �v /�. All coupling strengths have the same value � j =��v /3.
The dotted line marks the analytical final transition probability cor-
responding to Eq. �28�.
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for quantum information processing, the bath for all practical
purposes induces the more intuitive tendency toward the
ground state as � is increased, as we found above for purely
off-diagonal or purely diagonal couplings.

B. Spin bath

Let us now turn to the case in which a qubit interacts with
an ensemble of otherwise noninteracting two-level systems
forming a spin bath.35–37 The total Hamiltonian is again as-
sumed to be of the general form �3�, with the standard
Landau-Zener Hamiltonian �1� for the qubit, but now with
the bath Hamiltonian

Henv = 

j=1

N



�=x,y,z

B j
�� �

j , �30�

where � �
j are the Pauli matrices for the jth bath spin. The

most general linear qubit-bath coupling reads

Hq-env = 

�=x,y,z

��

j=1

N

� j
�� �

j , �31�

where the second sum defines the operators X� as a linear
combination of the spin operators ��

j with coupling constants
� j
�. The bit-flip interaction V then becomes

V =
�

2
�x + 


j=1

N

�� j
x�x� x

j + � j
y�y� y

j � . �32�

As for the bosonic bath in Sec. III A, we wish to apply the
general formula . �10� for the transition probability. For that,
we need to determine the diabatic eigenstates of the qubit
plus the spin bath. For large �t�, the time-dependent term
vt�z /2 dominates and, therefore, provides the diabatic qubit
states �↑� and �↓�. Consequently, the diabatic spin-bath states
are determined by the operator

�s�H�t��s� = 

j

Hspin,j
± , s = ↑,↓ , �33�

where “�” refers to s=↑ and “�” to s=↓, while

Hspin,j
± = ± � j

z�z + 

�=x,y,z

B j
�� �

j �34�

determines the state of the jth bath spin. The Hamiltonian
�34� is readily diagonalized and its eigenenergies −� j,± and
� j,± are determined by

� j± = ��B j
x�2 + �B j

y�2 + �B j
z ± � j

z�2. �35�

For the evaluation of the Landau-Zener transition probability,
we will not need an explicit expression for the ground states
�0 j,±� of Hspin,j

± . It suffices to know that the ground states
satisfy the eigenvalue equation Hspin,j

± �0 j±�=−� j±�0 j±�.
Consequently,

�0 j+�� x
j �0 j+� = − B j

x/� j+, �36a�

�0 j+�� �
j �0 j+� = − B j

y/� j+, �36b�

�0 j+�� z
j�0 j+� = − �B j

z + � j
z�/� j+. �36c�

Since the bath spins do not interact with each other, the di-
abatic ground state �0±� is the direct product of the states
�0 j±�.

With this ground state defined, we are now in the position
to employ formula �10�. Inserting relations �36� into �11�, we
obtain

W2 = �2 − 4�

j

�� j
x�2 B j

x

� j+
+ 4


j

��� j
x�2 + �� j

y�2�

+ 4 

j�j�

�� j
x� j�

x
B j

xB j�
x

� j+� j�+
+ � j

y� j�
y

B j
yB j�

y

� j+� j�+
	

+ 8

j

� j
x� j

y B j
z

� j+
, �37�

which determines the Landau-Zener transition probability
�10�. The last term stems from the commutator ��x ,�y�
=2i�z. Recall that the general Landau-Zener formula �10�
was derived under the assumption that the diabatic qubit-
plus-bath ground state at t=−� is nondegenerate. Therefore,
our results do not apply to parameter sets for which any bath
spin obeys B j

x=B j
y = �B j

z+� j
z�=0 so that � j+=0.

(a) Diagonal basis for spins. First, we consider the physi-
cally important special case that all B j

x and B j
y vanish, so that

the eigenvalues become � j+= �B j
z+� j

z�. The ground-state ex-
pectation value W2 which determines the tunnel rate then
assumes the more compact form

W2 = �2 + 4

j=1

N

�� j
x + s j� j

y�2, �38�

where s j �sgn�B j
z+� j

z�. We can see that in this special case,
the transition probability is independent of the eigenfrequen-
cies � j /�; the probability essentially depends on the qubit-
spin coupling strengths � j

�. This frequency independence re-
sembles the transition probability �28� for the off-diagonally
coupled bosonic oscillator bath, although the qubit-spin cou-
pling in the present case is not necessarily off diagonal.

(b) Pure dephasing. Interestingly, it follows from Eq. �38�
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FIG. 4. �Color online� Transition probability P↑→↓ as a function
of the internal coupling � for E0=2��v and S=0.5�v. The angles
�=0 and �=	 /2 correspond to purely diagonal and off-diagonal
couplings, respectively, for which the probability is
independent of �.
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that if all �� j
x+s j� j

y� vanish, then the tunneling probability
P↑→↓ equals the standard LZ probability �2�, despite the cou-
pling to the bath. This includes the important case of pure
diagonal coupling for which � j

x=� j
y =0. This bath indepen-

dence confirms and generalizes the very recent perturbative
calculations by Wan et al.60 for dissipative LZ transitions in
a spin bath, where it was assumed that � is small. We find
the same exact bath-independent transition probability in
case of a diagonally coupled spin bath as we found earlier in
Sec. III A for a diagonally coupled bosonic bath. This strik-
ing result is discussed further in Sec. IV.

(c) Robustness under dephasing. Without loss of general-
ity, the energies B j

z of the spins can be chosen positive. For
spin baths away from the very strong coupling regime, the
coupling constants � j

z will be much smaller than the corre-
sponding energies B j

z, so that sgn�B j
z+� j

z�=1. Thus, unless
the qubit-spin coupling is very strong, the LZ transition
probability corresponding to Eq. �38� is independent of the
� j

z. Interestingly, we find that this holds true even when � j
z

�� j
x,y, i.e., if dephasing is much stronger than relaxation.

Moreover, in many models for decoherence by spin baths,
the coupling of the bath to the �y operator simply does not
occur, in which case Eq. �38� reduces to

W2 = �2 + 4

j=1

N

�� j
x�2. �39�

Note that this result is obtained without making any assump-
tions on the dephasing strengths � j

z. In other words, the LZ
transition probability only depends on the integrated spectral
density for relaxation and is fully independent of the dephas-
ing strength of the spin bath. As discussed in Sec. V, this is
important in experiments.

IV. UNIVERSALITY OF BATH-INDEPENDENT
NONADIABATIC TUNNELING PROBABILITY

As was found in the previous section, when the qubit
interacts with a bosonic bath or with a spin bath only via the
operator �z and the total system starts in its ground state,
then the probabilities for dissipative Landau-Zener transi-
tions coincide with the standard tunneling probability �2�.
Thus, a natural question arises: Is this a coincidence, a spe-
cialty of the two baths that we studied, or does it hold more
generally? We will now show that this holds in general, re-
gardless of the specifics of the environment. Consider the
Hamiltonian

H =
vt

2
�z +

�

2
�x + �zXz + Henv, �40�

which is the general Hamiltonian �3� specified for diagonal
coupling �Xx=Xy =0�. As before in Sec. II B, the operator Xz

is the environment operator with which the environment is
coupled to the qubit, and Henv is the environment Hamil-
tonian. Further specifications of these operators need not be
given for our reasoning. Note that the qubit-bath interaction
�zXz does not commute with the standard LZ Hamiltonian at
any time if ��0. Taking this at face value, it is tempting to

assume that the transition probability P↑→↓ will be affected
by a bath that causes pure dephasing. Our analysis, however,
will reveal that this is not the case.

As before, a complete set of diabatic qubit-plus-bath
states �↑k+� and �↓k−� can be found, where the shifted diaba-
tic bath states �k±� are eigenstates of �Henv±X z�. We assume
that �Henv+X z� has a nondegenerate ground state �0+�. Now,
since the bath does not induce bit flips, the bit-flip operator
�7� simply reduces to the internal bit-flip interaction, i.e., V
=��x /2. Hence, W2=�2. Thus, from �10�, we find the stan-
dard Landau-Zener transition probability for a qubit diago-
nally coupled to an arbitrary bath at zero temperature as fol-
lows:

P↑→↓ = 1 − exp�−
	�2

2�v
	 . �41�

It is truly remarkable that diagonal coupling to the environ-
ment does not affect the final transition probability, whatever
the nature of the environment and however strong the cou-
pling operator Xz may be. In other words, this zero-
temperature transition probability for diagonal bath coupling
�41� indeed holds universally. It may have been simple to
derive it from Eq. �10�, but the physical implications are
most important: Landau-Zener transitions are insensitive to
pure dephasing at zero temperature, irrespective of the nature
of the bath or of the bath-coupling operator Xz.

To illustrate the universality that we just found, let us now
also consider the coupling to a collection of nonlinear oscil-
lators,

Henv = 

j=1

N

�� jb j
†b j +

� j

4!
�b j

† + b j�4, �42�

that couples to the qubit via the interaction operator

X z = 

j=1

N
� j

2
�b j

† + b j� . �43�

LZ sweeps past resonances of nonlinear oscillators are of
practical interest, since nonlinear oscillators are currently
used for the readout of flux qubits.61 For a numerical test of
the predicted final transition probability, we take the situation
in which the qubit is diagonally coupled to two of these
nonlinear oscillators. Figure 5 shows the corresponding time
evolution of the probability P↑→↓�t� for the qubit to be in the
“down” state. It also shows the dynamics in case the qubit
couples to two linear oscillators with the same parameters,
except that now �1,2=0. Furthermore, the effect of a diago-
nally coupled spin bath, a special case of the Hamiltonian
�30�, is also shown. We consider the case in which the spin
bath consists of seven spins. The internal interaction � has
the same value for all curves in Fig. 5. As shown in the
figure, at intermediate times, the transition probability shows
variations depending on the specifics of the environments,
but the final probabilities indeed all converge to the universal
value �41�.
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V. EXPERIMENTAL RELEVANCE

Landau-Zener transitions are commonly used in experi-
ments to determine the interaction � between diabatic energy
levels.3 One usually takes the standard LZ formula �2� . as a
starting point. For fixed sweep speed v of the energy levels,
the only unknown in the equation is the internal interaction
�. By varying v, one can determine the Landau-Zener prob-
ability P↑→↑ and, hence, the �. This, in turn, is a method to
test the validity of the two-level result �2�.

However, if the qubit is coupled to an environment that
causes relaxation, then Eq. �28� shows that one actually mea-
sures ��2+S for a qubit in an oscillator bath, where S de-
notes the integrated spectral density. Variation of the sweep
speed v does not help in extracting � and S separately from
a Landau-Zener experiment. If the bath only couples diago-
nally and thereby causes only pure dephasing, then at zero
temperature, the bath does not influence the Landau-Zener
tunneling probability at all.

In most situations, the environment will cause both relax-
ation and pure dephasing. We find that dephasing will hardly
change the relaxation-dependent transition probabilities, see
Eqs. �21� and �38�. In many experiments pure dephasing is
much faster than relaxation; in other words, T2

* times are
much shorter than T1 times. It will therefore often occur that
S sin2 ���2 and, hence, relaxation can be neglected on the
time scale of the Landau-Zener transition. Then, our results
imply that with a Landau-Zener experiment, one can accu-
rately determine the internal interaction � even in the pres-
ence of strong dephasing, such that S cos2 ���2. Landau-
Zener experiments are therefore a surprisingly reliable tool to
determine tunnel splittings. We now consider some specific
applications.

A. Circuit QED

Circuit QED �Refs. 62 and 63� is a superconducting-
circuit analog of optical cavity QED: A charge qubit62 or a
flux qubit63 is coupled so strongly to a quantized harmonic

oscillator in the circuit that Rabi oscillations can be observed
in a solid-state environment. Because the circuit-QED sys-
tem is so highly tunable, it enables the study of quantum
dynamics of open quantum systems in new parameter re-
gimes. Recently, we proposed using LZ transitions in circuit
QED to generate single microwave photons18 by choosing
parameters such that the qubit-oscillator coupling is off-
diagonal and the internal interaction � vanishes. Here, we
consider an arbitrary � and discuss the possibility of qubit-
oscillator couplings other than off diagonal.

The Hamiltonian describing a charge qubit interacting
with the transmission-line resonator is

H�t� = Hq�t� + Hq-osc + Hosc, �44�

where the different terms describe the qubit, the oscillator,
and the qubit-oscillator coupling, respectively. If the dynam-
ics is essentially restricted to two states with N and N+1
Cooper pairs in the box, then the Hamiltonian becomes beau-
tifully simple64 and, in our notation, reads

Hq = −
EJ�t�

2
�z +

�

2
�x, �45a�

Henv = ��r�b†b +
1

2
	 −
�2�1 − 2Ng

dc�2

��r
, �45b�

Hq-env = ��b + b†��x, �45c�

with the oscillator frequency �r, and the coupling strength �.
We presented the Hamiltonian in the so-called tunneling rep-
resentation, which is the basis in which the charge states �N�
and �N+1� are eigenstates of �x. Since the Josephson link is
implemented by a dc superconducting quantum interference
device �SQUID�, the Josephson energy EC�t�
=EJ,max cos���t� /�0� can be manipulated upon variation of
the flux ��t� that penetrates the SQUID,65 where �0 denotes
the flux quantum. The dimensionless quantity Ng

dc is propor-
tional to an applied gate voltage which can be used to adjust
the internal coupling, which, in terms of the control param-
eters, reads �=4�1−2Ng

dc���2 /��r−EC� with the charging
energy EC.

Since the internal coupling � is tunable for this setup, one
can use Landau-Zener transitions to determine the integrated
spectral density S for the purely off-diagonal coupling �45c�.
In the one-oscillator model �45�, S=�2, so that W2=�2+�2.
Thus, by Landau-Zener sweeps past the oscillator resonance
for different values of �, Eq. �28� allows one to determine
the qubit-oscillator coupling strength �2 in independent
ways.

The Hamiltonian �45� features a possibly nonzero internal
interaction � between the qubit levels, which was assumed
zero in the setting of this superconducting circuit for which
single-photon generation was recently proposed.18 Besides
the transitions �↑0�→ �↓1� that generate a single photon, for
��0, there is now also the process �↑0�→ �↓0� which flips
the qubit without changing the cavity state. Therefore, a re-
liable single-photon generation requires that the transitions
induced by � are not relevant, while the qubit-oscillator cou-
pling has to be sufficiently large,18 such that �2��v. Fortu-
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FIG. 5. �Color online� Time evolution of the bit-flip probability
for a qubit with �=0.5��v diagonally coupled to two harmonic
oscillators, two nonlinear oscillators, and seven spins, respectively.
The harmonic oscillators are specified by �1=0.1�v /�, �2

=0.5�v /�, �1=2��v, and �2=6��v, while the nonlinear oscilla-
tors, in addition, have �1=�2=3��v. The values of the B j

� and the
� j

z are randomly chosen from the range �−��v /10,��v /10�. In all
three cases, the transition probability converges to the universal
value �41�.
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nately, as long as ����r, efficient single-photon generation
is very well possible by sweeping the qubit energy only on a
finite frequency interval small compared to �r but large com-
pared to the width of the cavity resonance.

It would be interesting to test in circuit QED our predic-
tions for other than off-diagonal qubit-bath couplings. This
requires magnetic fields and gate voltages to be swept simul-
taneously. The problem with sweeping gate voltages, how-
ever, is that this displaces the ground state of the oscillator,64

which practically means that � cannot be used as a time-
dependent control parameter. Consequently, the electric-plus-
magnetic sweeping in circuit QED falls outside the class of
models that we considered. It seems that Landau-Zener tran-
sitions with a general qubit-oscillator coupling angle � as in
�15� cannot be engineered in state-of-the-art circuit QED.

We already mentioned the width of the cavity resonance,
but actually in the model �45�, we assumed that the quality
factor of the resonator was infinite. The spectral density of
the oscillator bath then consists of a single delta peak at the
cavity resonance frequency, so that S=�2. For the nonideal
resonance, the spectral density becomes25,26

J��� =
���r

4�

��2 − �r
2�2 + �2�r

2�2 , �46�

where the dimensionless parameters � and � measure the
qubit-oscillator strength and the width of the resonance peak,
respectively. For small frequencies ���r, the spectral den-
sity J�������, as for an Ohmic bath. Now, suppose that
we let the qubit undergo a LZ sweep from frequency zero
across the resonator frequency until a frequency �max� �1
+���r. Now, since for frequencies ��−�r ����r the spectral
density falls off rapidly, a hypothetical continuation of the
LZ sweep from frequency �max to infinity would hardly
change the transition probability. Therefore, by combining
�22� and �46�, we find the integrated spectral density

S =
����r�2

4	 �arctan� 2 − �2

��4 − �2	 +
	

2 � �
����r�2

4
.

�47�

Inserting this expression into �28� gives an accurate value for
the cavity-induced LZ transition probability. The last identity
in �47� holds in the experimentally realized good-cavity limit
��1. In this limit, one can approximate the spectral density
�46� by a single oscillator with qubit-oscillator coupling �2

=����r�2 /4, reproducing the model �45�.
This leads us to the important conclusion that LZ transi-

tion probabilities can be computed exactly for qubits swept
past narrow or broad cavity resonances alike. The total
strength S of the atom-cavity coupling determines the LZ
transition probability, and for weak dissipation, S is indepen-
dent of the scaled cavity width �. Dissipative Landau-Zener
transitions are also robust in this respect.

B. Cavity QED and photonic crystals

Atoms couple off diagonally to the electromagnetic field,
which, for many practical purposes, can be considered as a
bath at zero temperature. Atomic energies can be swept by

applying dc electric and magnetic fields, which give rise to
Stark and Zeeman shifts, respectively. Atomic resonances are
usually narrow but hard to sweep by large percentages. Ar-
tificial atoms are more tunable, but their resonances are also
broader. Our results apply to situations where resonances can
be swept by much more than their width.

An atom in free space feels a spectral density that is qua-
dratic in the frequency, J���� �� /�0�2, with no cutoff fre-
quencies in the optical regime, so that S→�. During a
Landau-Zener sweep of an atom in free space, the atom will
finally have decayed spontaneously to its ground state. How-
ever, the spectral density felt by the atom, also known as its
local optical density of states,66 can be engineered by chang-
ing its dielectric environment. In photonic crystals, for ex-
ample, the periodicity of the refractive index on the scale of
an optical wavelength �0=2	c /�0 may create a photonic
band gap. Within this gap, the spectral density J��� ideally
vanishes and, in practice, it can be strongly reduced,
whereby spontaneous emission by the atom is strongly
suppressed.67

By making a controlled point defect or line defect in the
vicinity of the atom that breaks the periodicity of the photo-
nic crystal, a narrow defect mode may be created68 within
the spectral gap, as sketched in Fig. 6. Ideally, this would
allow cavity QED experiments to be performed within a pho-
tonic crystal, and progress is made in this direction.67,68 We
propose to do LZ sweeps of the atomic frequency �A�t�
around the defect frequency but within the band gap. This
will allow the creation of atom-defect entanglement and of
single photons in the defect mode, in quite the same way as
in circuit QED.18

C. Molecular nanomagnets

The energy levels of molecular nanomagnets can be swept
by switching on dc magnetic fields.3 Higher excited states
have higher magnetization, and these are excited more when
switching rates are high. These nanomagnets are not intrinsic
two-level systems, and indeed many successive LZ transi-
tions are observed upon increasing the magnetic field. They
can be cooled until tunneling rates become temperature
independent.3 In recent experiments,4 this happens rather
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FIG. 6. �Color online� Sketch of spectral density for an atom
near a local defect in a photonic crystal with a band gap. The qua-
dratic free-space spectral density is modified by the crystal that
creates a spectral gap around �0. A narrow defect mode inside a
broader band gap allows a controlled atom-defect interaction via LZ
sweeps of the atomic transition frequency �A�t�.
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abruptly at a temperature of 0.6 K. In this low-temperature
pure quantum tunneling regime, our predictions apply. LZ
transitions are commonly used in experiments to determine
level interactions between energy levels of molecular nano-
magnets. Energy relaxation due to thermal environment usu-
ally changes the effective energy gap.69 However, as we
showed, LZ transitions for qubits are robust under dephas-
ing, which, on a qualitative level, agrees with previous labo-
ratory experience about LZ transitions in nanomagnets.3

Molecular nanomagnets show many avoided crossings as
the magnetic field is varied. These crossings are often well
separated, so that one can ask what type of bath influences
the effective two-level dynamics around a particular level
crossing. Neither the bath nor its coupling to the qubit is
known precisely, but at very low temperatures, the main
source of decoherence will stem from the coupling to other
electronic and nuclear spins, so that a spin bath seems the
appropriate model. Our results of Sec. III B show in detail
how transition probabilities depend on both the internal in-
teraction � and the integrated spectral density S. Although
strong dephasing is probable in nanomagnets, our analytical
results prove that this hardly affects the LZ transition prob-
abilities in the experimentally accessible regime where tun-
neling rates are temperature independent.4

A theory for multiple dissipative LZ transitions in molecu-
lar magnets was developed by Leuenberger and Loss.70 This
theory presumes that in between successive LZ transitions,
all quantum coherences have been washed out due to dephas-
ing while dephasing during the individual LZ transitions
does not influence the transition probabilities. This assump-
tion is rather natural if the LZ tunneling time �LZ is much
shorter than the pure dephasing time, but obviously requires
proof for slower LZ transitions. This is an important appli-
cation of our results: our derivation of the universal bath
independence of individual LZ transitions under dephasing
proves that the theory of Ref. 70 is more widely applicable
than one would have guessed previously.

D. Quantum computer as a spin-bath simulator

An ideal quantum computer is a collection of qubits
whose energies and internal interactions are tunable and
whose mutual interactions are tunable as well. One method
for single-qubit manipulation is a Landau-Zener sweep. This
has been realized in recent experiments on superconducting
qubits.13,17,20 If the interactions with the other qubits are not
exactly zero, then our spin-bath result �37� predicts an effect
on the “single-qubit” LZ transition probability. In this way,
the LZ sweep provides a test of the settings of the quantum
computer in the operational space of the qubit.

On the other hand, our predictions can be tested very
carefully by controlled variation of qubit-qubit interactions
in the quantum computer. Indeed, the quantum computer
could be seen as a quantum simulator, in our case of the
effects of a spin bath on the LZ transition probability. A
full-fledged quantum simulator does not exist yet, but recent
experiments on a system of four superconducting qubits with
tunable couplings look promising.71

E. Superconducting qubits and their spin baths

Josephson phase qubits at very low temperatures �20 mK�
exhibit decoherence mainly due to interactions with two-

level microwave resonators.27 Since it is found that qubit
losses strongly depend on driving amplitudes, these resona-
tors cannot be described as a bosonic bath. Rather, they are
nowadays thought to be charge two-level systems.29 The ex-
istence of these resonators has important implications for the
operation of superconducting qubits. Spectroscopic measure-
ments have shown that at fixed energy, the qubit often reso-
nantly interacts with only a single resonator. Moreover, co-
herent quantum oscillations between a qubit and such a
single resonator were observed.28 Remarkably, decoherence
times of these microscopic two-level systems are larger than
that of the qubit. This, in turn, has led to the very recent
proposal to use instead these microscopic resonators as qu-
bits for quantum information processing.72

Our exact result �37� for the Landau-Zener transition
probability of a qubit in a spin bath in the low-temperature
tunneling regime can be an important tool for analyzing fur-
ther the properties of the microscopic resonators and their
couplings to the qubit. Our assumption of a spin-star con-
figuration, i.e., a bath of mutually noninteracting spins, is
probably correct for the spin bath of the phase qubits.72

Monte Carlo simulations indicate that narrower qubit-spin
resonances are shadowed by larger ones.29 For that reason, it
is important that formula �37� holds generally, whether the
qubit resonantly interacts with one microwave resonator at a
time or not.

During a so-called fast-pulse measurement of the state of
the qubit, the qubit energy moves in and out of resonance
with many of these resonators.28 As a consequence, the reso-
nators reduce the fidelity of the measurement. Actually, this
effect of the fluctuators has already been estimated in terms
of multiple LZ transitions in Ref. 28. There, it was assumed
that the resonators couple off diagonally via 
 j=1

N � j
x�x�x

j ,
with coupling strengths �� j

x�2 given by the size of the split-
tings as measured in the qubit spectroscopy. Our results �37�
and especially �39� show that the formula used in Ref. 28
becomes exact for a zero-temperature spin bath that couples
off diagonally, even in the case of overlapping spurious
resonances.29 It is unfortunate that microscopic resonators
reduce the fidelity of the fast-pulse readout method, but it is
good to know how much. More good news is that the same
fidelity reduction would be obtained even if there would be
additional dephasing by the spins.

Landau-Zener sweeps for phase qubits can be relevant for
one more reason:38 the precise spectral distribution of the
spins will be sample dependent. Moreover, the distribution
for a single sample varies on a time scale of days.72 Fortu-
nately, the LZ sweep measures a “global” property of the
spin bath, namely, its integrated spectral density S. It is fair
to assume that S will vary less from sample to sample and
from one day to the next than J��� at a fixed frequency. We
therefore suggest using LZ sweeps as a robust way of “gaug-
ing” and characterizing the spin-bath environment of super-
conducting phase qubits.

VI. SUMMARY AND CONCLUSIONS

We studied the effect of various zero-temperature envi-
ronments on the Landau-Zener transition probability of a qu-
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bit. The main result of this paper is the corresponding gen-
eralization of the bit-flip probability. The mathematical form
of this result, just like the standard Landau-Zener formula, is
charmingly simple: from the total Hamiltonian, one identifies
the bit-flip operator V of the qubit and computes the expec-
tation value W2=4�V2� for the initial diabatic ground state of
the qubit plus its environment. The transition probability fol-
lows formally by replacing in the standard expression for the
two-level LZ problem the factor �2 by W2. Following this
recipe, we have calculated in Sec. III the LZ tunneling prob-
abilities for oscillator baths and for spin baths, which repre-
sent the two most important environments in quantum dissi-
pation research. These examples illustrated that dissipative
Landau-Zener transition probabilities, in general, depend on
the type of environment and on the way the qubit couples to
it.

However, when the qubit-bath coupling is of the diagonal
type, causing so-called pure dephasing, then the tunneling
probability coincides with the original LZ probability, re-
gardless of the details of the environment. We expect that
this universal behavior is observable and important for a
wide variety of applications. A bath independence of another
kind was found for a qubit swept past a broadened �circuit�
cavity resonance: the transition probability turned out to be
independent of the quality factor of the cavity. Since transi-
tion probabilities are also independent of the environment
parameters in some phenomenological models with non-
Hermitian dynamics,73,74 possible mappings between these
and our models deserve future studies.

For the experimentally important hybrid situation in
which the bath causes both relaxation and dephasing, it was
found that the influence of dephasing is negligible, unless the
qubit-bath coupling is exceptionally strong. This robustness
of the LZ transition probability under dephasing is quite sur-
prising and important in applications. Furthermore, the appli-
cation of our results to experiments in superconducting cir-
cuits seems very promising, for example, for circuit QED
and for the fast-pulse readout of phase qubits.

In the future, it will be interesting to clarify whether a
degeneracy of the ground state modifies the results. The ef-
fects of finite temperatures on the LZ tunneling would also
deserve thorough investigations in the light of the exact zero-
temperature results, with the recent work by Pokrovsky and
Sun43 as an important first step. Other experimentally rel-
evant issues are how nonlinear sweeping and finite sweeping
times affect the dissipative transition.
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APPENDIX: LANDAU-ZENER TRANSITION
IN A MULTILEVEL SYSTEM

We consider the multilevel Hamiltonian

H�t� = 

a

�a�a��a� + 

b

��b − vbt��b��b�

+ 

a,b

�Xab�a��b� + Xab
* �b��a�� �A1�

with the time-dependent diabatic energies sketched in Fig. 7.
We assume that all diabatic states �a�, �b� are mutually or-
thogonal and that all vb�0. In the limit t→ ±�, the states
�a�, �b� become eigenstates of the Hamiltonian �A1�. The
off-diagonal part of the Hamiltonian is such that it only
couples states of different groups while states within one
group are uncoupled. Without loss of generality, we assumed
in the Hamiltonian �A1� that the diabatic energies of the a
states are time independent. If they all had an identical ve-
locity va smaller than all vb, we could obtain the Hamiltonian
�A1� by a gauge transformation with the time-dependent
phase factor exp�−ivat2 /2��. Then, vb becomes the velocity
of the b states with respect to va.

We choose as an initial condition that the system starts at
t=−� in one particular state �a�. The central quantity of in-
terest is the probability Pa→a� for a nonadiabatic Landau-
Zener transition to a state �a�� at t=�.

It is convenient to work in an interaction picture with
respect to the diagonal part of the Hamiltonian �A1� and,
thus, to apply the unitary transformation

U0�t� = 

a

e−i�at/��a��a� + 

b

e−i�bt/�+ivbt2/2��b��b� . �A2�

Then, we have to deal with the interaction-picture Hamil-
tonian

H̃�t� = 

a,b

ei��a−�b�t/�+ivbt2/2�Xab�a��b� + H.c. �A3�

In the interaction representation, the nonadiabatic transition
probability reads

Pa→a� = ��a��S�a��2, �A4�

where the S matrix is given by the usual time-ordered expo-
nential

S = 

k=0

� �−
i

�
	2k

Sk, �A5�

with the 2kth-order contribution

time

|a�
�

|b�
�

FIG. 7. �Color online� Crossing of two groups of diabatic states:
states �a� whose energy is time independent and states �b� whose
energies are reduced with constant velocities vb.
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Sk = �
−�

�

dt1�
t1

�

dt2 ¯ �
t2k−1

�

dt2kH̃�t2k� ¯ H̃�t1� . �A6�

Note that the interaction-picture Hamiltonian H̃�t� always
flips between states �a� and �b�, so that the perturbation series
for the transition amplitude in �A4� only consists of even
powers of the interaction Xab.

In order to compute the matrix element �a��Sk�a�, we will
generalize and simplify our reasoning of Refs. 18 and 38 for
this more general model. To begin with, we insert 2k−1
times the unit operator 
a�a��a�+
b�b��b� and obtain



a1¯ak−1



b1¯bk

Xa�bk
Xak−1bk

* Xak−1bk−1
¯ Xa1b1

Xab1

*

 �
−�

�

dt1 ¯ �
t2k−1

�

dt2k exp� i

�
��b1

− �a�t1

+
i

�


�=2

k

��b�
− �a�−1

�t2�−1 +
i

�


�=1

k−1

��a�
− �b�

�t2�

+
i

�
��a� − �bk

�t2k +
i

2�

�=1

k

vb�
�t2�

2 − t2�−1
2 �� . �A7�

In order to cope with the time ordering, we substitute the
time variables t1 , . . . , t2k by the time differences ��= t2�

− t2�−1 and u�= t2�+1− t2� as sketched in Fig. 8�a�, i.e., we set

t1 = t , �A8a�

t2� = t + 

��=1

�

��� + 

��=1

�−1

u��, �A8b�

t2�+1 = t + 

��=1

�

���� + u��� , �A8c�

which is equivalent to ��= t2�− t2�−1 and u�= t2�+1− t2�. Note
that the Jacobian of this substitution is 1. Then, the multiple
time integral in expression �A7� becomes

�
−�

�

dt�
0

�

du1 ¯ duk−1�
0

�

d�1 ¯ d�k

 exp� i

�
��a� − �a + 


�=1

k

vb�
��	t

+
i

�


�=1

k

��a� − �b�
��� +

i

�


�=1

k−1

��a� − �a�
�u�

+
i

�


�=1

k �1

2
vb�
��

2 + vb�
�� 


��=1

�−1

���� + u���	� . �A9�

Performing the t integration, we obtain the Dirac delta

2	���a� − �a + 

�=1

k

v��
��	 . �A10�

Because all vb�0 and the integration interval for each �� is
�0, ��, the sum in the argument of the delta function is non-
negative. This has two important implications.

First, the energies of the final and the initial state must
fulfill the relation �a�
�a, which means that all states �a��
with an adiabatic energy higher than that of the initial state
�a� are finally unoccupied, or

Pa→a� = 0 for �a�� �a. �A11�

We call this no-go theorem55,56 the no-go-up theorem. As a
corollary, we find that if the system starts at t=−� in the
adiabatic ground state, the final state will be either the initial
state or one of the states �b�.

If all avoided crossings of the adiabatic energies are suf-
ficiently narrow, the no-go-up theorem can be understood by
semiclassical considerations: At each avoided crossing, the
population splits up into a coherent superposition of two
branches. If the system starts out in an a state which has
velocity va=0, it can only choose between staying in an a
state with constant energy or a b state with decreasing en-
ergy. Thus, transitions to diabatic states with higher energies
are impossible. Note that the validity of these semiclassical
arguments is limited while the no-go-up theorem �A11� is an
exact statement that holds for any width of the avoided
crossings.

The second implication of �A10� concerns the special
transitions �a�→ �a�, to which the remainder of this Appendix
is devoted. Since in this case the sum in the delta function
must vanish, any contribution to the corresponding transition
probability must come from the subspace �1=�2= ¯ =�k=0.
This means that the � integrals in expression �A9� vanish
unless the u integrals are singular for ��=0. This finding can
be exploited for the simplification of the u integrals. In the
present form, however, the twofold summation in the last
term of the exponent in expression �A9� will complicate this
task. Therefore, it is convenient to substitute the integration
variables u1 , . . . ,uk−1 by the times

s� = t + 

��=1

�−1

u��, �A12�

which means u�=s�+1−s� as sketched in Fig. 8�b�. Then, we
obtain the partially time-ordered integral

t1 t2 t3 t2�−2 t2�−1 t2�

(a) t τ1 u1 · · · u�−1 τ�

s1 s2 s3 s�−1 s�

(b) t u1 u2 · · · u�−1

FIG. 8. Relation between the various time variables.
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�
−�

�

ds1�
s1

�

ds2 ¯ �
sk−1

�

dsk�
0

�

d�1 ¯ d�k

 exp� i

�
��a� − �ak−1

�sk +
i

�


�=2

k−1

��a�
− �a�−1

�s�

+
i

�
��a1

− �a�s1 +
i

�


�=1

k

vb�
��s�

−
i

�


�=1

k ��b�
− �a� −

��

2
− 


��=1

�−1

���	��� . �A13�

Setting ak=a� and a0=a, one sees that all s integrals are of
the form

�� ds� exp�i��a�
− �a�−1

+ vb�
���s�� , �A14�

where the lower integration limit can be finite or −�. Evalu-
ating this integral, one finds two types of terms: The first one
is a principal value which is always regular and, thus, will
not contribute to Sk. A second term is proportional to the
delta function ��a�

−�a�−1
+vb�

���. This will contribute if and
only if its singularity is located at ��=0, as discussed above.
Therefore, we find that energies of all participating a states
must be identical,

�a� = �a1
= ¯ = �ak

= �a. �A15�

In the absence of degeneracies in the spectrum of the a
states, the important condition follows that all nonvanishing
contributions to the perturbation series must fulfill the rela-
tion

a� = a1 = ¯ = ak = a . �A16�

This selection rule states that the only allowed processes are
those in which the system jumps repeatedly from the initial
state to one of the b states and back. Note that this selection
rule holds only for the contributions to the final transition
probability at time t=�. At intermediate times, other a states
can be populated as well, as has been exemplified in a nu-
merical study of Landau-Zener transitions of a qubit coupled
to a single harmonic oscillator.18

By use of the selection rule �A16�, we obtain from �A13�
for the 2kth-order term �a�Sk�a� the expression



a1¯ak−1



b1¯bk

�Xabk
�2�Xabk−1

�2 ¯ �Xab1
�2

 �
−�

�

ds1�
s1

�

ds2 ¯ �
sk−1

�

dsk�
0

�

d�1 ¯ d�k

 exp�i

�=1

k vb�
��s�

�
	

 exp�−
i

�


�=1

k ��b�
− �a −

��

2
− 


��=1

�−1

���	��� .

�A17�

A most important observation now is that the matrix ele-
ments Xab�

no longer depend on the index a�. Any permuta-
tion of the integration variables s� can therefore be undone
by proper relabeling. Thus, we can replace the s integrals in
the second line of �A17� by the symmetrized version

1

k!
�

−�

�

ds1 ¯ dsk exp� i

�


�=1

k

vb�
��s�	 =

�2	��k

k!

��1� ¯ ��k�
vb1

¯ vbk

.

�A18�

The remaining � integrations can be evaluated as well, each
of which yielding 1/2, so that finally

�a�Sk�a� =
1

k!�	�
b

�Xab�2

vb
	k

. �A19�

Inserting this into the series �A5�, we obtain the exact nona-
diabatic Landau-Zener transition probability

Pa→a = exp�−
2	

�



b

��a�X�b��2

vb
	 , �A20�

where X=
a,b�a�Xab�b�+H.c. denotes the off-diagonal part of
the Hamiltonian �A1�. This formula generalizes our previous
results.18,38 Similar formal results, though not applied to
quantum dissipation, have been presented in the very recent
work by Volkov and Ostrovsky.75

Of much practical importance is the case in which all b
states have the same velocity, vb=v, so that we face a situa-
tion of two crossing energy bands. Owing to �a�X�a��=0 for
all a ,a�, one finds 
b�a�X�b��b�X�a�= �a�X2�a�. For a nonde-
generate initial state �a�, we end up with18,38

Pa→a = exp�−
2	�a�X2�a�
�v

	 . �A21�
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