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The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of
molecular wire embedded between two electrodes. The wire is characterized by internal molecular
units where the lowest occupied molecular orbital �LUMO� levels are positioned much above the
Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The
latter act as specific intermediate donor and acceptor sites which in turn control the current
formation via the superexchange and sequential electron transfer mechanisms. According to the
chosen wire structure, intramolecular multiphonon processes may block the superexchange
component of the interelectrode current, resulting in a negative differential resistance of the
molecular wire. A pronounced current rectification appears if �i� the superexchange component
dominates the electron transfer between the terminal sites and if �ii� the multiphonon suppression of
distant superexchange charge hopping events between those sites is nonsymmetric. © 2007
American Institute of Physics. �DOI: 10.1063/1.2768521�

I. INTRODUCTION

The progress achieved during the past decades in apply-
ing scanning probe techniques, as well as the break junction
methods, facilitated current measurements through single
molecules. They could be demonstrated to operate as mo-
lecular switches,1,2 diodes,3–5,7 transistors,6–9 sensors,10

memory storage devices,11,12 etc. The current through a
single molecule is controlled by a whole set of different fac-
tors: the electronic structure of the molecule, the type of
molecule-electrode coupling, and the position of the lowest
unoccupied/highest occupied molecular orbitals �LUMO/
HOMOs� with respect to the Fermi levels of each electrode,
to name a few.13–15 Electronic structure calculations shed
valuable light on the electronic spectrum, the charge distri-
bution, and the density of states of the molecule-electrodes
system.16–23

An important theoretical tool for computing the current
through a single molecule is given by the Landauer theory,
originally developed in mesoscopic physics.24,25 Its applica-
bility to the description of charge transmission through a
single molecule embedded in between two electrodes, how-
ever, is rather restricted, even though some recent modifica-
tions also account for molecular vibrational degrees of
freedom.26–35 The restricted practicability is caused by the
fact that the Landauer theory only describes the direct �tun-
nel� route of interelectrode charge transfer.

Meanwhile, the so-called sequential route has been also
considered, accounting for relaxation processes in the course
of charge transmission through the molecule or the molecular

wire.36–41 A comprehensive description of charge transmis-
sion becomes possible either in the framework of the non-
equilibrium Green’s function �NGF� technique or by use of a
corresponding density matrix theory. Using the first tech-
nique, particular self-energy expressions may be introduced
to account for the different types of vibrational coupling to
the charge transmission process through the
molecule.8,27,35,42–45 Charge transmission including multiples
of vibrational quanta �multiphonon processes�, however, can
advantageously be considered when using the density matrix
method. Such an approach has been already utilized by the
authors before to achieve a unified description of bridge-
mediated donor-acceptor electron transfer 46–49 �ET� as well
as electron transmission through single molecules and mo-
lecular wires.41,50–54

The NGF method combined with density functional
theory offers a atomic structure based approach for comput-
ing the conductance of single molecules and molecular
wires. So far, however, there remain numerous effects which
can only be accounted for in the framework of a semiphe-
nomenological description, for example, the coupling of mo-
lecular degrees of freedom to a dissipative environment. In
this spirit, the present work utilizes the density matrix
method to elucidate how terminal groups of a molecular wire
may dominate its current-voltage �I-V� characteristics. To-
wards this goal, we will consider a model of a molecular
wire which consists of a terminal donor and acceptor group
as well as of an internal molecular bridge. Such a system has
been already investigated earlier in Refs. 36, 55, and 56 how-
ever, exclusively concentrating on the superexchange elec-
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tron pathway between the terminal groups �cf. Ref. 36�. It
was possible to explain the relation between the differential
resistance and the superexchange donor-acceptor transfer
rate.55 The influence of the donor-acceptor superexchange
interaction on the I-V characteristics has been studied in Ref.
56.

In contrast to these studies we will investigate the nona-
diabatic ET regime. It will be demonstrated that the current
formation strongly depends on the relation between the con-
tact transfer rates �electron hopping between the electrodes
and the adjacent terminal sites of the wire� and the overall
transfer rate characterizing the distant single step ET be-
tween the terminal sites. The overall transfer rate includes
superexchange as well as sequential contributions. We will
analyze in detail the transmission regimes characterized by
large and small contact transfer rates �weak and strong cou-
pling cases, respectively�. Here, it has been found that for a
weak coupling �when the limiting step of transmission is
caused by the contact transfer rates�, a rectification effect is
not significant even at the resonant regime of transmission.
At a strong coupling to the electrodes, however, the molecu-
lar wire may act as a rectifier. This is due to the fact that the
limiting step of ET, now, is determined by the distant hop-
ping between the terminal sites. If the distant hopping is
mainly determined by the superexchange coupling between
the terminal sites, then the rectification strongly depends on
the relation between the voltage switches at resonant trans-
mission and the voltages at which the overall transfer rates
achieve their maximum.

II. MODEL AND BASIC EXPRESSION
FOR THE CURRENT

ET through a molecular wire, cf. Fig. 1�a�, is of the
nonadiabatic type if the characteristic time �hop of electron
jumps between different sites of electron localization is much
larger than the intrasite vibrational relaxation time �rel, i.e.,

�hop � �rel. �1�

In such a case, the ET proceeds against the background of
fast relaxation processes, and it is thus most appropriate to
describe ET in the “left electrode-molecular wire-right elec-
trode” �L-MW-R� system in using the basis of localized mo-
lecular electron-vibrational states. This tight-binding-type
description of the molecular wire should at least comprise a
single electronic level and a single active vibrational coordi-
nate per site.

A. Hamiltonian of the L-MW-R system

Denoting the vibrational levels of the nth site by �n and
introducing the notation �n�n� as the respective electron-
vibrational state, the wire Hamiltonian takes the following
form:

HW = �
n=0

N+1

���n

�n�n
�n�n�	n�n�

+ �
�n,�n+1

�
�n

�0�,�n+1
�0�

��1 − �n,N+1�V�n�n+1
�0� ,�n

�0��n+1

��n�n��n + 1�n+1
�0� �	n�n

�0��	n + 1�n+1� + H.c.�
 . �2�

The expression contains the transfer coupling V�n�n+1
�0� ,�

n
�0��n+1

,
which is responsible for electron transitions between the
electron-vibrational states of the neighboring sites n+1 and
n. Moreover, the �n�n

�0�� are the electron-vibrational states of
site n at the absence of the transferred electron �empty site�.
Note here the use of the superscript 0 to indicate the states
related to the empty sites. The energy of the n�n-th electron-
vibrational state �at the presence of the transferred electron�
reads

�n�n
= �n + ��n�1/2 + �n� . �3�

The energy �n is defined by the minimum of the respective
potential energy surface, and �n is the corresponding vibra-
tional frequency. The electron-vibrational energies of site n
at the absence of the transferred electron are denoted as

�n�n
�0�

�0� = �n
�0� + ��n�1/2 + �n

�0�� . �4�

Consequently, the difference

En = �n − �n
�0� �5�

gives the electron affinity of site n �note our use of the Hol-
stein’s model57 where the vibrational frequencies �n are in-
dependent on the charging of the site�.

The electronic states which belong to the conduction
band of the electrode s=L ,R are denoted as �sk	� with the
electronic quasi-wave-vector k and the spin quantum number
	. Since we focus on transitions between nonmagnetic elec-
trodes at the absence of a magnetic field, the single-electron
energy Esk becomes independent on 	. Therefore, the elec-
tronic Hamiltonian of the sth electrode reads

FIG. 1. Left electrode-molecular wire-right electrode system �panel a� and
the related energy level scheme �panel b�. The electron affinities
E1 ,E2 , . . . ,EN, Eq. �5�, of the internal wire units are smaller than the affini-
ties E0 and EN+1 related to the terminal units. Therefore, the latter can be
considered as the donor and the acceptor site, respectively, connected by the
bridge of internal wire units.
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Hs = �
k	

Esk�sk	�	sk	� �s = L,R� , �6�

and the coupling of the sth electrode with the molecular wire
can be written as

VsW = �
nk	

�
�n�n

�0�
�Vsk�n

�0�,n�n
��s,L�n,0 + �s,R�n,N+1��sk	�

��n�n
�0��	n�n� + H.c.� . �7�

Transitions from the state �n�n� to a band state �sk� of the sth
electrode and the �n

�0�-th vibrational state of the empty site n
are characterized by the transfer matrix element Vsk�

n
�0�,n�n

. In
what follows, we apply the Condon approximation to obtain

V�n�n+1
�0� ,�n

�0��n+1
� Vn	�n+1

�0� ��n+1�	�n��n
�0�� ,

�8�
Vsk�n

�0�n�n
� Vsk	�n

�0���n� .

Here, Vn is the electronic transfer coupling between the mo-
lecular orbitals �MOs� of the internal wire site n and n+1,
while Vsk describes the coupling between the kth conduction
band state of electrode s and the MO of the opposite terminal
wire site �cf. Fig. 1�b��. 	�n

�0� ��n� denotes the overlap integral
between the vibrational wave functions of the empty and the
singly charged state of site n. The expressions �2�, �6�, and
�7�, determine the desirable electron-vibrational Hamiltonian
of the L-MW-R system,

H = �
s=L,R

�Hs + HsW� + HW. �9�

B. Hopping current at negligible bridge population

In order to derive an analytic expression for the current
through a molecular wire, we start out from the general cur-
rent formula,

I�t� = − e�
	

ṄL	�t� , �10�

where e
0 denotes the absolute value of electron charge,

and ṄL	�t�=�kṖLk	�t� is the time derivative of the total num-
ber of electrons in the left electrode with spin 	. The quan-

tity �	ṄL	�t�=−�	ṄR	�t� is associated with a net interelec-
trode charge flow. The latter appears as a kinetic process in
the L-MW-R system and includes long-range tunnel and
short-range sequential charge hoppings. There exists a uni-
fied description of such complicated kinetic processes.41,52,53

The considerations following hereafter are based on this
method. In using the Hamiltonian, Eq. �9�, we are able to
derive nonlinear kinetic equations for the electrode conduc-
tion band populations PLk	�t� and thus for the charge flow

�	ṄL	�t�. In what follows, the conductive band is considered
in the so-called wideband limit. This simplification allows
one to reduce the emerging nonlinear equations for the
PLk	�t� to linear ones �for more details we refer the readers
to Ref. 50�. Note, however, that the precise form of these
equations depends on the strength of Coulomb interaction
within the L-MW-R system. Here, we restrict ourself to the
case of a strong Coulomb interaction between the transferred

electrons occupying the wire in the course of transmission.
In our context this means that in a given voltage region only
a single extra electron can be captured by the wire. For such
a single-electron transfer the following normalization condi-
tion has to be satisfied for the wire state populations:

Pempty�t� + �
n=0

N+1

�
	

Pn	�t� = 1. �11�

The population Pempty�t� matches the probability to find the
wire without an extra �transferred� electron. In contrast, the
population Pn	�t� gives the probability that the wire unit n
contains a single extra electron �with spin projection 	�
whereas other wire units are free from extra electrons. With
the introduction of the wire populations we may derive

ṄL	�t� = − �LPempty�t� + �−LP1	�t� . �12�

The contact transfer rates �L and �−L characterize the elec-
tron hopping between the terminal unit 0 and the adjacent
electrode L, cf. Fig. 2�a�. Analogously, one introduces the
contact transfer rates �R and �−R characterizing an electron
hopping between the terminal unit N+1 and the adjacent
electrode R. Based on the unified description of ET processes
we can also derive the kinetic equations for the wire popu-
lations Pn	�t�, �n=0,1 , . . . ,N+1�, and, additionally, all char-
acteristic hopping rates indicated in the scheme of Fig. 2�a�.
The rate constants k1

�sup��k0N+1 and k2
�sup��kN+10 character-

ize the distant electron hopping between the terminal units 0
and N+1, while the rate constants �0�k01, ��knn+1, �N

�kNN+1, 0�k10, �kNN+1, and N�kN+1N describe hop-
ping transitions between neighboring units.

We next concentrate on such a transfer regime at which
the population of any internal wire unit remains negligibly
small during the charge transmission. Consequently, this
bridge-assisted transmission regime is met if

FIG. 2. Kinetic schemes of electron transmission through a molecular wire.
If the population of the internal wire sites 1 ,2 , . . . ,N is small a complete
hopping process in the L-MW-R system �panel a� can be reduced to a much
more simple hopping process with the participation of the terminal sites 0
and N+1 only. In the reduced scheme �panel b�, the hopping transition
between terminal sites is characterized by the overall transfer rates K1 and
K2, including sequential and superexchange contributions.

084709-3 Charge transmission through a molecular wire J. Chem. Phys. 127, 084709 �2007�
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Pn	�t� � 1 �n = 1,2, . . . ,N� . �13�

The necessary and sufficient conditions to reach such a re-
gime has been formulated in prior work �see Ref. 47�. In the
present notation, these conditions imply the inequalities

0 � �N/2��0, �N � �N/2�N. �14�

If these inequalities, as well as the inequality �13�, are ful-
filled, the kinetics of nonadiabatic charge transfer within the
L-MW-R system �cf. Fig. 2�a�� is reduced to a more simple
transfer process depicted in Fig. 2�b�. In this regime, the set
of N+3 kinetic equations for all wire populations is reduced
to the set of equations for only three populations, reading

Ṗempty�t� = − 2��L + �R�Pempty�t� + �
	

�−LP0	�t�

+ �
	

�−RPN+1	�t� ,

Ṗ0	�t� = − ��−L + K1�P0	�t� + �LPempty�t� + K2PN+1	�t� ,

�15�

ṖN+1	�t� = − ��−R + K2�PN+1	�t�

+ �RPempty�t� + K1P0	�t� .

In line with Eqs. �11� and �13� these equations are coupled
by a simple normalization condition,

Pempty�t� + �
	

�P0	�t� + PN+1	�t��  1. �16�

Note the appearance of the overall transfer rates K1 and K2,
which, in fact, include the superexchange and the sequential
contributions,58

K1�2� = k1�2�
�sup� + k1�2�

�seq�. �17�

Here, the superexchange rate constants k1
�sup� and k2

�sup� de-
scribe single step electron jumps between the terminal wire
units. They decrease exponentially with increasing wire
length, see below. The sequential rate constants k1

�seq� and
k2

�seq� include the electron jumps between the neighboring
wire units. For a wire with a regular spatial arrangement of
its internal units, one finds

k1
�seq� = �0�

N−1�N/S, k2
�seq� = 0

N−1N/S , �18�

where

S = �N�
N−1 + N−1 + �N0��N − 2� , �19�

and

��M� � ���M/2sinh ���M + 1��
sinh �

�e� = ��/� . �20�

Since we are exclusively interested in a description of the
stationary transmission regime, the set of kinetic equations

�Eq. �15�� is solved for Ṗempty�t�=0 and Ṗ0	�t�= ṖN+1	�t�
=0. With the use of the normalization condition �16�, we
obtain

Pempty = ��L�R + �−LK1 + �−RK2�/D ,

P0 � P0↑ = P0↓ = ��L�−R + ��L + �R�K2�/D , �21�

PN+1 � PN+1↑ = PN+1↓ = ��L�−L + ��L + �R�K1�/D ,

where

D = �L�R + �−L�2�R + K2� + �−R�2�L + K1�

+ 2��L + �R��K1 + K2� . �22�

Now, based on Eqs. �10� and �12�, one can derive an analytic
expression for the stationary current,

I = I02����LPempty − �−LP0� , �23�

or in an equivalent form,

I = − I02����RPempty − �−RPN+1� . �24�

Note here the introduction of the quantity I0��e /���
�1 eV�77.5 �A. The form of the current expression given
in Eq. �23� is more suitable to describe the current formation
at V�0. Likewise, the preferable form is Eq. �24� if one
analyzes the I-V characteristics at V�0.

C. Transfer rates and rate constants

1. Transfer rates

In the case of the tight-binding model where the
L-MW-R Hamiltonian is specified by Eq. �9�, we find the
following expression for a contact electrode-wire transfer
rate:

�s =
1

�
�

−�

+�

dE�s�E�fs�E − �s��FC�s→n�E� . �25�

Note that n=0 if s=L, and n=N+1 if s=R. In Eq. �25�,
�s�E�=2��k�Vsk�2��E−Esk� defines the width parameter that
determines the broadening ��s /2� of the level belonging to
the terminal site adjacent to the sth electrode, and fs�E−�s�
denotes the Fermi distribution for the corresponding elec-
trode with �s being the chemical potential. �FC�s→n�E�
=��n,�

n
�0�	�n ��n

�0��2W��n
�0����E−En−��n��n−�n

�0��� is the
Franck-Condon factor associated with electron transition
from the s electrode to the respective terminal site. It con-
tains an equilibrium distribution function with respect to the
electron-vibrational states of the uncharged site n, W��n

�0��
=exp�−��n�n

�0� /kBT� /��
n
�0� exp�−��n�n

�0� /kBT�. The expres-
sion for the contact wire-electrode transfer rate �−s follows
from Eq. �25�. Here, one only has to replace fs�E−�s� by
1− fs�E−�s� and the Franck-Condon factor �FC�s→n�E� by
�FC�n→s�E�, related to an electron transition from the n-th
terminal site to the adjacent electrode s. The difference be-
tween the �FC�s→n�E� and �FC�n→s�E� is caused by the
electron-vibrational distribution function. The �FC�n→s�E�
are defined by the W��n�.

An analytic calculation of the contact transfer rates �s

and �−s is rather complicated, but can be performed for a
concrete model of a thermal bath. One expression suitable
for further analysis can be taken from Ref. 53. The corre-
sponding derivation is based on the wideband approxima-
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tion, at which the width parameter �s displays a negligible
dependence on the transmission energy E. Using this same
approximation, one finds

�−s = e�Es/kBT�s, �s =
1

�
�sFs, �26�

where we have introduced the vibrational factor

Fs = 2� �
�n,�n

�0�
	�n��n

�0��2W��n
�0��nF��Es + ��n��n − �n

�0��� ,

�27�

with

nF��Es + ��n��n − �n
�0���

=
1

exp��Es + ��n���n − �n
�0���/kBT� + 1

�28�

being the particular distribution function. In Eqs. �26� and
�28�, the energy gaps between the terminal site levels and the
respective Fermi levels of the electrodes are defined as

�EL = E0 − �L = �EL�0� − eV�L,

�29�
�ER = EN+1 − �R = �ER�0� + eV�R.

For the sake of definiteness, we suppose that the left elec-
trode is grounded in such a manner that �L=EF and �R

=EF−eV. In Eq. �29�, �EL�0�=E0�0�−EF and �ER�0�
=EN+1�0�−EF are the respective unbiased gaps �for identical
terminal units we have EN+1�0�=E0�0� and thus �ER�0�
=�EL�0��. At a small rearrangement of the nuclear equilib-
rium configurations upon a recharging of the terminal
groups, one may set 	�n ��n

�0�����n,�
n
�0�. This approximation

reduces the vibration factor, Eq. �27�, to the simple form
Fs�2�nF��Es� and, therefore,

�L�R� =
1

�
�L�R�nF��EL�R�� ,

�30�

�−L�−R� =
1

�
�L�R��1 − nF��EL�R��� .

These simplified forms of the contact transfer rates, Eq. �30�,
contain distribution functions with the electronic gaps �Eq.
�29��. The latter are depicted with Fig. 3.

2. Site-to-site rate constants

Apart from site-to-electrode electronic gaps �Eq. �29��
there exist site-to-site electronic energy gaps �cf. Eq. �29��.
They are defined by the relations, cf. also Fig. 3,

�E1 = E1 − E0 = �E1�0� − eV�M ,

�EM = En − En+1 = eV�M �n = 1, . . . ,N� , �31�

�EN = EN − EN+1 = �EN�0� + eV�M .

These gaps refer to the levels belonging the neighboring wire
sites. Here, �E1�0��E1�0�−E0�0� and �EN�0��EN�0�
−EN+1�0� denote the unbiased intersite gaps �notably, for a
regular wire and identical terminal units, we have E1�0�
=EN�0� and thus �EN�0�=�E1�0��. In Eqs. �29� and �31�, the
parameters �L��L /�, �R��R /�, and �M ��M /� define the
voltage induced shift of each level. These parameters are
determined by the quantities ���L+ �N+1��M +�R with �L

� lL /�L, �M � l /�M, �R� lR /�R, which, in turn, depend on the
electrode-terminal site distances lL and lR as well as on the
intersite distances l ��L�R� and �M are the permittivities of the
medium surrounding the electrodes and the molecular wire,
respectively,59,60 cf. also Fig. 1�a��. The energy gaps, Eq.
�31�, determine the following relation between the site-to-
site hopping rate constants:

�0 = 0 exp�− �E1/kBT� ,

N = �N exp�− �EN/kBT� , �32�

 = � exp�− �EM/kBT� .

According to the chosen Condon approximation, each site-
to-site rate takes the form kmn= �2� /���Vmn�2�FC�mn, where
Vmn is the electronic transfer matrix element that couples the
sites m and n while �FC�mn is the nuclear Franck-Condon
factor for the m→n electronic transition.61,62 We next sup-
pose that for each electronic transition m→n, only a single
vibrational coordinate with frequency ��mn� is involved.
Thus, one can employ the expression due to Jortner for the
Franck-Condon factor,63 i.e.,

�FC�mn =
1

���mn��mn,

�33�

�mn = exp�− Smn coth
���mn�

kBT

�1 + n���mn��

n���mn��
��mn/2

� I��mn��2Smn�n���mn���1 + n���mn����1/2� .

Here, I��z� denotes the modified Bessel function, n���
= �exp��� /kBT�−1�−1 is the Bose distribution function,
and we introduced Smn��mn /���mn�, with �mn being the
reorganization energy of the m→n transition and �mn

��Em−En� /���mn�.
We now present an analytic expression for the forward

rates. Note also that the backward rates are connected with
the forward rates by the relations �32�. The forward site-to-
site rate constants read

FIG. 3. Energy gaps according to Eqs. �29�–�37� for a regular molecular
wire with two terminal and N internal units ��L=EF and �R=EF−eV�.
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�r =
2�

��r
�Vr�2��r

�r = 0,N� , �34�

� =
2�

��B
�VB�2��B

. �35�

For the regular molecular wire under consideration, we
have employed the following abbreviations: ��nn+1���B,
�nn+1��B, Vnn+1�VB, �nn+1���B

, �B= �En−En+1� /��B,
�n=1,2 , . . .N−1�, ��01���0, �01��0, V01�V0, �01���0

,
�0= �E0−E1� /��0, ��NN+1���N+1, �NN+1��N+1, VNN+1

�VN+1, �NN+1���N
, �N= �EN−EN+1� /��N, and ��0N+1�� �̃,

�0N+1� �̃, �0N+1��̃�+
, �N+10��̃�−

, �+=�E /��̃, and
�−=−�E /��̃. Electronic couplings between the neighboring
sites are shown in Fig. 1�b�. The superexchange rate con-
stants are defined by the expressions

k1�2�
�sup� =

2�

��̃
�V0N+1�V��2�̃�+�−�

, �36�

where �̃�+
��0N+1, �̃�−

��N+10, �̃���0N+1�, �̃��0N+1, �+

=�E /��̃, �−=−�E /��̃, and

�E = E0 − EN+1 = �E�0� + eV�1 − �L − �R� �37�

is the driving force of the ET between the terminal sites.
�E�0��E0�0�−EN+1�0� is the unbiased driving force. The
meaning of the energy gap �E, as well as the gaps intro-
duced so far, follows from the scheme of Fig. 3. The square
of the transition matrix element between the spatially sepa-
rated terminal sites reads

�V0N+1�V��2 =
�V0VB

N−1VN+1�2

�m=1
N �Em0�EmN+1

. �38�

This matrix element depends on the voltage bias V via the
energy gaps

�Em0 = Em − E0 = �E1�0� − eV�Mm ,

�39�
�EmN+1 = Em − EN+1 = �EN�0� + eV�M�N − m + 1� .

In order to derive a more compact expression, we use the
scheme in Ref. 64 to obtain

�V0N+1�V��2 = �V0N+1�0��2e��V�, �40�

where

��V� = �eV�M/2���1/�E1�0�� − �1/�EN�0���N�N + 1� .

�41�

The quantity

�V0N+1�0��2 �
�V0VN+1�2

�E1�0��EN�0�
e−��N−1�

�42�
�� = 2 ln���E1�0��EN�0�/�VB���

denotes the square of the superexchange matrix element at
the absence of an applied voltage.

III. RESULTS AND DISCUSSION

In order to analyze the I-V characteristics let us first note
that at room temperature �kBT�0.025 eV� the Fermi distri-
bution function �Eq. �28�� can be replaced by a unit-step
function. Therefore, in the voltage region V
0, one obtains
�R0. Analogously, one can set �L0 if V�0. Bearing in
mind these valid approximations and using the relations be-
tween the rate constants, Eq. �32�, after introducing the wire
populations, Eq. �21�, in the expressions �23� and �24�, we
arrive at the following expression for the stationary current:

I = I02���1 − e−e�V�/kBT�

���LK1�−R

D+
��V� −

�RK2�−L

D−
�1 − ��V��
 . �43�

Here, ��V� is the unit-step function and

D+ = �−L��−R + K2� + 2�L��−R + K1 + K2� + �−RK2,

�44�
D− = �−R��−L + K1� + 2�R��−L + K1 + K2� + �−LK2.

These analytic expressions allow us to analyze different re-
gimes of charge transmission through the wire, including the
sequential and the superexchange pathways.

In what follows, we concentrate on the emergence of
interesting rectification effects. In the case under consider-
ation, a molecular wire �composed by a linear arrangement
of N+2 sites including N internal identical sites, Fig. 1�a��
transmits the electrons in such a manner that its terminal
units may be considered as donor and acceptor transmitters,
whereas its internal sites act as a regular bridging structure.
The internal sites generate a superexchange coupling be-
tween the terminal sites, but these sites are also responsible
for the sequential �hopping� transfer through the wire. Before
presenting a detailed analysis of the results, let us point out
that the function �28� exhibits a sudden rise at the resonant
voltages V=VL

�res� and V=−VR
�res�, where

VL
�res� = �EL�0�/e�L, �45�

and

VR
�res� = �ER�0�/e�R. �46�

The expressions for VL
�res� and VR

�res� follow from the condi-
tions �EL=0 and �ER=0 at V
0 and V�0, respectively.
Because in the regions 0�V�VL

�res� and 0
V�−VR
�res� the

current through the molecule stays at a rather small value, we
concentrate on the mechanisms of current formation in the
regions V�VL

�res� and V�−VR
�res�. To this end, let us note that

at strong differences between the overall hopping rates K1,
K2, and the contact transfer rates �s, �−s charge transmission
in the L-MW-R system is limited by the slowest hopping
process. We now analyze two distinct possible limiting situ-
ations.

A. Weak coupling to the electrodes: Small rectification
limit

Let the coupling of the terminal sites to the respective
electrodes be weak, so that the overall transfer rates strongly
exceed the contact transfer rates. Note that the maximal val-
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ues of the contact rates �L�R� and �−L�−R� coincide with
�L�R� /�. This would be the case for a small nuclear rear-
rangement upon recharging. Thus, to understand the physics
of current formation at weak electrode-wire coupling, it suf-
fices to consider the electron transmission with contact trans-
fer rates defined by Eq. �30�. Besides, one has to suppose the
validity of the inequality

K1,K2 � ��L/��,��R/�� . �47�

As a rule, the unbiased gaps �EL�0� and �ER�0� strongly
exceed the thermal energy kBT. Therefore, independent on
the precise form of the contact rates, one can set �−L�0 and
�R�0 if V�VL

�res�, and �−R�0 and �L�0 if V�−VR
�res�. Not-

ing this circumstance and using the inequalities �47� one re-
duces the general expression for the current, Eq. �43�, to the
following simple form �a case of identical terminal sites is
considered, i.e., �E�0�=0, Eq. �37��:

I  ��V − VL
�res��I+

�plat� + ��− V − VR
�res��I−

�plat�. �48�

The two nonzero �plateau� currents read

I+
�plat� = I02�

�L�R

2�L + �R
�49�

and

I−
�plat� = − I02�

�L�R

�L + 2�R
. �50�

Hereafter, we replace the factor �1−exp�−e�V� /kBT�� by 1. It
follows from the fact that, in the given voltage regions, the
pronounced inequality exp�−e�V� /kBT��1 is fulfilled. The
factor only differs from 1 at small voltages, i.e., less than
0.1 V. The rectification ratio for the plateau currents,
RR�plat�= �I+

�plat� / I−
�plat��, thus reads

RR�plat� =
�L + 2�R

2�L + �R
. �51�

The maximal rectification is achieved at a large difference
between the corresponding width parameters. The effect is
not significant, however. For instance, if �R��L then
RR�plat�=2. Note also the different population of the molecu-
lar wire by the transferred electrons at �R��L. It follows
from Eq. �21� that in this case Pempty�1, P0�1, and PN+1

�1 if V�VL
�res�, whereas Pempty�1, P0��1/2��K2 /

�K1+K2��, and PN+1��1/2��K1 / �K1+K2��, if V�−VR
�res�.

Thus, at a given relation between the contact transfer rates,
the wire remains empty �at V
0� or captures a single extra
electron with probability �	�P0	+PN+1	�=2�P0+PN+1��1
�at V�0�. The expressions �49� and �50� are written for a
simple form of contact transfer rates, Eq. �30�. In a more
general case, one has to utilize the expression defined in Eq.
�26�. The resulting form of the positive current follows from
Eq. �49� if one replaces �L by �LFL and �R by
�RFR exp��ER /kBT�. If V�0, one has to replace the �R and
�L in Eq. �50� by �RFR and �LFL exp��EL /kBT�, respec-
tively. Such a substitution only leads to a more smooth tran-
sition to the plateau current, both fixed at V�VL

�res� and
V�−VR

�res�. It does not significantly change, however, the
rectification ratio for the plateau currents.

B. Strong coupling to the electrodes: Differential
negative resistance and pronounced rectification

Let us next consider the transmission regime at a strong
coupling of the terminal sites to respective electrodes. In
contrast to the inequalities, Eq. �47�, we now suppose that

K1,K2 � ��L + �−L�,��R + �−R� . �52�

The general current expressions, Eqs. �23� and �24�, assume
the form

I = Isup�V� + Iseq�V� , �53�

where the superexchange current component reads

Isup�V�  I02�����V�
�Lk1

�sup�

�−L + 2�L
− ��− V�

�Rk2
�sup�

�−R + 2�R

 .

�54�

It describes a single step distant jumps between the terminal
wire units. The sequential component of the total current
takes a completely different form, namely,

Iseq�V�  I02�����V�
�L

�−L + 2�L

�0�N

0 + �N

��1 +  +
1 − !+

N−1

1 − !+

−1

− ��− V�
�R

�−R + 2�R

0N

0 + �N

��1 +  −
1 − !−

N−1

1 − !−

−1
 . �55�

The parameters

 + =
1 − ��/�N��1 − !+�

��/0� + ��/�N�
,  − =

1 − �/0��1 − !−�
�/�N� + �/0�

�56�

specify the dependence of the sequential current component
on the wire length. Different dependencies of the superex-
change and sequential current components on the wire length
allow one to specify the type of charge transmission through
a concrete molecular wire. Note also that a definite discrimi-
nation of the current components only becomes possible if
the inequalities �14� and �52� are fulfilled in the course of
charge transmission. They characterize such a type of trans-
mission where the hopping processes between a terminal
wire unit and the opposite electrode are much faster than the
escape of an electron from the same terminal unit to other
wire units �see the scheme in Fig. 2�a��.

1. Symmetric case

The contribution related to the sequential and the super-
exchange pathway strongly depends on the relation between
the parameters defining all hopping rates. Figure 4 depicts
the respective current versus the length of the wire. The cho-
sen transmission regime corresponds to the symmetric case
where �L=�R, �EL�0�=�ER�0�, �E1�0�=�EN�0�, and
�E�0�=0 �cf. Eqs. �29�–�37��. It can be deduced from Fig. 4
that at a given set of parameters, the superexchange pathway
dominates the current formation for short molecular wires.
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Noting this fact, we next analyze the I-V characteristics
for a short molecular wire.38,41,50 Additionally, we discuss the
voltage dependence of the wire conductance, i.e., the nonlin-
ear differential conductivity,

g�V� = dI�V�/dV . �57�

Figure 5�a� depicts the nonlinear I-V characteristics �in the
symmetric case and at n��̃��1�. According to the symmetry
relation I�V�=−I�−V�, we only concentrate on the regime V

0. As a main observation we notice that the current reaches
a maximum at a finite voltage, and afterward drops down to
zero. Consequently, the differential conductance covers re-
gions with a negative differential resistance �see Fig. 5�b��.

In order to explain this intriguing behavior we take into
consideration that in the case n��̃��1 the Bessel function
entering the current formula �cf. Eqs. �33�–�53�� can be ap-
proximated by its asymptotic form I��z���z /2�� /���+1�
�Ref. 65� where ��x� is the Gamma function. Thus, Eq. �36�
takes the form

�̃� � �1 + n��̃�
n��̃�


�/2

�n��̃��1 + n��̃������/2 S̃���

����� + 1�
e−S̃,

�58�

with S̃= �̃ /��̃. If � is positive, then the product ��1
+n��̃�� /n��̃���/2�n��̃��1+n��̃������/2 reduces to �1+n��̃���.
For a negative � the product equals n��̃����. Since charge
transmission is considered for the case n��̃��1, only those
superexchange transfer processes where ��0 contribute.

Therefore, we may use �̃� in the following approximate
form:

�̃� � e−S̃S̃�/��� + 1� �� � 0� . �59�

According to its definition, the parameter � coincides with
the number of vibrational quanta necessary to bypass the
energy gap between the levels of the terminal wire units. In
the case of the 0→N+1 transfer, this gap equals �E. The
backward transfer N+1→0 is characterized by the gap −�E.
Thus, if the superexchange transition is accompanied by
high-frequency vibrational quanta, it only occurs at a posi-
tive driving forces �G=�E and �G=−�E, being associated
with the forward and backward electron transfer reactions,
respectively.

In the symmetric situation under discussion, the param-
eter �=�E /��̃ is given by the expression

� = eV�1 − �L − �R�/��̃ , �60�

which is positive for V
0. Therefore, in virtue of Eqs. �30�,
�33�, �36�, �54�, and �59�, the current through the molecular
wire is described by a rather simple expression, reading

FIG. 4. Length dependence of the current through a regular molecular wire.
At the given set of parameters, the superexchange mechanism of the current
formation dominates for a short molecular wire �up to six internal units�,
while the thermally activated sequential mechanism exceeds the superex-
change for longer wires �calculations according to Eqs. �43� and �44��. The
completely symmetric case has been considered using the following param-
eters: �L=�R=4 Å, �M =3 Å, �0=�N=�B= �̃=500 cm−1, V0=VN=0.1 eV,
VB=0.05 eV, �EL�0�=�ER�0�=0.2 eV, �E1�0�=�EN�0�=0.6 eV, �E�0�
=0, �0=�N+1=1.2 eV, �B=0.5 eV, �̃=0.2 eV, and �L=�R=0.1 eV.

FIG. 5. Current-voltage �panel a� and conductance-voltage �panel b� char-
acteristics of a regular molecular wire with three internal units. The used
parameters are identical with those of Fig. 4 which correspond to the com-
pletely symmetric situation. The current suppression and, correspondingly,
the appearance of a negative differential resistance is caused by mul-
tiphonon processes.
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I � Isup � I02��
nF��EL�

1 + nF��EL�
k1

�sup� �V � 0� , �61�

with

k1
�sup� �

2�

�2�̃
�V0N+1�0��2

S̃�

��� + 1�
e−S̃. �62�

To obtain the expression �61� we used the identity
�L�R� / ��−L�−R�+2�L�R��= �exp��EL�R� /kBT�+2�−1

=nF��EL�R�� / �1+nF��EL�R���, being valid for any form of
contact transfer rates �L�R� and �−L�−R�.

In line with Eqs. �60�–�62�, the voltage dependence of
the current is defined by the distribution function nF��EL�
and the parameter �. Note also that in the symmetric case
one obtains ��V�=0, so that �V0N+1�V��2= �V0N+1�0��2, cf. Eq.
�40�. At positive voltages, the energy gap �EL, Eq. �29�,
decreases with the increase of V. It vanishes at the resonant
voltage �Eq. �45�� and it becomes negative at V
VL

�res�.
Therefore, the function nF��EL� increases only in the region
0�V�VL

�res�. If V
VL
�res�, however, this function does not

change, i.e., now nF��EL�1. Thus, the decrease of the cur-
rent �and the appearance of a negative differential resistance�
is related to the decrease of the superexchange rate k1

�sup�. A
detailed inspection of the function, Eq. �59�, shows that it
exhibits a strong decrease at large �. As far as the quantity
�E, Eq. �37�, increases with an increase of V, the number of
vibrational quanta � compensating this increase increases as
well. Therefore, this effect explains the drop of the current in
the voltage region V
VL

�res�. At negative voltages, the reso-
nant electron transition starts at V=−VR

�res�, where VR
�res� is

defined by Eq. �46�. In a symmetric case, the resonant volt-
ages VR

�res� and VL
�res� coincide. Thus, the I-V characteristics is

inversion symmetric and the conductance-voltage character-
istics is reflection symmetric in this case as a function of
applied voltage bias V.

2. Asymmetric case

The discussed symmetric behavior is changed if the
resonant voltages at V
0 and V�0 do not coincide. It fol-
lows from Eqs. �45� and �46� that an asymmetry appears if
either �R��L, i.e., the terminal sites are positioned differ-
ently with respect to the electrode, or if �ER�0���EL�0�,
i.e., the energy gaps between each terminal site level and the
respective Fermi energy are different. Likewise, an asymme-
try appears if, simultaneously, �R��L and �ER�0�
��EL�0�. Figure 6 depicts the asymmetric I-V characteris-
tics for the particular case �R��L and ER�0�=�EL�0�. Gen-
erally, if �R��L, the coupling of the terminal wire units to
the opposite electrodes is also varied, resulting in �R��L.
However, if the inequalities �47� are valid and, thus, the lim-
iting part of the transmission process is given by a distant
electron hopping between the terminal wire units, the rela-
tion between the width parameters �R and �L becomes un-
important.

The superexchange mechanism of an asymmetric current
formation becomes more complex if E0�0��EN+1�0�. In this
case, a nonzero gap �E�0�
0 exists even at V=0. This
means that �EN�0�=�E1�0�+�E�0� and �ER�0�=�EL�0�

−�E�0�. Because �E1�0���EN�0� the quantity ��V�, Eq.
�41�, does not vanish, yielding for the current the result

I � I0
4�2

��̃
�V0N+1�0��2

nF��EL�
1 + nF��EL�

�̃�+
e��V� �V 
 0� ,

�63�

where the function �̃�+
is given by Eq. �59� with

� = �+ = ��E�0� + eV�1 − �L − �R��/��̃ . �64�

In Eq. �63�, the quantity ��V�, Eq. �41�, adds an additional
voltage dependence, which is caused by the energetic asym-
metry of the terminal wire groups. As far as �+�0 and de-
pending on the value of the energy gap �E�0� �at V=0�, the
distant superexchange electron transition is accompanied by
a large number of vibrational quanta even at a small applied
voltage. This leads to the suppression of the current in the
region V
0, especially at V�VL

�res�. The suppression is di-
minished by the factor exp���V��, which increases at a posi-
tive voltage. This behavior is dictated by the condition
��V�
0 valid at �E�0�
0. Nevertheless, at positive volt-
ages, the electron transmission accompanied by a mul-
tiphonon compensation of the energy gap �E=�E�0�
+eV�1−�L−�R� represents an important mechanism of cur-
rent suppression.

Yet another situation occurs at V�0. Now, the driving
force �G=−�E of the 0←N+1 transition is positive only at
V�−V*, where the critical voltage

V* = �E�0�/e�1 − �L − �R� �65�

is defined by the condition �G=0. Thus, in accordance with
expression �59� electron transmission through the wire be-
comes effective only when V�−V*. In this case, the param-
eter

� = �− = �− �E�0� + e�V��1 − �L − �R��/��̃ �66�

becomes positive. The current then takes the form

FIG. 6. Asymmetric I-V characteristics of a regular molecular wire with
three internal units. The used parameters are identical with those of Fig. 4
except that �L=0.1 eV and �R=0.2 eV. The asymmetry results from the
difference between the edge voltage division factors �L and �R.
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I � I0
4�2

��̃
�V0N+1�0��2

nF��ER�
1 + nF��ER�

�̃�−
e−���V��, V � − V*.

�67�

The essential difference between the I-V characteristics at
V�0 and at V
0 is related to the energy gaps �EL and
�ER, as well as to the parameters �+ and �−. Because �ER

��EL, the function nF��ER� increases faster than how much
the function nF��EL� decreases. Bearing in mind that a larger
value for �+ is reached as compared to �− at smaller voltages,
the suppression of the current at V
0 occurs also at smaller
voltages, as compared to the suppression of the current at
V�0. It emerges then a distinct current rectification, being
clearly depicted with Fig. 7.

It follows from Eq. �21� that at strong wire-electrode
couplings, the wire populations are Pempty�1, P0↑+P0↓
=2P0�1, and PN+1�1 if V�VL

�res�, whereas Pempty�1, P0

�1, and PN+1↑+PN+1↓=2PN+1�1 if V�−VL
�res�. One notices

a different character of this population in comparison to the
case of a weak coupling to the electrodes. In particular, at a

strong coupling �when the width parameters �L and �R are
large� a molecular wire traps a single extra �transferred� elec-
tron either by the left or by the right terminal site. Such
trapping does not depend on the value of the width param-
eters but exclusively on the current direction. At the same
time, at a weak coupling to the electrodes �when the width
parameters �L and �R are small�, the wire can remain empty
if the coupling to one of the electrodes strongly exceeds the
coupling to the other electrode.

IV. CONCLUSIONS

With the present work we discussed the current-voltage
�I-V� characteristics of a molecular wire attached to two na-
noelectrodes. Our focus was on the influence of terminal
wire groups on the current formation. The model description
for the wire assumes that the internal molecular sites act as
bridging groups. Therefore, they cause a superexchange elec-
tronic coupling between the terminal sites but, in addition,
they also form a sequential electron pathway among these
sites. We presented detailed studies of the I-V and
conductance-voltage characteristics for the two limiting
cases of �i� a weak and �ii� a strong molecular wire-electrode
coupling. In the case of a weak coupling, the width param-
eters �L and �R are small so that the kinetics of charge trans-
mission are characterized by the condition �47�. A limiting
stage of this kinetics is associated with charge hopping be-
tween the terminal wire units and the adjacent electrodes. A
rectification effect only appears at a large difference between
the width parameters. But, the effect is not substantial, see
Eq. �51�, at �R��L or �L��R. A completely different situ-
ation occurs at strong wire-electrode couplings: The coupling
to vibrational modes results in a distinct peak in the I-V
characteristics which is followed by current suppression.
Thus, a negative differential resistance behavior occurs. This
intriguing current suppression is caused by multiphonon pro-
cesses which accompany the single step superexchange elec-
tron transition between the terminal wire units. These mul-
tiphonon processes also become responsible for a
pronounced rectification effect �note the dotted lines in Fig.
7�.

In the most simple situation, the multiphonon rectifica-
tion can be observed in a system of a left electrode, a mo-
lecular wire, and a right electrode, where the electrodes are
identical and where the energetic positions of the terminal
groups with respect to the opposite electrodes coincide. It is
then only necessary to create a small structural perturbation
near one of the identical terminal groups in order to form the
unbiased energy gap �E�0��0 between the electronic levels
of these groups, see Eq. �37�. This multiphonon rectification
effect is caused by vibrational relaxations within the terminal
groups of the system. Rectification may be also related to the
voltage division factors �L and �R that define the level shift
of the terminal groups �see Fig. 6�. The rectification feature
of the molecular wire, as depicted in the Figs. 6 and 7, is
exclusively connected with the superexchange mechanism of
a single step electron transfer between the terminal wire
sites. Such a description is based on the observation that the
superexchange transfer may represent the limiting step of the

FIG. 7. Asymmetric I-V �panel a� and differential conductance-voltage
�panel b� characteristics of a linear regular molecular wire consisting of
three internal units. The asymmetry appears at a nonzero value of the unbi-
ased driving force �E�0� corresponding to the distant superexchange elec-
tron transfer between the terminal wire units. It results in different mul-
tiphonon processes at V
0 and V�0. The parameters are the same as those
used in Fig. 4, except that �E�0�=0.025 eV, �L=0.1 eV, and �R=0.2 eV. In
this case, we set �ER�0�=�EL�0�−�E�0� and �EN�0�=�E1�0�+�E�0�.
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transmission process in the whole system. This would be the
case if the following two conditions are fulfilled: �i� it is
necessary that the electron transfer between the electrodes
and the respective terminal wire units is much faster than
both, the direct transfer between the terminal units and, as
well as the transfer between each terminal unit and the neigh-
boring internal wire unit, cf. the kinetic scheme depicted in
Fig. 2�a� and the inequality Eq. �14�; and �ii� the thermal
activated sequential �hopping� transfer between the terminal
units has to be less efficient than the superexchange transfer.
Figure 4 indicates that this, in fact, can occur during electron
transfer through a short molecular wire, provided that k1

�sup�

��0 and k2
�sup��N.

Note also the specific charging effect which is related to
an asymmetric resonant electron transfer through the wire. At
weak wire-electrode couplings �see Eq. �47��, the wire is
either free of transferred electrons or it has captured a single
extra �transferred� electron by the terminal site which is more
weakly coupled to the adjacent electrode. In the considered
example ��R��L�, it is the left terminal site which is occu-
pied by the transferred electron. This occurs at positive volt-
ages. At the same time, the wire remains empty at negative
voltages. If the wire-electrode couplings are strong �see con-
dition �52�� a resonant transmission is accompanied by a trap
mechanism for a single transferred electron by the left
�V
0� or the right �V�0� terminal site. This effect can in
principle be observed with electron paramagnetic resonance
�EPR�, or in using optical spectroscopy.
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