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We investigate a mechanism for extracting heat from metallic conductors based on the energy-selective
transmission of electrons through a spatially asymmetric resonant structure subject to ac driving. This quantum
refrigerator can operate at zero net electronic current as it replaces hot with cold electrons through two
energetically symmetric inelastic channels. We present numerical results for a specific heterostructure and
discuss general trends. We also explore the conditions under which the cooling rate may approach the ultimate
limit given by the quantum of cooling power.
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I. INTRODUCTION

The increasing miniaturization of electronic devices re-
quires a deep understanding of the generation and flow of
heat accompanying electron motion.1,2 The quantum of ther-
mal conductance, which is independent of the carrier
statistics,3 has been recently measured for phonons4 and
photons.5 A practical and fundamental issue is the identifica-
tion of possible cooling mechanisms for electron systems, a
subject less developed than its atom counterpart.6 Adiabatic
electron7,8 and molecular9 pumps may provide reversible
heat engines which would cool with minimum work expen-
diture. It has also been proposed that normal-superconductor
interfaces can efficiently cool the normal metal under appro-
priate conditions of electron flow.10,11

In this paper, we explore an alternative electron cooling
mechanism that can operate at zero electric current because it
relies on the idea of replacing hot electrons with cold elec-
trons. The cooling concept is schematically depicted in Fig.
1. An asymmetric resonant-tunneling structure is formed by
two wells, each of which hosts two quasibound states. The
four levels are symmetrically disposed so that the energy
difference is smaller in the right �R� than in the left �L� well.
On the other hand, the difference between the two upper
levels is taken to be the same as that between the two lower
ones, both being equal to the driving frequency: E2L−E2R
=E1R−E1L=���0. In those conditions, electron transport is
dominated by two processes: �i� electrons in the R electrode
with energy E2R are inelastically transmitted to the L elec-
trode, where they enter with energy E2L=E2R+��, and �ii�
electrons in the left with energy E1L are transmitted to the
right while also absorbing a photon. Unlike in thermionic
refrigeration,12,13 we may assume a common chemical poten-
tial �=�L=�R. Then in the right lead, one is effectively
replacing hot electrons �with energy ���� with cold elec-
trons �����. According to this principle, the right electrode
is being cooled at the expense of heating the left electrode.
This mechanism, which relies on the properties of coherent
electron transport, may be viewed as the basis of a quantum
refrigerator.14 Under suitable conditions, the two dominant
transport mechanisms may cancel each other, yielding a van-
ishing electric current which prevents electrode charging.

II. HEAT PUMP

The classification of electrons as hot or cold depending on
whether its energy is above or below the chemical potential
in its electrode is based on the property that the entropy
variation in an infinitesimal process is given by TdS=dU
−�dN. For independent electrons, this translates into TdS
= ��−��dN, where � is the energy of the electrons being
added �dN�0� or removed �dN�0�. In a transport context,
the entropy and temperature variation rates are determined
by the many electron scattering processes continuously tak-
ing place at the interface. We always refer to the equilibrium
entropy eventually reached in the reservoir for the new val-
ues of the conserved quantities energy and particle number.

Since we are ultimately more interested in reducing the
temperature than the entropy, it is important to note that their
variations are not necessarily proportional to each other. One
finds CVdT= ��−��dN, where CV is the heat capacity and
���−T��� /�T�n, with n the particle density. In the most
interesting case where the total electron number remains in-

variant on average �Ṅ=0�, the total entropy and temperature
variations are proportional to each other. In the following, we
present results for the rate of entropy variation, knowing that
it amounts to temperature variation in the most interesting
case of constant electron number. Specifically, we compute
the heat production rate in lead �=L,R �Refs. 15–18�:

µL,R = µkBT
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FIG. 1. Asymmetric double-well heterostructure used for elec-
tron ac transport calculations. Energy levels are symmetrically
placed around the common Fermi level. Dominant transmission
processes contributing to cooling are shown: in lead R hot electrons
are replaced with cold electrons, all within a range �kBT around �.
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Q̇� = �
q

��q − ���Ṅ�q, �1�

N�q and �q being the electron number and energy of state q in
electrode � of chemical potential ��=�.

Our goal is to understand the ac thermal transport proper-
ties of quantum-well heterostructures, where the electron po-
tential in the perpendicular z direction has the piecewise con-
stant form shown in Fig. 1, while it is uniform in the parallel
xy plane. In such a delocalized system, the independent-
electron approximation is generally adequate. The bottom of
the right well oscillates as V=V0+Vac cos��t�, while the left
well operates in phase opposition with the same amplitude
and frequency. To better focus on the main physical aspects,
we analyze first transport through a single channel, later dis-
cussing the effect of many channels.

Electron transport properties can be described in terms of
scattering probabilities. Within a single-channel picture, the
electric current flowing into lead R under ac driving is given
by19

ṄR =
1

h
�

k=−	

	 � d��TRL
�k����fL��� − TLR

�k����fR���� , �2�

where f���� is the Fermi distribution in lead � and T
���
�k� ��� is

the probability for an electron to be transmitted from lead ��
to lead � while its energy changes from � to �+k��, k being
an integer number. Likewise, it can be shown that Eq. �1�
leads to

Q̇R =
1

h
�

k=−	

	 � d����R − ��TLR
�k����fR���

+ �� + k�� − �R�TRL
�k����fL��� + k��RRR

�k� ���fR���� ,

�3�

where RRR
�k� ��� is the probability that an electron is reflected in

lead R from energy � to �+k��. Invoking time-reversal
symmetry and the monotonicity of fR���, it can be proven
that inelastic reflection always contributes to heating. There-
fore, any possible refrigeration of lead R relying on the trans-
mission scheme depicted in Fig. 1 must be efficient enough
to overcome the heating due to inelastic reflection. The elec-
tron scattering probabilities are calculated exactly following
the transfer-matrix method.20

In Fig. 2, we present numerical results for the heat pro-
duction rate at lead R. The well lengths are 40 and 80 nm;
the heights of the barriers are VL=VR=60 meV and VC
=30 meV, measured with respect to the bottom of the con-
duction band; and their widths are 4 and 5 nm, respectively.
The difference between the bottoms of the two wells is V0
=1.5 meV and the effective electron mass is m*=0.07me.
This results in E2R−E1R=3.4 meV, as determined, e.g., by
the dc transmission characteristics. The structure parameters
have been chosen such that ��=1.94 meV coincides with
E2L−E2R and E1R−E1L. We take � to lie halfway between
E1R and E2R. Clearly, the most negative heat production oc-
curs for eVac /���0.2. This results from a combination of
nonlinearity, which yields a Vac

2 dependence for small Vac,

and the increase of reflection heating �see Fig. 2�b�� rein-
forced by the suppression of electron transmission through
the dominant single-photon channels as eVac /�� approaches
the first zero of the first-order Bessel function.21 The result is
that 	Q̇R	 goes through a maximum for a moderate value of
eVac /��.

Another interesting feature is that, as a function of T, the
cooling rate is maximized for T�20 K, which is roughly
�E2R−E1R� /2. If the temperature is too low, the level 2R is
empty and 1R is full, which inhibits the exchange of elec-
trons. If it is too high, the cooling rate saturates as TR in-
creases, and even decreases slightly because TL �here equal
to TR� also increases. Later we argue more generally that
cooling is optimized when not only �E2R−E1R� /2 but also

 /2 �the half-width of the transmitting channels� is of order
kBTR. Here, 
 /2�0.2 meV, noticeably smaller than kBTR.

The potentially most interesting scenario is that where
cooling takes place while the net electric current is zero �in a
classical context, see Ref. 22�. That this is not generally the
case can be inferred from the inset of Fig. 2. If we fix the
structure and driving parameters, then the chemical potential
and the temperatures are left as the independent variables. If

� is adjusted to satisfy the constraint ṄR=0, the cooling rate

Q̇R becomes a unique function of TL and TR. Figure 3 shows
the resulting cooling rate as a function of TR for several
values of TL. Remarkably, we observe that the heat produc-
tion in R can be negative even for TL�TR. We conclude that
it is technically possible to extract heat from the cold reser-
voir and pump it to the hot reservoir with a vanishing net
electric current. Thermodynamically, such a refrigeration
process requires external work, which here amounts to 2��
per useful scattering event and is provided by the classical ac
source. In practice, inelastic reflection will further reduce the
efficiency.
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FIG. 2. �Color online� �a� Heat production rate in lead R for the
structure of Fig. 1 as a function of the driving amplitude eVac for
various lead temperatures and ��=1.94 meV. See main text for
details. �b� For T=20 K, heating contributions from inelastically
reflected electrons �solid line� and total electric current �line� are
shown.
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In a three-dimensional �3D� context, one must generalize
Eq. �3� to include a sum over transverse modes while replac-
ing �R with �R−�2�2 /2m*, where each channel is character-

ized by its parallel wave vector �� . For fixed TL and TR, Q̇R
remains negative within a finite range of � values �not
shown�. This suggests that, after summing the contributions
from the many transverse channels, global cooling is still
possible in a suitably designed 3D interface.

III. QUANTUM LIMIT

Once we have proven that it is, in principle, possible to
pump heat from a cold to a hot reservoir by coherent control
of electron transmission, it is natural to ask whether there is
any fundamental limit to the maximum cooling rate per
quantum channel which would play a role analogous to the
quantum of electric or thermal conductance �e2 /h and
�2kB

2T /3h, respectively�. It seems evident that the maximum
cooling rate should be achieved in an ideal setup where a
metal at temperature T is connected through a totally trans-
parent interface to another metal at the same chemical poten-
tial but at zero temperature. The result is the quantum of
cooling power:

CQ � 	Q̇	max =
2

h
�

0

	

d��f��� =
�2

6

kB
2T2

h
, �4�

where f�����exp�� /kBT�+1�−1 and �2kB
2 /6h=473 fW K−2.

Following information theory arguments, a similar result can
be derived.23,24 Differentiation of Eq. �4� yields the quantum
of thermal conductance. Invoking only time-reversal symme-
try and unitarity, Eq. �3� can be shown to satisfy �with TR
=T�

Q̇R  − CQ, �5�

for arbitrary electrodes �including �L��R� and driving pa-
rameters, thus confirming that CQ is an upper bound to the
cooling rate.

The quantum limit may be intuitively understood as fol-
lows: kBT is the maximum amount of heat that can be carried
away in an elementary process. Such processes take place at

a rate �	Q̇	 /kBT, which cannot exceed h /kBT if one is to

avoid effective heating caused by energy uncertainty. This

results in 	Q̇	�kB
2T2 /h, as given more precisely in Eq. �4�.

This argument suggests that kB
2T2 /h is also a quantum limit

for the cooling rate per active degree of freedom �with char-
acteristic energy scale �kBT� when cooling acts on the vol-
ume instead of through the surface, as, e.g., in laser
cooling.6,25

The question that naturally arises is whether in a setup
like that of Fig. 1 it is possible to approach the quantum
limit. This problem can be explored analytically within a
simple model. We neglect reflection heating and assume that
electron transmission is dominated by two one-photon in-
elastic channels, or pipelines19 �see Fig. 1�, named �u���
�TLR

�1���� and �d����TLR
�−1����=TRL

�1���−���, which peak at
energies E2R and E1R, respectively, always satisfying the uni-
tarity requirement �u+�d�1. We take the energy origin at
the middle point �E1R+E2R� /2, so that E2R=−E1R��0�0.
Electrons entering the scattering region from R with initial
energy ±�0 will be transmitted with final energy �0±��
through the upper �lower� channel. If we assume the pipe-
lines to be symmetric, �u���=�d�−�������, and �=0, we

obtain ṄR=0 and

Q̇R = −
2

h
� d���fR��� − fL�� + �������� . �6�

We note that at zero temperature, Eq. �6� only yields heating,
as should be expected.

If we take ���� to be a Lorentzian of width 
 centered
around �0, some complications arise due to its slow decay for
large 	�−�0	. For instance, for large enough �, we always

find heating Q̇R� ln �. On the other hand, for small �, Q̇R
�0 if and only if TL�TR. We conclude that, in the interest-
ing case TL�TR, cooling of the R electrode can only occur
within a finite range of � values. This range shrinks to zero
for TL large.

An interesting question is whether, given two electrodes
with TL�TR, it is always possible to design an ac resonance

structure yielding Q̇R�0, and whether 	Q̇R	 can ever ap-
proach the quantum limit. In Eq. �6�, g������fR���− fL��
+�����0 only in the interval 0����̄���TR / �TL−TR�.
For TL→TR, we have �̄→	; however, the integrand decays
exponentially on a scale �kBT after having peaked at �
�kBT. Therefore, cooling comes effectively from the inter-

val 0����1, where �1�min
�̄ ,2kBT̄� and T̄��TL+TR� /2.
To potentiate the contribution from that segment, we may

design ���� to be centered at �0��1 /2. If 
→0, Q̇R is guar-
anteed to become negative, although with a vanishing mag-

nitude 	Q̇R 	�
. A typical optimal value is 
��1. We con-
clude that the cooling rate is maximized for �0�
 /2
��1 /2. The peak at kBT��0 for TL=TR is confirmed by the
lowest curve of Fig. 3.

If ���� decays sufficiently fast away from the region

where g����0, one may estimate 	Q̇R	��2/h��1�maxgmax.
For TL→TR, we have both �1 and gmax of order kBT, assum-

ing ���kBT. In those conditions, 	Q̇R	�CQ provided �max
is close to unity. By contrast, the cooling rate cannot ap-
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FIG. 3. �Color online� Cooling rate of the R electrode as a
function of its temperature TR for several values of TLTR, with �
adjusted to yield zero electric current, for ��=1.94 meV and
eVac /��=0.2.

NONADIABATIC ELECTRON HEAT PUMP PHYSICAL REVIEW B 76, 085337 �2007�

085337-3



proach the quantum limit if TL grows substantially above TR
or if ���� decays slowly, like in a Lorentzian resonance, since
then the contribution from g����0 cannot be neglected.

Careful inspection of Eq. �6� reveals that Q̇R increases
monotonically as TR decreases. Thus, if we start cooling the

R electrode, Q̇R begins to increase until it eventually be-
comes zero. At that point, no further cooling is possible. We
have reached the lowest possible temperature for the refrig-
eration process defined by ���� and �. We are limited by the
lack of sufficient energy resolution: when kBTR becomes
small compared with the linewidth 
, no heat pumping is
possible for TL�TR.

IV. DISCUSSION

The quantum refrigerator which we have investigated
may be viewed as a realization of Maxwell’s demon26 as it
selectively lets hot electrons out while it only lets cold elec-
trons in. The required work is provided by the external ac
source which, combined with the spatial asymmetry of the
structure, rectifies electron motion. The work might also be
extracted from a hot Ohmic resistor.27 Alternative schemes to
that of Fig. 1 are, of course, possible: One may design two
superlattices, each of them having two narrow bandwidths
yielding a similar level distribution. A potential advantage of
such a device would be that, away from resonance, transmis-
sion would decay fast. Thus it would show interesting fea-
tures such as cooling for arbitrarily large � and, as discussed

above, the guaranteed existence of a driving structure that
brings the cooling rate close to the quantum limit. A nonreso-
nant mechanical mismatch at the interface would prevent
phonons from short-circuiting electron cooling during opera-
tion close to such a limit.

In conclusion, we have identified a mechanism for nona-
diabatically pumping heat from a cold to a hot electron res-
ervoir, which is based on the coherent control of electron ac
transport and which can operate at zero average electric cur-
rent. On the basis of electron transport considerations, the
quantum of cooling power CQ has been shown to be an upper
bound to the cooling rate per quantum channel. We have
investigated the case of Lorentzian resonances, where ap-
proaching the quantum limit is generally not feasible. We
have noted, however, that with sharper resonances it is al-
ways possible to design a driven interface that provides cool-
ing at a rate close to the quantum limit.
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