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Abstract.
A qubit may undergo Landau-Zener transitions due to its coupling to one or several quantum

harmonic oscillators. First we show that for a qubit coupled to one oscillator, Landau-Zener transi-
tions can be used for single-photon generation and for the controllable creation of qubit-oscillator
entanglement, with state-of-the-art circuit QED as a promising realization. Second, for a qubit cou-
pled to two cavities, we show that Landau-Zener sweeps of the qubit are well suited for the robust
creation of entangled cavity states, in particular symmetric Bell states, with the qubit acting as the
entanglement mediator. Finally, for a qubit coupled to an environment or bath we propose to employ
dissipative Landau-Zener sweeps of the qubit for the detection of bath properties. At the heart of
our proposals lies the calculation of the exact Landau-Zener transition probability for the qubit, by
summing all orders of the corresponding series in time-dependent perturbation theory.

Keywords: quantum information, entanglement, quantum noise, quantum dissipation, driven quan-
tum systems, level crossing
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INTRODUCTION

Entanglement is a purely quantum mechanical property of multipartite systems. A sys-

tem is entangled if its quantum state cannot be described as a direct product of states
of its subsystems. It is measurable in terms of nonclassical correlations of the subsys-

tems. Many efforts exist to make use of entanglement in quantum information process-

ing (QIP) [1]. In this paper we propose to create entanglement in circuit cavity quantum

electrodynamics (QED). We consider creation of entanglement between a superconduc-

ing qubit and the circuit analogue of an optical cavity and how to generate single photons

in the latter [2]. We also demonstrate how two spatially separated circuit cavities can be

entangled by letting a superconducting qubit undergo a Landau-Zener (LZ) sweep [3].

This will be a robust method to create Bell states in two-cavity circuit QED. Further-

more, we discuss how LZ sweeps of a qubit in circuit QED or elsewhere can give useful

information on the qubit’s dissipative environment [4, 5].

In optical cavity QED, atoms (qubits) become entangled with optical cavity modes
(oscillators). Two optical-cavity modes can be entangled by adiabatic passage of an

atom through one or more cavities [6–8]. It seems technologically challenging to scale

up optical cavity QED to many qubits, as would be required for useful QIP. Recently, the
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field of circuit QED has emerged in which analogues of cavity QED have been realized

with superconducting qubits and quantum harmonic oscillators [9–12]. Superconducting

circuits are promising because of their potential scalability and because many of their

parameters are highly tunable. The route proposed here to scale up present-day circuit

QED is the circuit analogue of optical two-cavity QED or N-cavity QED [7, 8].

One method to manipulate the state of a qubit is to use Landau-Zener sweeps [13].

Recently, LZ transitions have been observed in superconducting qubits [14–17]. In this

paper we concentrate on quantum state manipulation in multi-cavity circuit QED via

Landau-Zener sweeps of a qubit. Bit flips in the qubit can take place even in the absence

of a direct coupling between the qubit levels, induced instead by the coupling to the
oscillators. We studied the semiclassical limit of this model before [18]. Here we focus

on the situation in which the oscillators start in their ground states. We show how single

photons and symmetric Bell states can be created in two circuit oscillators. Decisive

advantage of our proposal is that qubit-oscillator interaction strengths are static, in

contrast to standard cavity QED where precise dynamical control is required.

MODEL FOR LZ SWEEPS IN QUBIT-OSCILLATOR SYSTEMS

We consider the time-dependent Hamiltonian for a LZ sweep in a multi-level system

H(t) = ∑
a

(εa +
1

2
vt)|a〉〈a|+∑

b

(εb−
1

2
vt)|b〉〈b|+∑

a,b

(Xab|a〉〈b|+X∗ab|b〉〈a|
)

. (1)

We assume that all diabatic states |a〉, |b〉 are mutually orthogonal and that v > 0. In the

limit t → ±∞, the states |a〉, |b〉 become eigenstates of the Hamiltonian (1). The off-

diagonal part of the Hamiltonian is such that it only couples states of different groups

while states within one group are uncoupled. For a nondegenerate initial state |a〉 a

generalized Landau-Zener transition formula can be derived [5]

Pa→a = exp
(

− 2π〈a|X2|a〉
h̄v

)

, (2)

where the operator X is the interaction term in Eq. (1). The more specific Hamiltonian

H(t) =
vt

2
σz +

∆

2
σx +(cosθσx + sinθσz)∑

k

γk(bk +b
†
k
)+∑

k

h̄Ωkb
†
k
bk (3)

describes a qubit with internal coupling ∆ undergoing a LZ sweep with speed v. The

qubit has a rather general coupling to N harmonic oscillators. If the system starts in the
ground state (i.e. with qubit in state |↑〉), then LZ formula (2) takes the form [4, 5]

P↑→↑(∞) = 1−P↑→↓(∞) = exp
(

− πW 2

2h̄v

)

; W 2 = (∆−E0 sinθ cosθ)2 +S sin2 θ .

(4)

P↑→↑(∞) describes the probability for the qubit to end up "up". Here E0 = 4E, with

E = ∑k γ2
k /(h̄Ωk) the reorganization energy of the oscillators and S = 4∑k γ2

k their

integrated spectral density. Below we consider one, two, and infinitely many oscillators.
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FIGURE 1. Adiabatic eigenstates during LZ sweep of a qubit coupled to an oscillator. Shown is the

four-step LZcycle for single-photon generation in circuit QED: The first step is single-photon generation

in the cavity via the adiabatic LZ transition |↑0〉 → |↓1〉, brought about by switching the qubit energy

sufficiently slowly. Second, the photon is released from the cavity via the (controlled) cavity decay

|↓1〉→ |↓0〉. In the third step, another individual photon is generated via the reverse LZ sweep |↓0〉→ |↑1〉.
Fourth and finally, a further photon decay completes the cycle. This cycle can be repeated.

QUBIT-OSCILLATOR ENTANGLEMENT

We first consider LZ transitions in the standard cavity QED model of one qubit coupled

to one oscillator, with H(t) as in Eq. (3) with cosθ = 1 and ∆ = 0. Since we start out

in the ground state |↑,0〉 and the Hamiltonian in Eq. (3) correlates every creation or

annihilation of a photon with a qubit flip, the dynamics is restricted to the states |↑,2n〉
and |↓,2n+1〉. Remarkably, by a dynamical selection rule (“no-go-up theorem”) [2, 5],
of the states |↑,2n〉 only |↑,0〉 stays occupied. The final state can be written as

|Ψ(∞)〉=
√

1−P↑→↓(∞) |↑0〉+
√

P↑→↓(∞)
(

c1|↓1〉+ c3|↓3〉+ . . .
)

, (5)

where P↑→↓(∞) = 1− exp(−2πγ2/h̄v) and |c1|2 + |c3|2 + . . . = 1. Qubit and oscillator
end up fully entangled. By measuring the qubit in state |↓〉, a highly nonclassical

oscillator state is produced in which only odd-photon states are occupied. In circuit

QED [12] and in optical cavity QED one is always in the situation γ � h̄Ω, in which

case c1 ≈ 1. Hence one can control via the sweep velocity v the final state to be any

superposition of |↑0〉 and |↓1〉. In the adiabatic limit vh̄/γ2� 1, the final state becomes

|↓1〉. This is an important result: triggered by a Landau-Zener sweep of the qubit, exactly

one photon can be created in the cavity. In an experiment, the photon will subsequently

leak out of the cavity.

By exploiting these two processes, we propose a four-step LZ cycle for single-photon

generation in circuit QED, as sketched in Fig. 1. This simple and robust scheme for

repeated photon generation via Landau-Zener cycles could be implemented in circuit
QED, where the atom-cavity coupling remains at a constant and high value and where

qubits are highly tunable so that LZ sweeps can be made from minus to plus an “atomic”

frequency, and back [2].
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OSCILLATOR-OSCILLATOR ENTANGLEMENT

Now consider the situation that the qubit is coupled to two cavities instead of one, with

identical resonance frequencies Ω1,2 = Ω and qubit-oscillator strengths γ1,2 = γ . (For

Ω1 6= Ω2, see [3].) We will now show how the two cavity oscillators become entangled

by a Landau-Zener sweep of the qubit. We will again assume ∆ = 0, so that all bit flips

in the qubit are caused by interactions with the oscillators. The Hamiltonian becomes

H =
vt

2
σz + γσx(b1 +b

†
1 +b2 +b

†
2)+ h̄Ω

(

b
†
1b1 +b

†
2b2

)

. (6)

We will assume that this system starts in the ground state |↑ 0102〉. The general result (4)

then implies that the probability for the qubit to end up in the state |↓〉 equals

P↑→↓(∞) = 1−P↑→↑(∞) = 1− e−2π(γ2+γ2)/h̄v. (7)

This exact result follows without making a rotating-wave approximation and by taking

the full Hilbert space of the two oscillators into account. The absence of any frequency

dependence in Eq. (7) is therefore quite surprising.

In the following we are interested in the properties of the final qubit-two-oscillator
state |Ψ(∞)〉. Let us now make the realistic assumption h̄Ω� γ: then level crossings that

are important for the final state only occur around the times when the qubit energy vt

is resonant with the oscillator energies h̄Ω. There essentially only three qubit-oscillator

states play a role in the dynamics: the initial zero-photon state |↑00〉 and the two one-

photon states |↓10〉 and |↓01〉. In practice, the final state can therefore be written as

|Ψ(∞)〉=
√

P↑→↑(∞) |↑00〉+
√

P↑→↓(∞) (s10|↓10〉 + s01|↓01〉) , (8)

with probabilities P↑→↑(∞) and P↑→↓(∞) given in Eq. (7) and with general complex

coefficients s that are only constrained by |s10|2 + |s01|2 = 1 to ensure state normal-

ization. The qubit-two-oscillator system has an extra symmetry that we will now ex-

ploit in the analysis of the LZ dynamics. Let us first go back to the Hamiltonian (6)

and not yet make the rotating-wave approximation. We introduce the new operators

b± = (b1±b2)/
√

2, which have standard bosonic commutation relations. Both creation

operators b
†
± create a single photon with equal probability in the first or the second os-

cillator: b
†
±|0+0−〉 = (|1102〉± |0112〉)/

√
2. Instead of describing oscillator states in a

local basis, one can write a general two-oscillator state in terms of creation operators b
†
±

acting on the ground state |0+0−〉. In terms of the b
†
±, the Hamiltonian (6) becomes

H =
vt

2
σz +
√

2γσx(b+ +b
†
+)+ h̄Ω

(

b
†
+b+ +b

†
−b−

)

. (9)

Note that the qubit is fully decoupled from the antisymmetric operators b
(†)
− . Conse-

quently, for degenerate oscillator frequencies we find back the mathematical problem

for a qubit coupled to one oscillator, which we already studied above. Now assume as

before that the initial state is |↑ 0102〉 = |↑ 0+0−〉. In our new representation, only the
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FIGURE 2. Final transition probability P↑→↓(∞) as a function of intrinsic interaction ∆, for several

values of the coupling angle θ , based on Eq. (4). Bath quantities E0 and S can be identified by varying ∆,

which together provide information on the spectral density of the bath. Here: E0 = 2.0
√

h̄v and S = 0.8h̄v.

two states |↑ 0+0−〉 and |↓ 1+0−〉 will play a role in the dynamics. In this representa-
tion the LZ transition probabilities can be calculated with the S-matrix for the standard

LZ two-level LZ problem [2, 3, 18]. Transformed back to the local basis, for the qubit

coupled to degenerate oscillators starting in |↑ 0102〉 we find the final state

|Ψ(∞)〉=√q|↑ 0102〉−
√

1−qeiχ

( |↓ 1102〉+ |↓ 0112〉√
2

)

,

where q = exp(−2πη) with adiabaticity parameter η = (
√

2γ)2/h̄v, and χ is the Stokes

phase. Clearly, if the qubit is finally measured in state |↓〉, then the two oscillators end

up in the symmetric Bell state ( |1102〉+ |0112〉)/
√

2, a two-particle entangled state

important for QIP. Furthermore, for producing other final two-oscillator states one could

use instead detuned oscillators that give rise to two independent LZ transitions [3].

PROPERTIES AND USE OF DISSIPATIVE LZ TRANSITIONS

For a qubit coupled to infinitely many oscillators, the Hamiltonian (3) in fact describes

a LZ sweep in a dissipative system. Formula (4) then gives the exact LZ transition prob-

ability for qubit coupled to a bath at zero temperature. The reorganization energy E and

the integrated spectral density S can then be given in terms of an integral over a con-

tinuous spectral density [4, 5]. In particular, for a qubit subject to pure dephasing (i.e.

sinθ = 0), the formula gives P↑→↑(∞) = exp(−π∆2/(2h̄v)), identical to the standard LZ

transition probability of an isolated qubit! This remarkable result settles a controversy

about dissipative LZ transition probabilities [19–23]. It even holds universally, irrespec-
tive of the nature of the bath [5]. In general, because of the nonmonotonic dependence

of P↑→↑(∞) in (4) on the internal interaction ∆, we find that dissipative LZ sweeps in a

qubit can be used to detect the bath properties E and S by varying ∆ [4, 5], see Fig. 2.
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CONCLUSIONS

LZ sweeps of superconducting qubits are a robust way to produce single photons in

circuit QED and to create symmetric Bell states in circuit oscillators. LZ transition

probabilities are insensitive to dephasing at zero temperature. For qubits in a dissipative

environment, LZ sweeps of can be a valuable tool to characterize the environment.
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