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Abstract. We study biased, diffusive transport of Brownian particles through narrow, spatially pe-
riodic structures in which the motion is constrained in lateral directions. The problem is analyzed
using the Fick-Jacobs equation in which the effect of the lateral confinement is replaced by an en-
tropic barrier. The validity of this approximation, being based on the assumption of an instantaneous
equilibration of the particle distribution in the cross-section of the structure, is analyzed by compar-
ing the different time scales that characterize the problem. A validity criterion is established in terms
of the shape of the structure and of the applied force. It is analytically corroborated and verified by
numerical simulations that the critical value of the force up to which this description holds true
scales as the square of the periodicity of the structure. The criterion can be visualized by means of
a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms
of the scaled force versus the periodicity of the structure.
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INTRODUCTION

The diffusion of Brownian objects in confined media plays a fundamental role in many
transport phenomena such as those taking place in biological cells, ion channels, nano-
porous materials and microfluidic devices. The uneven shape of these structures regu-
lates the transport of particles yielding important effects exhibiting peculiar properties.
The results have implications in processes such as catalysis, osmosis and particle sepa-
ration [1, 2, 3,4, 5,6, 7, 8].

The motion of the particles through these quasi-one-dimensional structures can in
principle be analyzed by means of the standard protocol of solving the Smoluchowski
equation with the appropriate boundary conditions imposed. Whereas this method has
been very successful when the boundaries of the system possess a regular shape, the
challenge to solve the boundary value problem in the case of uneven boundaries repre-
sents typically a very difficult task. A way to circumvent this difficulty consists in coars-
ening the description by reducing the dimensionality of the system, keeping only the
main direction of transport, but taking into account the irregular nature of these bound-
aries by means of an entropic potential. The resulting kinetic equation for the probabil-
ity distribution, the Fick-Jacobs (F-J) equation, is similar in form to the Smoluchowski
equation, but now contains an entropic term. The entropic nature of this term leads to a
genuine dynamics which is very different from that observed when the potential has an
energetic origin [9]. It has been shown that the F-J equation can provide a very accurate
description of entropic transport in 2D and 3D channels of varying cross-section [9, 10].
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FIGURE 1. Schematic diagram of the channel confining the motion of the biased Brownian particles.
The shape of the channel is described by @(x) = sin(27x/L) + 1.02.

However, the derivation of the F-J equation entails a tacit approximation: The particle
distribution in the transverse direction is assumed to equilibrate much faster than in the
main (unconstrained) direction of transport. This equilibration justifies the coarsening of
the description leading in turn to a simplification of the dynamics, but raises the question
about its validity when an external force is applied.

Our objective with this work is to investigate in greater detail the F-J approximation
for biased diffusion and to set up a corresponding criterion describing its regime of
validity. We will analyze the biased movement of Brownian particles in 2D periodic
channels of varying cross section and formulate different criteria for the validity of such
a F-J description.

DIFFUSION IN CONFINED SYSTEMS AND THE FICK-JACOBS
EQUATION

The dynamics of a Brownian particle through a pore or a channel (like the one depicted
in Fig. 1) in the overdamped limit and in the presence of an external potential V (¥) is
governed by the equation:

d7 (#(
g = -VVED)+ ks TE() ()

where 7 is the two or three dimensional position vector of the particle, 1} is its friction

coefficient, kg the Boltzmann constant, 7 the temperature, and E (¢) is a Gaussian white
noise with zero mean and correlation (§;(r) &;(t')) =26;;6(t —t') for i, j = x,y,z.

In addition to Eq. (1), the full problem is set up by imposing reflecting boundary
conditions at the channel walls. In this work we focus on the case of a symmetric 2D
channel where the force is constant and directed along the axis, cf. Fig. 1. The half-
width of the 2D channel is given by a periodic function w(x), i.e. @(x+ L) = w(x)
for all x. For an arbitrary form of ®(x), the boundary value problem associated to the
Langevin equation above (or the corresponding Fokker-Planck equation) is very difficult
to solve. Despite the inherent complexity of this problem an approximate solution
can be found using the Fick-Jacobs approximation, which results in an effective one-
dimensional description where geometric constraints and bottlenecks are considered as
entropic barriers [9, 13, 14, 10, 15].

In the presence of a constant force F along the direction of the channel, it can be
shown [10, 9] that the dynamics of a confined Brownian particle can be described by the
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F-J equation

P 9 (D(x)aPJrD(x) aA(x)P) o

9t ox ox ' kgT Ox

where P(x,t) is the probability distribution function along the axis of the 2D channel,
A(x) :=E—TS=—Fx—T kg Inh(x) is the free energy, with E =V = —Fx denoting the
energy contribution and S = kg InA(x) the entropy contribution, and %(x) := 2 w(x)/L
is the dimensionless width. This equation can be obtained from the 2D Smoluchowski
equation after elimination of y a coordinate, and it is valid for |@’(x)| < 1. It has been
shown that the introduction of an effective x-dependent diffusion coefficient

Dy

P T e

3
where o = 1/3,1/2 for two and three dimensions, respectively, can considerably im-
prove the accuracy of this description , thus extending its validity to more winding
structures [10, 15]. In the presence of very strong applied bias, and for more wind-
ing structures, however, the F-J equation becomes inaccurate. In the present work we
present further numerical and analytical results and will set up tailored criteria under
which the F-J approximation assumes good validity.

In particular, we will focus on how accurate the F-J equations describes the transport
through the nonlinear mobility, which is defined as the ratio of the average particle
current (x) and the applied force F. The nonlinear mobility for a 2D channel with a
shape defined by @(x) depends on a single, dimensionless scaling parameter [9]:

f:=BFL “)
and it is given by
L 1—exp(—f)

_ , 5
[y de(z, f) )

p(f)n

where

741
I(z,f) = exp(fz)h(Lz)/Z d7’ exp(—fZ)h 1 (L)

L (Ldo()\? * ;
+<Z dz/ ) - @

VALIDITY OF THE FICK-JACOBS DESCRIPTION IN PRESENCE
OF A CONSTANT BIAS

The reduction of dimensionality done implicitly in the formulation of the F-J equation
relies on the assumption of equilibration in the transverse direction. An estimate of the
conditions under which equilibration occurs can be made by analyzing the different
time scales involved in the problem. One is diffusion in the transverse direction over

. . . 2 . . . .
a distance Ay, whose time scale is 7, = 2A_Ly)0' Similarly, the time scale associated to
diffusion in the axial direction is T, = 2AXT0' The third time scale is related to the drift
(ballistic motion) associated to the force, i.e. Tyyipr = 1’3—?}.
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In the absence of an external force, equilibration in the transverse direction occurs if
7,/ 7 < 1. This results in the condition:

Ay?
A~ o' (x)* <1, ©)
which constitutes the validity criterion of the F-J approach such as put forward by
Zwanzig [14].

In presence of a force along the axis, equilibration in the transverse direction demands
that the condition % < 1 also holds. Consequently,

A 2fo(x)?
2LAx 12

<I, ®)

where in the second step we have replaced the characteristic distances Ay by the width
2w(x), and Ax by L.

A general estimate of the criteria that has to be satisfied can be put forward by
considering the sum of the two ratios, cf. Egs. (7) and (8), i.e.:

2fw(x)?
o' (x)*+ f7§) <1 ©)
L
We can now get a global criteria by averaging the previous local criterion over the
period L of the channel and by defining a critical force value f., for which the inequality
becomes an equality. This critical force value then reads:

fo= _r (1— (' (x)%) (10)
T 2(w(x)?) '

Eq. (10) provides an estimate of the minimum forcing beyond which the F-J descrip-
tion is expected to fail in providing an accurate description of the dynamics of system,
and indicates that the critical force scales asymptotically as L? (for a fixed overall shape
of the channel).

NUMERICAL SIMULATIONS FOR A 2D CHANNEL

In order to check the consistency of the criteria proposed and the validity of the F-
J description in the presence of a force, we have compared the analytical result for
the scaled nonlinear mobility obtained in Eq. (5) with the simulation results of the
overdamped Langevin dynamics in Eq. (1) for the 2D periodic channel sketched in
Fig. 1, for different values of the periodicity L.

In Fig. 2 we illustrate the regions where the F-J approximation is accurate when
compared with the simulations. The lines in this figure depict the critical values of
the scaled force, f., beyond which the relative error in the mobility exceeds a certain
value, as a function of the periodicity L. We have verified that he critical value of the
force depends quadratically on the periodicity L2, as predicted. Thus, it is possible to
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FIGURE 2. The validity diagram of the Fick-Jacobs approximation for biased diffusion is obtained
upon a comparison between the precise numerics with the approximative analytic solution, cf. Eq. (5) for
a 2D channel with boundary function @(x) = sin(27x/L) + 1.02. The dependence of the critical value
of the scaling parameter on the periodicity is depicted for three different relative errors; 1%: solid line,
5%: dashed line and 10%: dotted line. Below these limiting lines the analytic treatment agrees within the
corresponding prescribed relative error.

provide an accurate result by using the analytic solution over a wide range of the scaled
parameter and the periodicity.

From our simulations, we can actually analyze the validity of the hypotheses of
equilibration in the transverse direction on which the F-J description relies. In Fig. 3,
we show the steady state distribution of a certain number of Brownian particles for
different values of the scaled force f. As the force increases, we can clearly see how the
particles are not homogeneously distributed in y-direction, evidencing the failure of the
equilibration assumption. This effect is specially dramatic in Fig. 3(lower right panel),
where the force is so strong that the particles do not fully explore the available space in
y-direction. In this situation, the influence of the entropic barriers practically disappears
and a deterministic treatment of the problem leads to adequate results.

CONCLUSIONS

In this work we have investigated the validity conditions under which the Fick-Jacobs
approximation provides an accurate description of the biased diffusion of Brownian
particles in 2D and 3D confined systems. We have established a validity criterion for-
mulated in terms of the sinuosity of the channel ®(x), as done in the unbiased case
[13, 14, 10, 15], and on the scaling parameter that causes forced diffusion. This scaling
parameter compares the work done on a particle travelling a distance equal to the spatial
period L of the channel with the available thermal energy. Interestingly, the critical value
of this scaling parameter up to which Fick-Jacobs equation holds depends on the square
of the period. This dependence follows from the analysis of the different time scales that
rule the biased, diffusive dynamics. We have constructed a validity diagram showing
the region of parameters (spanned by f and L ) in which the Fick-Jacobs approximation
describes the overdamped diffusive transport accurately cf. Fig. 2. We have also investi-
gated numerically the conditions for a fast equilibration in the transverse direction which

517

81:6€:20 720z Joquiaides Gz



FIGURE 3. Steady-state particle distribution mapped into a single period of the 2D channel defined by
the boundary function @(x) = sin(27wx/L) + 1.02 with L = 1 for four different values of the dimensionless
scaling parameter f: upper left panel: f = 0.2; upper right panel: f = 3.0; lower left panel: f = 7.0; lower
right panel: f = 50.

is vital for the accurateness of the Fick-Jacobs approximation. The results presented evi-
dence the usefulness of the Fick-Jacobs description with a spatially-dependent diffusion
coefficient at small applied bias.

ACKNOWLEDGMENTS

This work has been supported by the DGiCYT under Grant No BFM2002-01267 (D.R.),
ESF STOCHDYN project (G.S., D.R., JM.R., PH.), the Alexander von Humboldt
Foundation (J.M.R.), the Volkswagen Foundation (project 1/80424, P.H.), the DFG via
research center, SFB-486, project A10 (G.S., P.H.) and via the project no. 1517/26-1
(P.S.B., PH.), and by the Nanosystems Initiative Munich (P.H.).

REFERENCES

1. B. Hille, lon Channels of Excitable Membranes (Sinauer, Sunderland, 2001).
R.M. Barrer, Zeolites an Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London,
1978).

3. T.Chou and D. Lohse, Phys. Rev. Lett. 82, 3552 (1999).

4. L. Liu, P. Li, and S.A. Asher, Nature 397, 141 (1999).

5. Z.Siwy, LD. Kosinska, A. Fulinski, C.R. Martin,Phys. Rev. Lett. 94, 048102 (2005).

6.  A.M. Berezhkovskii and S.M. Bezrukov, Biophys. J. 88, L17(2005).

7. C. Kettner, P. Reimann, P. Hinggi, and F. Miiller, Phys. Rev. E 61, 312 (2000).

8. S. Matthias and F. Miiller, Nature 424, 53 (2003).

9. D. Reguera, G. Schmid, P.S. Burada, J.M. Rubi, P. Reimann, and P. Hinggi, Phys. Rev. Lett. 96,
130603 (2006).

10. D. Reguera and J.M. Rubi, Phys. Rev. E 64, 061106 (2001).

11. H. Risken, The Fokker-Planck equation, 2nd ed. (Springer, Berlin, 1989).

12. P. Hinggi and H. Thomas,Phys. Rep. 88, 207 (1982).

13. M.H. Jacobs, Diffusion Processes (Springer, New York, 1967).

14. R.Zwanzig, J. Phys. Chem. 96, 3926 (1992).

15. P. Kalinay and J.K. Percus, Phys. Rev. E 74, 041203 (2006).

518

81:6€:L0 ¥20z Joquieidag Gz



	copyright1: 


