
Int. J. of Mechatronics and Automation, Vol. 4, No. 1, 2014 1

Flexible and Continuous Execution of Real-Time
Critical Robotic Tasks

Michael Vistein, Andreas Angerer,
Alwin Hoffmann, Andreas Schierl, and
Wolfgang Reif

Institute for Software & Systems Engineering
Augsburg University
Universitätsstraße 6a, 86135 Augsburg, Germany
E-Mail: vistein@informatik.uni-augsburg.de

Abstract Today, industrial robots are usually programmed using specialized program-
ming languages, different for every robot manufacturer. These languages provide good
usability, because they are tailored to the functionality traditionally offered by robots.
However, these languages are reaching their limits with the growing integration of sensors
or multiple robot systems. Therefore, we propose an architecture based on the separation
of application control and the execution of real-time robotic tasks. This article describes a
flexible and extensible interface for the specification and continuous execution of robotic
tasks.

Keywords: robot programming; real-time; object-oriented programming; task schedul-
ing; industrial robots; dataflow language; robotic tasks; flexibility

Biographical notes: Michael Vistein received his B. Sc. degree in computer science
from the University of Augsburg in 2007 and his M. Sc. degree in software engineering
from the University of Augsburg, the Technische Universität München and the Ludwig-
Maximilians-Universität München in 2008.

Andreas Angerer received his B. Sc. degree in computer science from the University of
Augsburg in 2007 and his M. Sc. degree in software engineering from the University of
Augsburg, the Technische Universität München and the Ludwig-Maximilians-Universität
München in 2008.

Alwin Hoffmann received his B. Sc. and M. Sc. degrees in information management from
the Technische Universität München and the University of Augsburg, in 2005 and 2007,
respectively, and his Diploma in computer science from the University of Augsburg, in
2008.

Andreas Schierl received his B. Sc. degree in computer science from the University of
Augsburg in 2007, and the M. Sc. degree in software engineering from the University of
Augsburg, the Technische Universität München and the Ludwig-Maximilians-Universität
in 2009.

Michael Vistein, Andreas Angerer, Alwin Hoffmann and Andreas Schierl are member of
the Institute for Software and Systems Engineering, University of Augsburg. They were
involved in several research projects in the field of robotics and have published about 20
refereed journals, conference and workshop papers.

Wolfgang Reif is full professor for software engineering at Augsburg University, Germany.
He is vice president of the University of Augsburg, and director of the Institute for Soft-
ware & Systems Engineering. He received his doctoral degree in computer science from
the University of Karlsruhe where he worked mainly in safety, verification, and automatic
theorem proving. He held a professorship in software engineering at the University of Ulm
from 1995 to 2000. His current research interests are software and systems engineering,
safety, reliability and security, organic computing, as well as software-driven mechatronics
& robotics. In these areas, he is involved in numerous research projects both in funda-
mental as well as application oriented research. Wolfgang Reif is author of a large number
of scientific publications, referee for numerous national funding agencies in Europe and
the US, the European Community, and is consultant to leading technology companies.

Copyright © 2009 Inderscience Enterprises Ltd.

Article accepted for International Journal of Mechatronics and Automation © 2014 Inderscience Publishers

DOI: 10.1504/IJMA.2014.059773

Int. J. of Mechatronics and Automation, Vol. 4, No. 1, 2014 2

1 Introduction

Industrial robots can be used in very different work sce-
narios, from welding or gluing to quality assurance. In or-
der to achieve such a broad variety, a flexible way of pro-
gramming is required. However, most industrial robots
today are programmed using proprietary languages pro-
vided by robot manufacturers. These languages show
their limitations when the application scenario reaches
a certain complexity. To overcome this, researchers have
developed a variety of approaches and frameworks. A
quite popular general approach employs a three-tiered
system structure (Bonasso et al., 1995) that separates
the layers Planning, Execution and Behavioral Control
of robot task structures.

Within the research project SoftRobot, a software ar-
chitecture has been created that enables programming
complex real-time critical industrial robot applications
in Java. Using this popular and wide-spread language
gives robot developers access to a great ecosystem of
libraries and development tools as well as a large com-
munity that actively brings forward the language and its
extensions. To support the inevitable hard real-time re-
quirements of robot control (e.g. for achieving high pre-
cision and exact synchronization between robots and its
tools), the SoftRobot architecture relies on a so-called
Robot Control Core (RCC) for Behavioral Control. Ex-
ecution and Planning are handled by the Java-based
Robotics API and applications running on top of it.

In this work, we focus on the interface to the RCC,
the Realtime Primitives Interface (RPI). This interface
accepts so called primitive nets, which are tasks spec-
ified in a dataflow language. Such real-time tasks are
equivalent to robot behaviors or a combination of such
behaviors. The object-oriented Robotics API includes a
transformation layer for mapping high-level robot tasks
to dynamically generated dataflow-based commands in
RPI. This transformation is transparent to the applica-
tion developer.

The advantages of using a general-purpose program-
ming language have been identified earlier. The RCCL
project (Hayward and Paul, 1986) for the C language and
the PasRo project (Blume and Jakob, 1986) for Pascal
are very early examples. Since object-oriented languages
are more and more popular, robot-specific libraries have
also been implemented using these languages. Exam-
ples are ZERO++ (Pelich and Wahl, 1997), MRROC++
(Zieliński, 1997), RIPE (Miller and Lennox, 1990), the
Robotics Platform (Loffler et al., 2004) and SIMOO-RT
(Becker and Pereira, 2002). However, the level of abstrac-
tion of these frameworks is not as high as when using
traditional robot programming languages, so a profound
knowledge of real-time programming is required.

At the beginning of the SoftRobot project, many
common use-cases for industrial robots have been exam-
ined. It could be noticed that in almost all use-cases not
the whole application requires hard real-time, but only
certain parts of the application. For example, every sin-
gle motion needs real-time for a smooth trajectory, or

tools need to be synchronized to the motion path. Be-
tween two motions, usually a short break is acceptable
(although not desirable for lower cycle-times). Therefore
we decided that the overall control flow of a robotics
application can be performed using a standard program-
ming language, and only the real-time critical tasks must
be specified by other means.

In certain cases however, it is necessary or desirable
to switch instantaneously between two task in a real-
time critical way. A typical example is moving a robot
to a certain goal while concurrently planning subsequent
movements. Once a movement command has finished
(in a possibly unstable state, e.g. with the robot mov-
ing at high speed), a newly planned motion command
should immediately take control of the robot retaining
stable control. Such a real-time critical transition be-
tween robot behaviors is also tackled in several exist-
ing robot control systems: ORCCAD by Borrelly et al.
(1998) contains formally verified mechanisms that guar-
antee minimal latency for e.g. the transitions between
sequential robot behaviors. TCA (Simmons, 1992) pro-
vides a mechanism for synchronization of planning and
execution steps in a message based control system. In
MiRPA (Finkemeyer et al., 2003), transitions between
skill primitives preserve the system stability as well,
while MRROC++ (Zieliński and Winiarski, 2010) sup-
ports a seamless takeover of a preceding motion instruc-
tion. Other popular robot control frameworks like Orocos
(Smits et al., 2009) require the application developer to
implement mechanisms for real-time critical transition
between robot behaviors if required, while some frame-
works like ROS (Quigley et al., 2009) do not provide
real-time support at all.

This article is a revised and extended version of a
paper entitled “Instantaneous Switching between Real-
Time Commands for Continuous Execution of Complex
Robotic Tasks” presented at 2012 IEEE International
Conference on Mechatronics and Automation, August 5-
8 2012, Chengdu, China (c.f. Vistein et al., 2012). The
article proposes a generic interface for specifying robotic
tasks with a mechanism for real-time critical switching
from one running command to dynamically loaded subse-
quent commands. Section 2 discusses some requirements
which have been essential for the design of the SoftRobot
architecture, which is explained in Section 3. The static
structure of the interface between high-level program-
ming and low-level robot control, the Realtime Primi-
tives Interface, is described in Section 4 and is followed
by a description of the run-time behavior of commands
specified using this language in Section 5. Examples il-
lustrating the previously described interface are shown
in Section 6. The requirements of the architecture which
have been identified at the beginning of the article are
recapitulated in Section 7 and their satisfaction by the
proposed design is evaluated. In Section 8 a reference im-
plementation of the SoftRobot architecture is explained.
The article is finally concluded with Section 9.

Copyright© 2009 Inderscience Enterprises Ltd.

Flexible and Continuous Execution of Real-Time Critical Robotic Tasks 3

2 Requirements

The main goal of the SoftRobot project was to intro-
duce modern methods of software engineering into the
domain of industrial robotics. In this domain, the pro-
gramming languages and tools are traditionally provided
by the robot manufacturers, and each manufacturer em-
ploys its own set of languages and tools. These languages
are tailored to the needs of industrial robotics: They sup-
port features unique to robotics, such as special motion
commands, I/O commands or actions triggered by path
positions. They support real-time operations while still
being abstract enough not to bother the developer with
details. However, these languages usually are based on
rather old concepts. Because each manufacturer has to
advance the development of their language in-house, the
languages could not evolve with the same speed as other
general-purpose languages, and therefore modern meth-
ods of software-engineering such as object-oriented de-
sign or service-oriented architectures are not possible or
very hard to implement.

Just substituting the special languages by an existing
general-purpose language is not possible. Most general-
purpose languages lack support for real-time program-
ming, which is essential in the robotics domain. A com-
mon requirement is that operations of robot tools must
be triggered at exact points in space or time, e.g. a weld-
ing torch must be turned on once the robot has reached
a certain point. Even a single motion is real-time critical,
because motions are usually interpolated at a high fre-
quency, and each interpolation step must be accurately
processed to guarantee a smooth motion.

Besides the reqirement for real-time programming,
the design of the architecture in the SoftRobot project
and the Java-based Robotics API has been influenced by
the following requirements:

1. Usability. Traditional programming languages for
robots provide a very abstract interface to the de-
veloper. Therefore, developers should have a intu-
itive programming interface and especially should
not have to care about real-time issues.

2. Multi robot systems. It should be possible to
control several robots using a single program.

3. Sensor support. It should be possible to inte-
grate sensors e.g. for sensor-controlled motions.

4. Extensibility. The system should not be limited
to a predefined set of robots, sensors, algorithms,
etc., but rather be flexible and extensible.

5. Special industrial robotics concepts. Besides
standard motions, also special features for the
industrial robotics domain should be supported.
Two examples are force manipulation and motion
blending.

The two special industrial robotics concepts of force
manipulation and motion blending are explained more
in detail in the following sections.

A

B

C

D

E

Figure 1 Motion blending

2.1 Force Manipulation

In robotics, manipulation or assembly tasks (Brock et al.,
2008) are getting more and more important. However,
these tasks are very challenging due to the necessity to
handle uncertainty and to perform these tasks reliably
despite of low tolerances of assembled products (cf. the
peg-in-hole insertion problem). Hence, compliant mo-
tions are used for assembly because such motions are
constrained by the contact between some part held by
the robot and other parts in the environment, which re-
duces uncertainty.

The goal of compliant motions is to establish a con-
tact force between the robot (or its held part) and the
environment. The decision of how to proceed, i.e. which
is the next motion command to issue, is usually made
depending on the measured force and torque (c.f. Finke-
meyer et al., 2003). Because of the robot’s contact to
the environment, the system should never be out of ac-
tive control and, due to safety reasons, should be able to
react to sudden events.

2.2 Motion Blending

To achieve high throughput, the idle time of an industrial
robot should be as low as possible. Therefore, commer-
cial programming languages for industrial robots like the
KUKA Robot Language (KRL) or RAPID from ABB
support motion blending, which allows the robot to start
the next motion before the last one has finished. Using
this feature, the time required for deceleration and accel-
eration can be avoided at the price that the intermediate
point is not exactly reached. This is perfectly acceptable
e.g. for auxiliary points which help the robot to avoid
obstacles. Fig. 1 shows example trajectories for two lin-
ear motions from A to C and from C to E. If motion
blending is not desired, the solid black line will be used
as trajectory and the robot will temporarily come to halt
at C. If motion blending is used (dashed line), the robot
will leave the linear path at some point B and rejoin the
linear path on some other point D without the need to
halt.

3 Solution: The SoftRobot Architecture

To fulfill all requirements posted in Section 2, a two tier
architecture as depicted in Figure 2 has been introduced
by Hoffmann et al. (2009). By separating the Robot

4 M. Vistein et al.

Robot Control Core
Device

Drivers

Calculation

Modules

Command Layer

Activity Layer

Actuator

R
o

b
o

ti
c
s
 A

P
I

Ja
v
a

R
C

C

C
+

+

Activity

PTP Robot

Action Command

Robot

Applications

Domain-Specific

Languages

Service-Oriented

Architectures

Actuator InterfaceMeta Data

Figure 2 SoftRobot architecture

Control Core (RCC), written in C++ and the Robotics
API, written in Java, it is possible to use a general-
purpose programming language (Java directly on top of
the Robotics API, but also e.g. C# using IKVM.NET)
also for programming industrial robots. This is possible,
because applications do not inherently require real-time
for the application logic, but only for parts of the pro-
gram like motions or tools actions. One of the big ben-
efits of modern object-oriented programming languages
is the integrated memory management (e.g. garbage col-
lection, array bounds checks, ...), which has always been
a major cause for bugs in applications.

3.1 Robot Control Core

The Robot Control Core takes care of all real-time crit-
ical parts of the robotics systems and provides a flexi-
ble, generic interface, the Realtime Primtives Interface
(RPI), to the upper layer, the Robotics API. RPI is a
dataflow based language, consisting of basic calculation
modules (called primitives), which can be combined to
form primitive nets. The Robotics API automatically
creates such primitive nets (c.f. Schierl et al., 2012b)
which then are transferred to the Robot Control Core
for execution. Once the Robot Control core has fully re-
ceived such a primitive net, it deterministically executes
all contained primitives, hence guaranteeing real-time
characteristics.

Besides the basic calculation blocks, the Robot Con-
trol Core also needs to implement device specific drivers
to communicate with sensors and actuators. Those
drivers also need to be implemented in C++ for real-
time requirements. Actuator drivers expect to receive
set-points (e.g. position, velocity, acceleration) at a high
frequency (usually 1 kHz) from a running primitive net.
Sensor drivers provide (raw or processed) sensor data
also at a high frequency for further processing within a
primitive net.

3.2 Robotics API

The Robotics API consists of two layers, the Command
Layer, which is directly communicating with the Robot
Control Core, and an additional Activity Layer which
provides more convenient access to the most common

functions of the Robotics API. The Command Layer has
a very abstract model of robotic tasks, which consists of
Actions which can be performed by Actuators. Assign-
ing an Action to an Actuator yields a Command, which
can be executed. Actions can be for example a Point-to-
Point (PTP) motion, and an Actuator can be a specific
type of robot. Actuators need a corresponding driver and
primitives in the Robot Control Core, whereas Actions
usually map to a set of calculation primitives in the RCC
which together form the requested action. Using an event
mechanism, multiple commands can be combined e.g. to
perform tool operations based on sensor data.

The Command Layer provides a very generic, flexible
and extensible interface for writing arbitrarily complex
applications. It is mainly designed for system integra-
tors who want to integrate new products into the sys-
tem. The Activity Layer wraps commonly used functions
into more simple Java methods and is therefore targeted
at robot-application developers. More details about the
Robotics API can be found in Angerer et al. (2010).

4 Realtime Primitives Interface

The Realtime Primitives Interface provides a generic in-
terface to (real-time) robot controllers. It allows a very
flexible specification of complex commands for multiple
robotic devices from a high-level programming interface,
such as the Robotics API. These commands can be exe-
cuted respecting hard real-time constraints. Hence, RPI
facilitates the separation of real-time device control and
high-level application logic.

RPI is designed as a dataflow language similar to the
Lustre (Halbwachs et al., 1991) language, used in the
commercial SCADE Suite, and is tailored to industrial
robotics. The key building blocks are primitives inter-
connected with links. Sets of primitives and links can
be grouped as fragments, which themselves can be used
like primitives. The resulting network of primitives, frag-
ments and links (called primitive net) can be executed
by a Robot Control Core. The execution is performed
cyclically, i.e. the whole primitive net is evaluated re-
peatedly at exact intervals. In each cycle it is possible
to generate new set-points, therefore hardware can be
controlled precisely.

4.1 Primitives

The basic calculation blocks in RPI are provided by
primitives. These primitives have input and output ports
and can be configured using parameters. In each execu-
tion cycle, values from the input ports are read, calcu-
lations performed and result values written to output
ports. Primitives are not required to have both input and
output ports, even primitives with no ports at all are
syntactically valid. Primitives can encapsulate very dif-
ferent functionality. There are primitives providing very
basic support such as logical operators (AND, OR) or
mathematical functions (addition, subtraction) as well

Flexible and Continuous Execution of Real-Time Critical Robotic Tasks 5

as more complex calculation modules which can generate
trajectories or calculate (inverse) kinematics. Hardware
components are also represented as primitives. Sensors
(force/torque sensors, light barriers, etc.) are represented
as primitives with output ports only, whereas actuators
(robots, conveyor belts, etc.) are represented as primi-
tives with input ports only, with the exception of error
outputs.

Input and output ports are typed. The reference im-
plementation in the SoftRobot project supports both ba-
sic types such as integer and double, but also complex
composed types. Such complex types can for example
represent positions in space using X, Y and Z coordi-
nates, or fixed-size arrays of a given type. The used types
must be specified completely prior to starting a primitive
net (especially the size of arrays), because no memory
allocation may happen during execution to guarantee
real-time semantics. Each type supports a special null
value to signal that no value is available.

Multiple instances of the same primitive can be used
in a single primitive net. However, all primitives must en-
sure that exclusive resources are not used concurrently.
For example a primitive representing a single actuator
might appear several times in different parts of a prim-
itive net, but only one primitive instance may actively
control the hardware in a single execution cycle. The
RCC reference implementation supports resource alloca-
tion to prevent multiple primitive nets from using the
same resources accidentally, and the RCC guarantees
that all requested resources will be available once a prim-
itive net has been accepted for execution.

Parameters can be used to configure primitive in-
stances. Actuator primitives for example require a pa-
rameter indicating which device instance to control. Pa-
rameters can only be set upon specification of a primitive
net and are immutable during execution.

Some primitives have an internal state to preserve in-
formation (like the current position of a trajectory) dur-
ing the execution of the primitive net. However, most
primitives do not preserve any information for the next
primitive net. Transport of information from one prim-
itive net to the next should be done by means of the
high-level programming language for maximal flexibility.

4.2 Links

Multiple primitives are interconnected using links. Input
and output port are typed, and only ports with match-
ing type can be connected. An input port of a primitive
can be connected to at most one output port, but several
input ports may be connected to a single output port.
Both input and output ports may be unconnected, how-
ever primitives can require input ports to be connected.

Links may not form cycles, except when using a spe-
cial Pre primitive. For more details see Section 5.1.

4.3 Fragments

Multiple primitives with connecting links can be grouped
together into a fragment, which then behaves like any
other primitive. Therefore, fragments also have input
and output ports, but no parameters. The input ports of
a fragment behave like output ports inside the fragment,
thus primitives contained in the fragment can connect
their input ports to input ports of the fragment. Output
ports of the fragment behave like input ports to the in-
side and can be connected to output ports of primitives
contained in the fragment. Because fragments have the
same interface as primitives to the outside, they can also
be nested into other fragments.

Usually, not all primitives within a primitive net are
active at the same time. For example, whenever several
motions must be executed by the robot sequentially and
with real-time guarantees, all three motions must be rep-
resented within the same primitive net. But in this prim-
itive net, it is never possible that more than one motion
is active at the same time. To handle such cases within a
primitive net, Boolean dataflows are used which tell ev-
ery primitive using an input port whether or not they are
currently active. Primitives need to check this input at
the beginning of execution and immediately terminate if
they are not supposed to be active. However, every sin-
gle primitive has to check whether it is active or not,
which can cause considerable overhead.

Fragments allow a hierarchical design of primitive
nets. Net parts which cannot be active at the same time
can be separated into different fragments. If a fragment
is disabled using the aforementioned activation dataflow,
only the fragment will check its activation state, but none
of the contained primitives. For hierarchical primitive
nets, this reduces the necessary overhead.

The whole primitive net itself is considered as the
root fragment. The root fragment has two distinguished
outputs: Those two outputs carry special dataflows for
detection of termination and errors (cf. Sec. 5.2).

5 Execution

The Realtime Primitives Interface is tailored to the need
of robotics applications. This influences the execution
semantics, the lifecycle of a single primitive net and also
the process of switching from one primitive net to the
next.

5.1 Execution Semantics

Primitive nets are executed cyclically, i.e. every primitive
instance is executed once in each execution cycle. Each
primitive must read its input ports, perform all necessary
calculations and write the results to the output ports.
All primitives are topologically sorted using the links
between the primitives, hence new values will propagate
throughout the whole primitive net within one execution
cycle.

6 M. Vistein et al.

Loading Rejected

Ready

Running

Terminated

LOAD(...) [Loading failed]

[Loading was successful]

START(...) [Necessary resources are available]

CANCEL(...) / cancel := true

[termination == true]
Canceling

[termination == true]

Scheduled

SCHEDULE(...) [Necessary resources are available]

[previous net terminated without error]

Figure 3 Primitive net lifecycle (dashed items are
extensions for net scheduling, c.f. Sect. 5.3)

In order to allow a primitive net to being topologically
sorted, links must not form cycles. However, there are
use-cases where cycles in the dataflow are inevitable, e.g.
for closed-loop control. To accommodate for these cases,
a special Pre primitive exists, which deliberately delays
the dataflow to the next execution cycle. Links connected
to Pre primitives are ignored when the primitive net is
topologically sorted, hence cycles with links are allowed
if a Pre primitive is inserted at an appropriate position.
Pre primitives can also be used inside fragments.

A Robot Control Core can execute multiple primitive
nets simultaneously, but those nets must not access the
same resources. It is for example possible to control two
robots independently with two different primitive nets,
but it is not allowed to control a single robot from mul-
tiple nets at the same time.

5.2 Lifecycle

Primitive nets have a life cycle with several possible
states of execution (c.f. Fig. 3):

� Loading The primitive net has been successfully
transmitted to the RCC, which is currently loading
and preparing all necessary primitives.

� Rejected If the RCC cannot successfully load all
necessary modules, the primitive net must be re-
jected. This can occur for several reasons:

– The specified primitive is not available at this
RCC.

– A specified parameter of a primitive is invalid,
e.g. the specified robot is not available.

– A required input port of a primitive is not
connected.

� Ready The execution environment has success-
fully instantiated all necessary primitives, and
thus, the primitive net is now ready for execution.

� Scheduled The primitive has been scheduled for
immediate execution after another primitive net
(c.f. Sect. 5.3).

� Running The RCC is currently executing the
primitive net and controlling the devices. Unique
resources are assigned to this net and cannot be
used by any other net.

� Canceling The execution environment initiated
the canceling of the primitive net, and the net has
the possibility to gracefully stop its execution.

� Terminated The execution of the primitive net
has finished. All devices are inactive and unique
resources have been made available again.

When a Java application is executed, the Robotics
API automatically generates primitive nets and subse-
quently loads them into the RCC using the operation
LOAD(net). First, the Robot Control Core inspects and
validates the primitive net (checks for syntactical valid-
ity, matching types of linked ports, etc.) and then starts
to initialize all necessary primitives. Hence, the net is
in state Loading. The operation is asynchronous, i.e. the
primitive net does not necessarily have to have finished
loading when the operation LOAD returns. The return
value is a unique identifier for the net. After the exe-
cution environment has finished loading and preparing
all necessary modules, the primitive net state changes to
Ready. If loading the net fails, it enters state Rejected.

As soon as this change has happened, the operation
START(net id) can be called to trigger the execution of
the primitive net. If all unique resources are available,
the Robot Control Core starts the execution of the prim-
itive net and changes the net’s state to Running. Now,
the primitive net is evaluated in its determined (topolog-
ically sorted) order, i.e. the execution environment must
call the primitives and propagate the data from the out-
put ports to the input ports of the next primitive. After
all primitives have been executed, devices like robots or
tools have been provided with new values for direct hard-
ware control.

Besides, there are two more operations for controlling
a running primitive net. The operation CANCEL(net id)

tries to gracefully stop the specified net, whereas
ABORT(net id) immediately stops the execution of the
primitive net. The cancel operation is implemented by
injecting a Boolean dataflow into the primitive net,
which can decide which action to take and eventually
terminate.

A primitive net must signal its termination by setting
a Boolean dataflow to true which is connected to a des-
ignated Termination output port on the root fragment.
If a primitive net is canceled, it must also signal termi-
nation after finishing. If a primitive net is aborted, no
signaling is used, but the primitive net is immediately
terminated without notice.

Primitives must guarantee a worst case execution
time (WCET) for all operations performed during the
Running state of primitive net in order to satisfy real-
time requirements of the robotic system. Therefore, all
necessary initialization operations such as memory allo-
cation must be performed during the Loading phase.

Flexible and Continuous Execution of Real-Time Critical Robotic Tasks 7

5.3 Primitive Net Scheduling

For some applications like e.g. motion blending, it is de-
sirable to be able to switch from one primitive net (the
first motion) to another primitive net (the second mo-
tion) without the robot needing to stop. Embedding both
motions into a single primitive net is possible, but cre-
ates huge primitive nets and requires hard-to-understand
code instead of simple successive motion commands in
the high-level programming language. Furthermore, it is
not possible to specify an infinite chain of motions, be-
cause a primitive net can only be started once it has been
completely specified.

Real-time guarantees can only be given within one
primitive net. Because the high-level programming lan-
guage cannot guarantee any timing limits, it cannot be
assumed that a successive primitive net will be com-
pletely loaded on the RCC before the currently running
primitive net is finished. Therefore, a device may never
be in an unstable state (e.g. moving, applying force) af-
ter a primitive net has finished, if there is no successor
completely loaded and waiting for execution.

With the primitive net scheduling feature, it is possi-
ble to request a second primitive net (Ns) to be executed
right after a specified first primitive net (Np) has termi-
nated. The RCC guarantees that no temporal gap will
occur between the execution of both commands, if the
second primitive net was completely loaded and initial-
ized before the first primitive net terminates. By encap-
sulating distinct motion tasks in separate primitive net
and sequentially submitting (and scheduling) those nets
to the RCC, it is now possible to use standard language
features to handle motion blending on the robotics appli-
cation level. Even infinite chains of motions with motion
blending are possible.

If a primitive net Ns has been successfully scheduled
for execution after another primitive net Np, it enters the
dedicated Scheduled state (cf. Fig. 3). The primitive net
Np will be notified using an injected Boolean Takeover
dataflow. The primitive net Np can then decide to ter-
minate prematurely and to allow being taken over. If the
primitive net Np terminates without error, the primitive
net Ns will be executed in the next cycle, i.e. there is no
gap and the interval between the last execution cycle of
Np and the first execution cycle of Ns is equal to the in-
terval between two execution cycles within one primitive
net.

Fig. 4 shows two possible execution traces for schedul-
ing one primitive net Ns for execution after another one
(Np). In case (a), the primitive net Ns enters state sched-
uled (S) before the currently running primitive net Np is
in an interval in which it allows being taken over (marked
with TA). In the first execution cycle during this inter-
val, the primitive net Np detects that a scheduled prim-
itive net is waiting and thus is terminating prematurely,
and the primitive net Ns is immediately started. In case
(b), the primitive net Ns was scheduled too late, i.e.
it reached scheduled state (S) after the TA interval of
the running primitive net. The primitive net Np contin-

TA

RU T

S RURD

RU T

S RU

TA

RD

(a)

(b)

time

N
s

N
s

N
p

N
p

Figure 4 Scheduling of two primitive nets. Net states:
(RD) ready, (RU) running, (S) scheduled, (T)
terminated. TA specifies the interval in which the
first primitive net allows being taken over.

ues execution until its regular end and terminates, which
immediately triggers the execution of primitive net Ns.
This net however has to take care of a different starting
situation.

Primitive nets are allowed to silently ignore takeover
requests, but may never require to be taken over. If there
is no successor, a primitive net must always be able to
reach a safe and stable state, i.e. bringing all actuators
to halt and remove any potential dangerous situation
like applying force at at workpiece before terminating.
On the other side, primitive nets aiming at taking over
another primitive net must deal with the case that the
predecessor has terminated regularly without giving the
opportunity to take over prematurely. Special care must
be taken for resources occupied by primitive nets, be-
cause scheduled primitive nets will most likely require
resources which are currently in use. Scheduled primitive
nets are allowed to use any resource that is in use by the
primitive net on which they are scheduled, plus any re-
source which is not in use at the time of scheduling. Such
unused resources must be immediately allocated to the
scheduled primitive net to prevent other primitive nets
from using these resources while the scheduled primitive
net is waiting.

To support motion blending, the first running prim-
itive net, which cannot know details about the follow-
ing motion, must be able to terminate prematurely on a
given blending condition, and the following primitive net
must be able to take over at this particular point. The
robot might be still moving with considerable velocity.
The Robotics API or any high-level planning and exe-
cution layers must use information about the preceding
motion to craft a primitive net which is capable of taking
over the motion. A condition to decide when to allow be-
ing taken over can for example be if a certain percentage
of the motion distance has passed. Using this scheduling
mechanism, motion blending can be performed only on a
best-effort basis. Depending on the load of the high-level
system and the speed of e.g. planning algorithms, blend-
ing motions may or may not be successful. However, it is

8 M. Vistein et al.

TrajectoryPlanner

StartPoint: ...

EndPoint: ...

MotionType: ...

Robot

Robot: ...

InverseKinematics

RobotType: ...

Transformation

TransformationRule: ...

MCP

FT
Flange

RobotT T

n),,(1 qq L

Figure 5 primitive net example: a robot follows a
Cartesian trajectory.

guaranteed that no unsafe situation can occur in which
devices lack necessary control. If it is not acceptable that
at a certain position the blending of two motions occa-
sionally fails, those motions must be forced into one large
primitive net, or more complex motion types like splines
(Horsch and Jüttler, 1998) should be considered.

6 Examples

The concepts of the realtime primitives interface and
the execution of primitive nets are demonstrated with
two short examples. The first example demonstrates one
primitive net with its internal structure. The second ex-
ample covers the real-time switching between two prim-
itive nets for motion blending. Additionally, a complete
application example is given.

6.1 Single Primitive Net

Fig. 5 shows an exemplary primitive net, consisting of
four primitives and three links. This example is designed
for the illustration of RPI and therefore is simplified in
comparison to the primitive nets automatically gener-
ated by the Robotics API. The TrajectoryPlanner prim-
itive generates a trajectory in Cartesian space (for some
motion center point (MCP) in a given frame F) during
its construction phase. In each execution cycle, a new
point of the trajectory is delivered to the Transformation
primitive which transforms this point to Cartesian coor-
dinates of the robot flange in the robot base coordinate
system. These coordinates are then converted to an array
of joint values by the InverseKinematics primitive and
finally used as input values of the Robot primitive. Af-
ter all primitives have been executed, the new set-points
for all actuators are provided to the respective hardware
drivers. Due to the topological sorting, new set-points
can be generated starting from the first execution cycle.

6.2 Primitive Net Scheduling

The following example demonstrates how primitive net
scheduling and fragments can be employed for motion
blending. Two primitive nets are necessary for making
a robot follow the Cartesian trajectory from Fig. 1. The
first primitive net specifies a linear motion from point A
to C which can be taken over at point B. The second
primitive net is more complex as it specifies two possi-
ble initial states: (1) If the last primitive net could be
taken over, move from B to D on an curved path. (2) If
the last primitive net could not be taken over, move lin-
early from C to D. Finally, if point D has been reached,
continue moving linearly to point E. Fig. 6 and 7 show
the real-time primitive nets that solve this task. Lst. 1

Trajectory Fragment

Root fragment

Point B Reached

Fragment

TakeOver

Boolean Or

Takeover: bool

Active: bool Out: bool

inB: bool

Finished:bool

inA: bool

Out: bool

Terminate:

bool

Figure 6 Primitive net for a motion from point A to C

Trajectory

C-D Fragment

Root fragment

Trajectory

D-E Fragment

Trajectory

B-D Fragment

Start at C Fragment

Start at B Fragment

Out: bool

Out: bool

Active: bool

Active: bool

Boolean Or

Finished:bool

Finished:bool

inB: bool

inA: bool
Out: bool

Active: bool

Finished:bool

Terminate:

bool

Figure 7 Primitive net for a motion from point C to E
with blending

for(int i = 1; i < 10; i++) {
robot.lin(pointC).beginExecute ();
robot.lin(pointE).beginExecute ();

}

Listing 1 Java code for example motion program

shows the corresponding Robotics API program in Java
for executing these two motions in a loop (for details see
Schierl et al., 2012a).

The first primitive net (cf. Fig. 6) contains a Trajec-
tory Fragment which internally calculates the trajectory
and, in every execution cycle, delivers a new set-point to
the robot. The TakeOver primitive returns true on its
output if another primitive net is scheduled. The Point
B Reached Fragment is only activated and thus evalu-
ated in case of a scheduled successor primitive net. If ei-
ther this fragment decides that point B has been reached
or the main trajectory fragment has finished the mo-
tion, the primitive net will signal termination to the root
fragment’s Terminate port (by combining both Boolean
outputs using an OR primitive).

The second primitive net (cf. Fig. 7) employs two spe-
cial fragments Start at C Fragment and Start at B Frag-
ment which can decide whether the motion was started
at point B or C respectively. Depending on the outcome
of these fragments, either the trajectory fragment for
the motion from C to D or from B to D is activated.
Both fragments can be quite large, but the performance
impact is reduced because the content of one fragment
remains constantly inactive. After either fragment has
finished, the final fragment for the motion from D to E
is activated.

6.3 Application example

The use of primitive nets and scheduling was demon-
strated in a factory application which was especially
developed for the final presentation of the SoftRobot
project. This application includes a mobile platform
which carries raw workpiece parts in supply boxes to a
workbench with two KUKA lightweight robots. Those
robots cooperatively lift the heavy supply boxes from

Flexible and Continuous Execution of Real-Time Critical Robotic Tasks 9

the platform onto the workbench, before assembling the
workpieces from their parts. To perform these complex
tasks, a great amount of real-time cooperation and co-
ordination is required. For example, lifting the supply
boxes from the platform to the workbench is performed
with several linear motions which must be perfectly syn-
chronized between both robots in order neither to dam-
age the robots nor the supply boxes. To achieve a smooth
and fast movement, each linear motion must also be
blended into the next one. The assembly of the work-
pieces is also done cooperatively. The workpieces consist
of two parts which must be assembled and then screwed
together. Each part is fetched by one robot from the sup-
ply boxes. While one robot holds the base part, the top
part is inserted by the second robot. Using the built-in
force-torque sensors of the lightweight robots, it is possi-
ble to detect when the top piece is completely inserted.
While the first robot continues holding the assembled
workpiece, the second robot uses an attached electric
screw-driver to fetch a screw from a magazine and screw-
ing both parts together. The impedance controller of the
lightweight robot is employed to apply the force required
for screwing. A video of the application can be found at
http://video.isse.de/factory.

7 Requirement Revisited

After having introduced all features of the Realtime
Primitive Interface, it is now time to recapitulate the
requirements identified in Section 2.

1. Usability. Using the Activity Interface of the
Robotics API, programs can be written such as
demonstrated in Listing 1. The syntax is very close
to the traditional programming languages, hid-
ing all implementation details and real-time issues
from the application developer.

2. Multi robot systems. By adding multiple actua-
tor primitives into the same primitive net, multiple
devices can be controlled synchronously. If no syn-
chronous execution is required, it is also possible
to execute multiple primitive nets, each control-
ling its own device independently. There are spe-
cial classes provided in the Robotics API which
can dynamically combine multiple robots to form
a cooperating machine.

3. Sensor support. Sensors are integrated as primi-
tives which provide the current measurement value
at a very high frequency. Using this value, all kinds
of calculations can be performed e.g. to adjust the
planned robot motion to external sensor values.

4. Extensibility. New sensors and actuators can be
integrated by implementing a corresponding driver
in the Robot Control Core. By providing the ap-
propriate classes within the Robotics API, access

to these devices can be provided to application de-
velopers. If the logical interface of a device does
not differ from an existing device, applications can
use the new device without the need of any change
in code.

5. Special industrial robotics concepts. Using
the command scheduling feature, it is possible to
implement features like motion blending or compli-
ant motions in a safe way, without the need of en-
capsulating the whole program into a single, huge
command.

8 Implementation

Within the SoftRobot project, a complete reference im-
plementation of the architecture described in Section 3
has been created. The Robot Control Core has been de-
veloped using the Orocos framework created by Bruyn-
inckx (2001) and is therefore called OrocosRCC. The
OrocosRCC runs under Linux with real-time extensions
(RTAI or Xenomai) and also features a Windows version
for testing purposes (without any real-time guarantees).

The OrocosRCC currently provides drivers for
KUKA lightweight robots (LWR) using the Fast Re-
search Interface (FRI, c.f. Schreiber et al. (2010)). Us-
ing this interface, stable robot control is possible us-
ing the OrocosRCC at cycle times of 2ms. At least two
robots can be synchronously controlled at this speed by
one single controller. Besides KUKA lightweight robots,
the OrocosRCC also provides support for controlling
a KUKA youBot consisting of a 5-DOF manipulator
mounted on a 3-DOF mobile platform. Manipulator
and platform are controlled using a proprietary proto-
col over the EtherCAT connection provided by the de-
vices. A recent addition was the possibility to control
a Staubli TX90 robot with uniVAL, using the CiA 402
device profile (IEC 61800-7-201, 2007; IEC 61800-7-301,
2007) over EtherCAT. Furthermore, it is possible to con-
trol a Segway RMP-50 omnidirectional platform which
is connected using CAN over USB.

The driver module controlling a single robot is run-
ning an a high-priority real-time thread. By using the
scheduling mechanisms provided by the real-time oper-
ating system, we can guarantee deterministic cycle times
for hardware control as low as 500 µs. Some hardware
devices require to synchronize the device driver with the
device’s clock (e.g. the RCC device driver must be syn-
chronized to SYNC0 events on an EtherCAT bus). In
this case, the device driver has to implement some form
of PI controller to adjust to the given work cycle.

Primitive nets are executed within their own thread
using a fixed cycle time. All hardware devices which need
to be synchronized must be controlled from within the
same primitive net. By adhering to that rule, it can be
guaranteed that all device drivers are provided with new
set-points at the same time. Because different devices
may run at different cycle times, it can be necessary for

10 M. Vistein et al.

Device Cycle Time Protocol

KUKA LWR 2 ms - 12 ms FRI over UDP

Staubli TX90 2 ms - 4 ms CiA 402 over EC

KUKA youBot 4 ms Prop. over EC

Segway RMP-50 50 ms CAN over USB

Table 1 Supported hardware with tested cycle times for
hardware control. Primitive nets have been
executed with 2 ms cycle time in all experiments.

the device drivers to calculate smoothed set-points if the
primitive net cycle and the hardware control cycle are
not perfectly synchronous. Usually primitive nets are not
synchronized to hardware drivers, because several differ-
ent pieces of hardware can run at different clock cycles,
and it is not always possible to synchronize all clocks.

Table 1 shows an overview of hardware experimen-
tally tested with our Robot Control Core. All primitive
nets have been executed with a cycle time of 2 ms. Hard-
ware control cycle times vary for different types of hard-
ware and are usually lower than the primitive net cycle
time. Otherwise there would not be a new set-point for
each hardware control cycle, and the hardware driver
would need to interpolate the given set-points.

The communication between the Robotics API and
the OrocosRCC is performed using TCP/IP sockets. For
debugging and development purposes, the OrocosRCC
includes an HTTP server, which serves XML pages with
status information and receives new primitive nets en-
coded in XML. For production use, a special TCP/IP
based protocol is used to avoid the overhead of HTTP
and XML. Using this protocol, the Robotics API can
transfer new primitive nets and can control the lifecycle
of each primitive net.

There are special primitives which support non real-
time data exchange between a running primitive net and
the controlling Java application. Using this mechanism,
it is e.g. possible to react to events detected by a sen-
sor. However, this communication link cannot guarantee
any time limits and therefore cannot be used to react
to events where a guaranteed response time is needed.
Those events must be completely handled within the
primitive net.

9 Conclusion

Hardware control and continuous execution of real-time
critical robotic tasks can be performed using a Robot
Control Core and the concepts described in this arti-
cle. Using the SoftRobot architecture with the Robotics
API on top of the Robot Control Core, the develop-
ment of robotics application completely integrated in
modern software engineering methods becomes possible.
Synchronized real-time control of multiple robots and in-
tegration with tools and sensors is thus made available
to Java programs. Based on the Java language, a broad
variety of tools, libraries, etc. is readily available which
aids the development of applications.

There are plans of extending the current primitive
net scheduling mechanism to support a finer grade of
scheduling rules. Currently all primitive nets which want
to take over a running net must be capable of handling
multiple different initial situations depending whether
scheduling was successful or not. It is planned to extend
the scheduling mechanism to select a successing primi-
tive net depending on the result value provided by the
previous net. Using this mechanisms, the distinction of
cases is delegated to the RCC, allowing for smaller prim-
itive nets and faster freeing of unused resources.

References

A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif. The Robotics API: An object-oriented frame-
work for modeling industrial robotics applications. In
Proc. 2010 IEEE/RSJ Intl. Conf. on Intell. Robots
and Systems, Taipeh, Taiwan, pages 4036–4041. IEEE,
Oct. 2010.

L. B. Becker and C. E. Pereira. SIMOO-RT – An object
oriented framework for the development of real-time
industrial automation systems. IEEE Transactions on
Robotics and Automation, 18(4):421–430, Aug. 2002.

C. Blume and W. Jakob. Programming Languages for
Industrial Robots. Springer-Verlag, 1986.

R. P. Bonasso, D. Kortenkamp, D. P. Miller, and
M. Slack. Experiences with an architecture for intel-
ligent, reactive agents. J. of Experimental and Theo-
retical Artificial Intelligence, 9:237–256, 1995.

J.-J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapel-
los, R. Pissard-Gibollet, D. Simon, and N. Turro. The
ORCCAD architecture. Intl. Journal of Robotics Re-
search, 17(4):338–359, Apr. 1998.

O. Brock, J. Kuffner, and J. Xiao. Motion for manip-
ulation tasks. In B. Siciliano and O. Khatib, editors,
Springer Handbook of Robotics, chapter 26, pages 615–
645. Springer, Berlin, Heidelberg, 2008.

H. Bruyninckx. Open robot control software: the ORO-
COS project. In Proc. 2001 IEEE Intl. Conf. on Robot.
& Autom., Seoul, Korea, pages 2523–2528. IEEE, May
2001.

B. Finkemeyer, T. Kröger, and F. M. Wahl. Placing of
objects in unknown environments. In Proc. 9th IEEE
Intl. Conf. on Methods and Models in Automation and
Robotics, pages 975–980, Miedzyzdroje, Poland, Aug.
2003.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language LUS-
TRE. Proceedings of the IEEE, 79(9):1305–1320, Sept.
1991.

Flexible and Continuous Execution of Real-Time Critical Robotic Tasks 11

V. Hayward and R. P. Paul. Robot manipulator con-
trol under unix RCCL: A robot control C library. In-
ternational Journal of Robotics Research, 5(4):94–111,
1986.

A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and
W. Reif. Hiding real-time: A new approach for the
software development of industrial robots. In Proc.
2009 IEEE/RSJ Intl. Conf. on Intell. Robots and Sys-
tems, St. Louis, Missouri, USA, pages 2108–2113.
IEEE, Oct. 2009.

T. Horsch and B. Jüttler. Cartesian spline interpola-
tion for industrial robots. Computer-Aided Design,
30(3):217–224, 1998. ISSN 0010-4485. doi: 10.1016/
S0010-4485(97)00061-4.

IEC 61800-7-201. Adjustable speed electrical power drive
systems - Part 7-201: Generic interface and use of
profiles for power drive systems - Profile type 1 speci-
fication. ISO, Geneva, Switzerland, 2007.

IEC 61800-7-301. Adjustable speed electrical power drive
systems - Part 7-301: Generic interface and use of
profiles for power drive systems - Mapping of profile
type 1 to network technologies. ISO, Geneva, Switzer-
land, 2007.

M. S. Loffler, V. Chitrakaran, and D. M. Dawson. Design
and implementation of the Robotic Platform. Journal
of Intelligent and Robotic System, 39:105–129, 2004.

D. J. Miller and R. C. Lennox. An object-oriented envi-
ronment for robot system architectures. In Proc. 1990
IEEE Intl. Conf. on Robot. & Autom., pages 352–361,
Cincinnati, Ohio, USA, May 1990.

C. Pelich and F. M. Wahl. ZERO++: An OOP envi-
ronment for multiprocessor robot control. Interna-
tional Journal of Robotics and Automation, 12(2):49–
57, 1997.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. ROS: an open-
source Robot Operating System. In Workshop on
Open Source Software, IEEE Intl. Conf. on Robot. &
Autom., Kobe, Japan, 2009.

A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and
W. Reif. Using Java for real-time critical industrial
robot programming. In Workshop on Softw. Devel-
opm. & Integr. in Robotics. IEEE Intl. Conf. on Robot.
& Autom., St. Paul, USA, 2012a.

A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and
W. Reif. From robot commands to real-time robot
control - transforming high-level robot commands into
real-time dataflow graphs. In Proc. 2012 Intl. Conf.
on Inform. in Control, Autom. & Robot., Rome, Italy,
2012b.

G. Schreiber, A. Stemmer, and R. Bischoff. The Fast
Research Interface for the KUKA Lightweight Robot.
In Workshop on Innovative Robot Control Architec-
tures for Demanding (Research) Applications. IEEE
Intl. Conf. on Robot. & Autom., Anchorage, Alaska,
USA, May 2010.

R. Simmons. Concurrent planning and execution for au-
tonomous robots. IEEE Control Systems, 12(1):46–50,
Feb. 1992. ISSN 1066-033X. doi: 10.1109/37.120453.

R. Smits, T. D. Laet, K. Claes, P. Soetens, J. D. Schutter,
and H. Bruyninckx. Orocos: A software framework for
complex sensor-driven robot tasks. IEEE Robotics &
Automation Magazine, 2009.

M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and
W. Reif. Instantaneous switching between real-
time commands for continuous execution of complex
robotic tasks. In Proc. 2012 Intl. Conf. on Mecha-
tronics and Automation, Chengdu, China, pages 1329
–1334, Aug. 2012. doi: 10.1109/ICMA.2012.6284329.

C. Zieliński. Object-oriented robot programming. Robot-
ica, 15(1):41–48, 1997.

C. Zieliński and T. Winiarski. Motion generation in the
MRROC++ robot programming framework. Intl. J.
of Robotics Research, 29(4):386–413, 2010. doi: 10.
1177/0278364909348761.

