Electronic Communications of the EASST

Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems
(AVoCS 2013)

Compositional Verification of a Lock-Free Stack with RGITL
Bogdan Tofan, Gerhard Schellhorn, Gidon ErngtgJPfahler and Wolfgang Reif

15 pages

Guest Editors: Steve Schneider, Helen Treharne

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Compositional Verification of a Lock-Free Stack with RGITL

Bogdan Tofan, Gerhard Schellhorn, Gidon Ernst, brg Pfahler and Wolfgang Reif

(tofan,schellhorn,ernst,joerg.pfaehler,reif)@informatik.uni-augsburg.de
Institute for Software and Systems Engineering
University of Augsburg

Abstract: This paper describes a compositional verification approach for caardur
algorithms based on the logic Rely-Guarantee Interval Temporal Logi¢TIRG
which is implemented in the interactive theorem prover KIV. The logic makes it
possible to mechanically derive and apply decomposition theorems for safety
liveness properties. Decomposition theorems for rely-guaranteeniagstineariz-
ability and lock-freedom are described and applied on a non-trivialingrexample,

a lock-free data stack implementation that uses an explicit allocator stack fior me
ory reuse. To deal with the heap, a lightweight approach that combinesrskip
annotations and separation logic is taken.

Keywords: Compositional Verification, Rely-Guarantee Reasoning, Linearizabil-
ity, Lock-Freedom, Ownership, Separation Logic

1 Introduction

Multi-core processors have become ubiquituous in our computers. @ae \@here lots of
progress has been made over the last decade, is the efficient implemeotattandard data
types such as stacks, queues, sets, etc. Instead of simply locking tHatéuitructure on every
operation, these implementations either use sophisticated fine-grained lsckigrges, or alter-
natively nonblocking techniques that avoid the use of locks. Such algwitiie used in operat-
ing system kernels, and are also included in libraries of common programmmiggeges, e.g.,
Threading Building Blocks for C++, java.util.concurrent for Java, ast&gn.Collections.Concur-
rent for C#.

A central safety property of these concurrent data types is linearizaplity90]. Roughly
speaking, a concurrent operation is linearizable if it correspondsne stomic operation of
an abstract data type. For nonblocking data structure implementations,gheds/property of
lock-freedom MP91] is common. It excludes both livelocks and deadlocks, even in the pres-
ence of indefinite delays of individual processes that access thetdatause. However, formal
correctness proofs of such algorithms are difficult.

We propose a fully mechanized, interactive verification approach.ek tie rely-guarantee
(RG) method Jon83, which is concerned with verifying general safety properties of oot
systems with shared resources. RG reasoning provides a modular treafnmtarference be-
tween system components, i.e., to analyze properties of the overall systent@nponent can
be examined separately based on its specification of expected environehertds. However,
the original RG approach does not deal with specific aspects of heaputaimg algorithms,
neither does it prove linearizability, nor does it address liveness \aidit (lock-freedom).

1/15 Volume 66 (2013)

mailto:(tofan,schellhorn,ernst,joerg.pfaehler,reif)@informatik.uni-augsburg.de

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

In our earlier work BTER11], we therefore proposed the logic RGITL, which integrates RG
reasoning into a compositional temporal logic that can express a wide cagéety and live-
ness properties. RGITL has been implemented and mechanically verifiedtciorthe interac-
tive theorem prover KIVKIV13]. We have derived decomposition theorems for linearizability
[BSTR1] and lock-freedom TBSR1(in the logic, and we describe a challenging application
in [TSR113

Here we take an improved approach to deal with the heap, which also fasiR@&eeasoning.
Furthermore, a more generic approach for verifying lock-freedoneimed. These improved
techniques are illustrated on a non-trivial running example, which to ocowlatge, has had
no mechanized verification before. More specifically, we previous§H114 used disjointness
and reachability predicates to explicitly model disjoint parts of the heap. Merese ownership
annotationsBDF " 04] of the program code to implicitly label portions of the heap with a distinct
owner, plus separation logic’s star operat@ej03 to model acyclic heap structures. While in
[TSR114we used a RG decomposition of the overall program state to two local ggGtates
(and the shared state), we can now use RG conditions on the sharechtatdere interference
might actually occur, and do not have to take the local state of any otheegs@to account.

The improved approach is illustrated on a concurrent implementation baslee well-known
lock-free stack fromTre84. Several other proofs for the stack do exist, but have mainly focused
on linearizability for the simple version under garbage collection. Here wsider a version
that is close to an implementation in environments without garbage collectionedtgeneric
lock-free push and pop operations in two contexts: first, to add / rentbiteaay data from a
lock-free data stack and second, to add / remove heap locations fratimeaistack that serves
as a lock-free memory allocator. The verification of the full version pasé#ional challenges
w.r.t. reasoning about the heap, the fundamental ABA problem of lask&lgorithms, composi-
tional verification of sequential code (when verifying the client codeywanst to reuse the proofs
of the generic stack operations), and it also requires a generalizatiam pfevious termination
conditions for lock-freedomTBSR1(Q. All proofs have been mechanized: KIV proofs for the
running example and the decomposition theory can be accessed ¢HiNIe3].

The rest of this paper is structured as follows: Secfiantroduces the running example.
Section3 gives a short introduction to RGITL and how RG reasoning is expressie logic.
Section4 describes the RG approach using ownership annotations and sepbrgitorsection
5 gives two decomposition theorems for linearizability and lock-freedom. FinSkytion6
compares our approach with related work and Secfi@oncludes with a short summary and
possible future work.

2 The Lock-Free Data and Free Stacks

This section introduces the running example, which is used to illustrate ouwnagp Lock-
free algorithms typically apply atomic synchronization primitives such as C Afnftare-And-
Swap) instead of locks.

atom ¢ CAS(ol d, new, now) returns {bool}
if (now = old) {now:= new, return true;}
el se return fal se;

Proc. AVoCS 2013 2/15

B

ECEASST

record Node = {.val:data, .nxt:ref};

record RC = {.ref:ref, .cnt:nat};
var DTop, FTop: RC;

PUSH(d: dat a)
var new : = DoPop(FTop);
if (new = null) {
al l oc(new;
b
new. val := d;
DoPush(new, DTop);

DoPush(node: ref (Node), Top:ref(RC
var |top: RC
r epeat
Itop := Top;
node. nxt := ltop.ref;
unti |

POP() returns {enpty | data}
var rtop := DoPop(DTop);
if (rtop = null) {
return enpty;

b

var lout := rtop.val;

DoPush(rtop, FTop);

return |out;

DoPop(Top: ref (RC)) returns {ref(Node)}
var |top: RC

r epeat
Itop := Top;
if (ltop.ref = null) {break;}
nxt := (ltop.ref).nxt;

unti |
CAS(Itop, (nxt, ltop.cnt), Top);
return | top.ref;

CAS(ltop, (node, ltop.cnt + 1), Top);

Figure 1: Running Example: Lock-Free Data and Free Stacks.

CAS compares the current value of a shared variable with an older local copy of ibld,
called snapshot. If these values are equal nibw variable is updated to a new valnewand
true is returned; otherwise false is returned. The execution of CAS is atomic

We consider a lock-free implementation of a data stack that is used by someéimteer of
concurrent processes to store arbitrary data. Since the applicatisirerenent does not offer
garbage collection (GC), a second lock-free stack is used to allocafee@mdemory. This stack
is called the free stack in the following. Explicit memory allocators are commorvinegmments
without (lock-free) GC, to avoid memory leaks. Both stacks are implementsihgly linked
lists of nodes (pairs of values and locations having .val and .nxt selestotiéns). A shared
variableDTopmarks the top node of the data stack; it is a pair of a reference and a muaiifica
counter (of typenat = Np), with selector functions .ref and .cnt, respectively. Similarly, the free
stack is accessible from a shared varidbl®p. Each process that wants to push some data
on the data stack, first tries to allocate memory from the free stack andsréstine machine’s
allocator (alloc) only if the free stack is currently empty. Whenever a popeps a node from
the data stack, after reading its data, it pushes the node on the fredlstsakaking its memory
available for (concurrent) reuse.

Modification counters are widely used for CAS based data structurez #ie concurrent
reuse of locations can lead to corruption of the data structure, whentolo@areinserted with
modified contents and this reinsertion is not detected by CAS. This is a fumtanssue of
CAS based implementations called the ABA problefmeBg. To detect the concurrent reuse,
a modification counter is typically added to ABA prone shared resouregs,th each top-of-
stack pointer. This counter is incremented atomically with (either) the insertioenooval of
a location from the data structure, thus making memory reuse visible to CA8 tli€bretical
chance of bogus behavior due to wrap around of a modification countegiigible [Tre84.)

Figure 1 shows the concrete algorithms in pseudo code. The client proceduf®d Bhd
POP use two generic procedures DoPush and DoPop, which operatthenthe data or the
free stack. Operation DoPush repeatedly tries to switch a shared &ipebf{pointerTop.ref
to a new node using CAS in a lock-free manner. It repeatedly takes an asogpshot of

3/15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

Top (including both the current top-of-stack pointer and its modification counédter setting
the new node’s next pointer to the snapshot’s location, the new nodenksdbe target of a
subsequent CAS: if it succeeds, the node is atomically added to the sthttkeamodification
counter is incremented. The generic pop operation DoPop works similargpegtedly reads
the shared top. If its pointer is null, then it immediately returns with null. Othenitis@&ext
reference becomes the target of a subsequent CAS: if it succeedspthode is removed from
the stack and the snapshot’s location is subsequently returned. (lofdagl contention on the
top-of-stack pointer, further techniques such as elimination or diffracémrbe helpful.)

Without a modification counter, an ABA problem could occur as followspsge that a pop
processp takes a snapshot of the top pointer when the data stack consists of exsctipde
at location A and the free stack is empty. Process preempted after setting its local reference
nxt to null for another process, which removes A from the data stack witheufrgeing it.
Subsequently, a third procegsexecutes a successful push, thereby allocating a new location
B (by resorting to the machine’s allocator). Then A is freed gmulishes A on the data stack,
which now has two nodes at locations [A, B]. If ngwis rescheduled, its CAS would erroneously
succeed, removing both nodes A and B at once and possibly returningeapected value.

The additional verification challenges that arise from having an explicit megm@tcator
rather than assuming GC, are as follows. First, it becomes necessaoyé¢aipat the application
does not leak memory. Here we use ownership annotations and sepéogiasstar operator
to state that the application’s heap is always separated into three distitectqae for the data
stack, another one for the free stack and a third part that is ownedrbg ebthe (running)
processes. Second, we have to show that an ABA problem doesaot étere RG reasoning
permits to express ABA prevention as an appropriate rely condition. Tioirayoid big redun-
dant proofs, we want to verify the generic procedures DoPush afbPseparately, and reuse
these proofs as contracts in the verification of the sequential client dé8elRnd POP, respec-
tively. Here the sequential compositionality of RGITL is crucial, which allowsaireplace the
generic procedure calls with appropriate RG, linearizability and loclkdfreeabstractions, re-
spectively. Finally, since individual processes might now starve whdessing either the data or
the free stack, the argument why individual starvation does not lead baldleelock becomes
non-trivial. By slightly generalizing our previous decomposition of lodefiom, we can yet
prove lock-freedom for the example.

3 RGITL

This section gives a brief introduction to basic concepts of RGITL. We asipé that it is not in
the scope of this paper to detail every aspect of the logic. Instead, thesitee reader is referred
to [STER1]. A formal specification of the semantics of RGITL, including soundneesfg of
the main rules are available onlinglj/13].

3.1 Syntax and Semantics

The semantics of expressions of the logic is based on intervals, whichaeedii infinite se-
guences of states. A state maps variables to values. Variables can bedgitheric (written

Proc. AVoCS 2013 4/15

@ ECEASST

uppercase) or static (written lowercase), where the latter do not chiheigesalue throughout
an interval. The last state of a finite interval is characterized by the forlastia The interval
semantics explicitly includes environment behavior, similar to reactive seqaém RBH"01]:
each interval = [1(0),1(0),1(1),1(1),...] alternates system (or program) transitions with en-
vironment transitions, i.e., the transition from st&8) to the primed staté(0)’ is a program
transition, whereas the next transition from std®’ to 1 (1) is a transition of the environment
and so forth.

Priming of a dynamic variablé¢ denotes over which state of an intervahas to be evaluated.
While an unprimed variabl¥ is evaluated over the first stat€0), the primed variabl&/’ is
evaluated ovel(0)’ and the double primed variablé’ overl (1), respectively. Hence, formula
V'’ = 1 states tha¥ has value 1 after the first program transition of a given interval anduta
V" = 2 states thaV has value 2 after the first environment transition of the interval. (For an
empty interval [1(0)], bott/" andV” are evaluated over I(0).) Similarly, a predicate logic formula
G(V,V') specifies a guarantee for the first program transition and a forRiMaV”) defines a
rely condition for the first environment transition.

RGITL provides standard temporal operators to describe intervakpiop:o ¢ (strong next)
holds in an interval (written| |= o @) iff | is not empty and formulé holds inl’s postfix interval
[1(1),...]. The formulag; until ¢, holds inl iff ¢, holds over{l(n),...] for some interval state
I(n) and ¢1 holds in[lI(m),...] for eachm < n. Further standard operators are introduced as
abbreviations, e.gs ¢ = — o = ¢ (weak next),&> ¢ = trueuntil ¢, ord ¢ = - < — ¢. Hence,
formulad V' = V" states that throughout an interval, no environment transition ever chémge
value ofV.

Similar to ITL [Mos0d, programsa are just a subset of the formulas of the logic. Hence,
programs and formulas can be mixed. An intedvahtisfiesa (written| |= a) iff | alternates
a (program) transitions with arbitrary environment transitions. Finite intervateespond to
terminating program runs. The logic provides the common constructs faesggl programs,
including nondeterministic choice, recursive procedures, plus an iaw@mnte operatot|. For
brevity, we only give the interval semantics of the sequential compositioratype’;” here.
(This definition corresponds to the definition of the chop operator from)IT

| = ¢1; @2 iff either | is infinite and satisfieg,, or there is a finite prefix of | where
¢1 holds andp, holds for the rest of

3.2 Deduction

The assertion language is based on the sequent calculus. A sequeiaisiseation of the form
I+ A (wherel andA are lists of formulas), which states that the conjunction of all formulas
in antecedenk implies the disjunction of all formulas in succedént A sequent is implicitly
universally closed. A typical temporal logic assertion for a progoahas the form

Pre,a,E ¢

where Pre is a precondition for the initial state, formElas an environment assumption, i.e.,
a temporal formula over primed and double primed variables ¢argdthe property ofr to be
shown.

5/15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

For deduction, the standard rules of the sequent calculus are usedowdg the following
compositionality principle holds for the sequential composition operator (simildiLfo

ai bk yn Y, 02 ¢
an g @ 1)

The rule states that formulf can be derived for the sequential compositigng, if an abstrac-
tion ;1 can be derived foa; (premise 1), ands can be derived fog; ¢ (premise 2). Rulel)
allows us to split the proof of the client code PUSH and POP into a part thatately verifies
the generic operations DoPush and DoPop (premise 1) and a secotiigpaerifies the client
code using appropriate abstractions as contracts for the genericlpres€premise 2).
Temporal formulas and programs are verified using symbolic executi@icdly, a symbolic
execution step moves forward to the next state of an interval in two phas#se first phase,
each formula of a sequent is transformed into an equivalent formuladhatsts of two parts:
one part that refers to the first three states of an interval, and anattehat refers to the rest
of the interval from the third state on (using a leading next operator). s€kend phase then
removes leading next operators and replaces varidhl&g, V" with new variablesy, vy, V,
where the static variableg andv; store the “old” values o in I (0) andl (0)’, respectively.

compositionality of ;

Examplel A symbolic execution step of the sequent
V=0, (V:=V+2a), 0V =V'FoV=2

generates the following new sequent.
Vo=0,vi=Vp+2 a,vi=V, 0V =V'FV=2

Executing the first assignment (=V + 2) results irvy = Vo + 2 and the remaining program is
a. The environment assumption has been unwound (using the equivalghee ¢ N e O @),
which gives the constraint =V for the first environment transition and againv' =V" for
the rest.

Finally, the logic provides induction rules that permit to reduce the verificaticafety prop-
erties¢ over an infinite interval, to the verification of¢ over an arbitrary finite prefix of.
Then well-founded induction over the length of the finite prefix is used tbwi¢faloops during
symbolic execution. This is necessary for the stack, since CAS loops cateitedefinitely
often due to concurrent changes of the shared top-of-stack vaxiable

3.3 Rely-Guarantee Assertions

A compositionality rule, which is similar to rulel), also holds for the interleaving operator
in RGITL. This makes it possible to derive decomposition rules as theoremiatésleaved
programs in the logic. An important case of such decomposition rules areuR& mwhich
break down the verification of an RG assertion for a concurrent systethe verification of a
corresponding RG assertion for each system component. An RG asdertaprogranu (V),
which uses variables V, has the following form.

Pre(V) - [R(V V"), G(V,V'),Inv(V),a (V)] PostV)

Proc. AVoCS 2013 6/15

@ ECEASST

Informally, an RG assertion states that runsaothat start in an initial stat€re, preserve the

guaranteds and the invariantnv as long as previous environment transitions satisfy theRely

and also maintaiimv. In finite executions ofr, the last state satisfies the postconditRmst
Formally, an RG assertion expands to

Pre(V),a(V) F (RIV",V") A (Inv(V') — Inv(V")))
— (if last then Post(V) elseG(V,V’) A (Inv(V) — Inv(V')))

where operatop; — ¢, abbreviates the formula (¢1 until - ¢,). Thus, RG assertions are
safety formulas, which can be verified by well-founded induction overleéhgth of a finite
interval prefix.

The definitions and the decomposition theory in the rest of this paper alaravired into
the semantics of the logic, but built on top of it as higher-order and temjogjialspecifications.
In particular, the RG theorem (cf. Sectidhand the decomposition theorems for linearizability
and lock-freedom (cf. Sectids) are derived in the logic.

4 Rely-Guarantee Reasoning with Ownership and Separation

This section describes the RG decomposition rule that lies at the core ofdbi@pesition theo-
rems for linearizability and lock-freedom and explains how ownershipi@tions, known from
the verification of object-oriented sequential prograBBIF~04], facilitate its applicability. One
consequence of these annotations is that separation logic’s star oge@t/09 can be used
to model the shape of the heap. Our experience with sequential progréination shows that
using* can be advantageous over the use of inductive reachability predich&asn@asoning
about acyclic heap structures. However, introducirig a concurrent setting is more delicate
than in the sequential case, which is mainly due to possible concurrergeshahthe heap.

4.1 Rely-Guarantee Decomposition

Our RG rule is similar to the original rule of Jone®n83, since rely and guarantee conditions
are simply binary predicates over an arbitrary shared vari@bkate that represents the state
of the concurrent system. The system recursively interleave$ processep : Ny, where each
process executes indefinitely often a generic procedure COP.

COR0,In; S Out)*

... || corn,in;s Ouy*

The KIV syntax is as follows: the star operatatenotes finite or infinite iteration; the parameters
of procedure COP are separated by a semicolon into input resp. in-@agprheters, where
parametem is an input for the procedure, which writes its return value to the in-ougmatpeter
Out (a return statement is not used).

1 An additional operation index and a history variable to which an invoke aeien event are added before resp. after
each COP call, are required to prove linearizability; an auxiliary variablegessary in the lock-freedom decompo-
sition proof. They are omitted here.

7115 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

The following RG decomposition rule is derivable in the loggdER1].
P#0,GpFRy FtrangR,) Frefl(Gy) F IS Init(S) Init+IdleAlnv
I stablé€R,, Idley) Inv,Idlep - [Rp, Gp,Inv, COR(p, ...)] ldle,
Init - [R, G, Inv, COR(0,...)*||...||CORN,...)*] Idle (2)

whereR= ARy, G=\/Gp, Idle= /\Idle,
p p p

Essentially, the rule decomposes a global RG assertion about the intdrisestem, to the fol-
lowing local RG assertion for one procggexecuting COP once.

Idlep(S), INV(S) - [Rp(S,S), Gp(S,S), Inv(S), COP(p, In; S, Out)] Idley(S)

The rule also has several predicate logic side conditions. An importanisahat the local
guarantees, of a procesg must imply the relyR; for each other process# p. The local
guarantee must be reflexive and the local rely transitive. A global iniagéé snust exist, where
the invariantinv must hold and each process is idle, according to its idle state prediteie
and each idle predicate is assumed to be stable over its rely, i.e. (Rabiée,) <+ Ry(S,S’') A
Idlep(S) — Idlep(S').

Applying rule) on the running example directly is inconvenient: it requires taking the entire
program state into account by lifting relevant local state information to theabkihte using
process functions for local variables. As an example, consider theviatjodisjointness prop-
erty: concurrent local pointers to nodes that are pushed on one efatles are disjoint. With
an extra boolean function BefCASN. — bool to characterize the code-range of the CAS-loop
in DoPush before it succeeds, it can be formalized as

V p+# . BefCAS(p) A BefCAS(q) — Nodeg p) # Nodgq)

In [TSR114, we therefore proposed a local RG rule that considers two explicit states (and
the shared state), and thus avoids process functions and quantificatioprocess identifiers.
Here we take a different approach based on ownership annotatidteattiato further significant
simplifications.

4.2 Ownership Annotations for the Stack

The core idea of using ownership annotations is simple: shared resamnecaugmented with
auxiliary state that represents their distinct owner. The idea is applicaldeawad resources in
general, but we restrict our focus on concurrent heaps in the folgpwArconcurrent heap with
ownership is a partial functioH : ref — (node owner) from locations to nodes with owner

In the running example, it is sufficient to discern three possible ownetsgag location:

owner ::= p| dstacK fstack

Thatis, each heap locatioris either owned by some procgsé.e.,H (r).owr = p), or it belongs
to either the data or the free stack. Additionally, we augment the prograentoatihere to this
ownership concept as FiguPeshows.?

2 The KIV syntax is as followsy denotes nondeterministic choidet declares local variables, a comma separates

Proc. AVoCS 2013 8/15

B

ECEASST
COP(p,d; DTop, FTop,H,Out) { DoPuslfo,Node Top H) {
PUSHp,d; DTop FTop,H) let Suce= false LTopin {
v PORp;DTop,FTop,H,Out)} while - Succ{
LTop:= Top,
PUSHp,d; DTop,FTop H) { H(Node.nxt := LTopref;
let Newin { if* LTop= Top{ I* CAS */

DoPogp; FTop,H, New);
if New= null {
choose(Newy # null A Newy ¢ H) in {
H :=H + Newy, New:= Newy,
H(Newy).owr :=p}};
H(New).val .= d;

Top:= (Node LTop.cnt+ 1), Succ.= true,
H(Node :=0}}}

DoPogp; Top,H,ROub {
let Succ= false LTop,Nxtin {
while = Succ{

DoPuslidstackNew DTop H)} } LTop:= Top
if LTopref= null { Succ.= true}
PORp; DTop FTop H,Out) { else{

Nxt:= H(LTopref).nxt;
if* LTop= Top{ [* CAS */
Top.ref := Nxt Succ.= true,
H(LTopref) == p}}};
ROut:= LTopref}}

let LOut= empty, ROutin {
DoPogp; DTop H, ROub;
if ROut+# null {
LOut:= H(ROub.val;
DoPustifstack ROut FTop H)};
Out:= LOut}}

Figure 2: KIV Specification of the Stack Algorithms with Ownership Annotatiaimaded)

The effects of these simple auxiliary state annotations are worth notingofattno further
heap disjointness properties must be defined, since they are already iimplibe ownership
annotations. (Our technical repoi$R11H shows that several disjointness properties between
local states would be necessary without ownership annotations.) Sesenthn completely
avoid talking about local variables, in particular program labels. Hamken applying rule),
the state variabl& can be simply instantiated with the tug&op, FTop, H, which is the shared
state of the algorithm, where interference can actually occur. (The ltadtal sfonecurrently
running process could be added to the rule, but this is not required Adied, we can uniformly
handle typical heap modifications and use separation logic on (owneglphedicates to avoid
inductive reachability arguments. This is further explained in the nexestibs.

4.3 Concurrent Heaps with Ownership and Separation

Instead of integrating heaps into the semantics of RGITL, we use a lightwenghédding of
separation logic into higher-order logic (available as a KIV library), whegap assertions are
encoded as heap predicafgQ of type heap— bool. The lifting of this theory to heaps with
ownership is done in the standard way: an owned heap predigtaith ownero holds over
heapH, iff P holds and every location inl has ownero. Similarly, the common operators

parallel assignments aiift executes its test and program atomically. In the prover, the Haapactually represented
as a tuple (D, Nf, Of) wittdom(H) = D, node function Nf and an auxiliary ownership function Of.

9/15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

from separation logic are overloaded. For instance, the star opegttoedn two owned heap
predicate®p[P] ando; [Q] has the following semantics.

(Oo[P] * Ol[Q])(H) < 3 Hp,Hs. dOfT’(Ho) ﬂdOfT(Hl) =0A (Ho U H= H) AN P(Ho) VAN Q(Hl)
AV 1. (r € Ho — Ho(r).owr =0g) A (r € H1 — Hy(r).owr =01)

In a concurrent setting, assertions about the permissions of preciessecess shared re-
sources are typically required. Again, we do not enrich the semantic&6FIRwith permis-
sions, but simply define them based on ownership. It is common to assunaehibalp location,
which is owned by somprocesscan only be read by others, but neither deallocated, nor modi-
fied. The following rely predicate encodes this restriction.

PRy(H . H") <>Vr. ((H'(r).owr=pAreH)« (H'(r).omr=pAreH"))
A H(r)owr=pAreH —H'(r)=H"(r))

The relyPR,(H’,H”) implies the following stability property
(p[P] * trug)(H") A PRy(H",H") — (p[P] * true)(H")

and it is easy to prove that undeR,, the annotated program CQ®...) does not change any
portion of the heap, which is owned by another process.

To express absence of memory leaks, three simple heap predicatediaee:devnedH)
states that eaahin H is owned by some processynsnong(H) denotes thgh owns no location
in H, andownsong,;(H) denotes thap owns exactly locatiom in H. Obviously, predicates
ownsnong andownsone,, are stable over the permission rétR,, and it is easy to show that
predicateownsnonsg, is an idle state condition of the annotated program C®P.).

Finally, to verify linearizability we want to express that some abstract dataisepresented
by a heap location. The heap predicatst(r) defines this property, and tfieoperator enforces
acyclicity of the heap structure under

Ist(r) =if r = null thenls(r,[]) else 3 d, x. Is(r,d + x)
Is(r,[]) = empA (r =null)
Is(r,d+x) = 3 ro. ((r — (d,ro)) * Is(ro,x))

where emp holds for the empty heap only, dnd- (d,ro)) defines a heap consisting of one
node at locatiom, which stores datd and a next referenag.

4.4 Instantiating the RG Predicates for the Running Example

This section defines the concrete instances of the predicates fron2yblased on the previous
notions of concurrent heaps. The state vari&itesimplyDTop, FTop H. The global initial state
conditionInit(DTop, FTop H) requiresH to be empty, and botBTopandFTopto be (null,0).
The invariant claims that the heap always consists of two distinct linked listts gwnerdstack
resp.fstack and a separate portion where each location is owned by some process.

Inv(DTop, FTop,H) <+ (dstacKlst(DTopref)] * fstacKlst(FTopref)] * owned(H)

Proc. AVoCS 2013 10/15

@ ECEASST

The idle state predicatille,(DTop,FTopH) is simply ownsnong,(H). Since each process
owns no portion of in idle states, the application does not leak memory.

For stack nodes with ownealstackor fstack the possible concurrent access is determined
by the specific use of modification counters. In contrast to locations teadvaned by some
process, both the content and the ownership information of a stack locatiachange when the
location is concurrently removed from the data structure. An approptéatk sely condition that
captures the correctness of the memory reclamation protocol and etisatras ABA problem
does not occur on neither the data nor the free stack is the following.

SRo,Tog,H’, Tog’,H") «» Tog.cnt< Top'.cnt
A (Tog.ref#£null — Tog = Tog’ A H'(Tog.ref) = H” (Tog.ref) A H” (Tog.ref).owr = 0
v H” (Tog.ref).owr # 0 v Tog.cnt< Tog'.cnt)
A (Vr.r=null AH(r).owr#0— H"(r).owr # o v Tog.cnt< Tog'.cnt)

The specific stack relieSRdstack...) and SRfstack...) ensure that during DoPop on one
of the two stacks, the ABA prone snhapshot location either stays in the stacksacontents
(including ownership annotation) are unchanged, or if it is concurreathoved, then it is not
reinserted unless the modification counter is increased.

Finally, it remains to define the full relg, as the conjuction

Rp(DTOFf, FTop,H’,DTop’, FTop’, H”) >
PR,(H',H") A SRdstackDTog,H’,DTop’,H") A SRfstack FTog,H’, FTog’,H")

and the guarantee as
Gp(DTop, FTop,H,DTop, FTopg,H’) <+ V q # p. Ry(DTop, FTop. H, DTog, FTog, H')

The actual proof of the local RG assertion from rug for the sequential code CQP,...),
uses compositionality rulel). This splits the proof in two parts: one which verifies the RG
assertion for DoPush and DoPop and a second part that uses thesR&ctdins as contracts
for the generic procedures. In the proofs, the current shape tietye is typically given by the
invariantinv above and a formulép[(Ref+— node] * true)(H), which defines the local state of
the current procesRef corresponds to either the local variaNewor LTopref). To transfer
local state to and from one of the stacks, two simple generic merge and split $eanenased.
Verifying DoPop is most challenging, since transitive arguments overalesygmbolic execution
steps are required to derive that if the snapshot location is concurrentiyved, the following
CAS operation does fail.

5 A Decomposition of Linearizability and Lock-Freedom

This section briefly describes two decomposition theorems for the globaégies of lineariz-
ability [HW9(] and lock-freedom[{iP91]. Both theorems can be derived in RGITL, but their
proofs are rather complex and we emphasize that neither their formalizatidheir derivation

is in the scope of this paper. Instead, the proofs are available oHlIN&3].

11/15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

5.1 A Decomposition of Linearizability based on RG Reasoningnd Refinement

Having verified the premises of RG rulg)(from the local view of one procegsexecuting
COR(p,...), all environment transitions preserve its rely at all times and the invarianbea
assumed to hold in each state, i[@.(R,(S,S’") A Inv(S) A Inv(S)) holds locally. This property
is now used in a local refinement proof, which implies linearizability of the indwdd system.
Linearizability requires that an operation appears to take effect instantperstep during
its execution. This step is called a linearization point. We prove linearizabilitygusispecial
case of non-atomic refinement from COP to an abstract program AORH wdentifies the
linearization point for the concrete program as follows. The abstragiram AOP is defined
to execute some stutter steps first (indefinitely many). Then it executes thedaten point
LIN atomically on the abstract sta#s (For the stack, this is simply an atomic push or pop
operation on an algebraic data bistor AS) Finally, some further stutter steps are executed until
the operation finishes with final output val@t Both concrete and abstract operation work
on the same input and must yield the same output. Moreover, concrete stnacabktates are
always related by an abstraction functidbs Hence, the main local proof obligation is

Idlep(S), COP(p,In; S Out), 0 (Ry(S,S’) A Inv(S) A Inv(S)), (3)
0O (AbgS) = ASA AbgS) = AS) - AOP(In; AS Out)
where the abstract program is defined as

AOP(In; AS Out) {let LOutin {
skip*; {LIN(In,ASAS,LOut) A o last}; skip*; Out:= LOut} }

Theorem1 The concurrent syste@OP(O,...)*||...||[CORn,...)* islinearizable if the premises
of RG rule @) and the refinement proof obligatioB)(holds.

The abstraction function for the data stack simply correspondstaxkls(DTopref,x)]. The
refinement proofs3) for the stack also use rulé); This gives compositional proofs that replace
the generic push and pop operations with basicgtlp*; {LIN A o last}; skip* or justskip* for
the data and free stack, respectively.

5.2 A Decomposition of Lock-Freedom based on RG Reasoning

Lock-freedom is a progress property that is relevant in various agigicdomains, such as high-
availability or real-time systems. A concurrent system is lock-free if infinitélgroone of its
running operations progresses, i.e., both deadlocks and livelocks@teled. In the following,
two simple local termination conditions for an individual C@P...) are defined, which ensure
lock-freedom of the interleaved system.

The first termination condition requires that COP must terminate whenevegstram suffer
from critical interference from its environment. This interference is igelausing an additional,
reflexive and transitive predicaté (“unchanged”) 3

Idlep(S), COP(p,In; S,0ut), 0 (Ry(S,S’) A Inv(S) A Inv(S)) - O U(S,S') = Olast (4)

3 PredicateU specifies under which conditions the termination of COP can be guaranfiédrent from rely
conditionsR,, which are safety properties that always hold, predithtan be repeatedly violated.

Proc. AVoCS 2013 12 /15

@ ECEASST

The second termination condition, enforces that COP violatesly a finite number of times.
Formally, executions in whickl is violated infinitely often in COP transitions are ruled out as
follows.

Idlep(S), COP(p,In; S,0ut), 0 (Ry(S,S") A Inv(S) A Inv(S)) O G = U(SS) — < last (5)

Theorem 2 The concurrent syste@OR(0,...)*||...||CORn,...)" is lock-free if the premises
of RG rule @) and the termination conditiongl(and () hold.

In the running example, the unchanged relation is simply defined as the idetgitipn over
DTopandFTop. The actual proofs of lock-freedom are also compaositional, i.e., thefy\(el)
and 6) for the generic operations (largely automatically) and apply rleo(complete the proof
for the client code.

Our previously published termination condition for lock-freedonB$R1Q requires that
when COP violate®) once, then it subsequently terminates, i.e., the right hand sidg) ofas
O (= U(SS) — < last). This can not be shown in the running example, since a step of POP
can violateU by removing a node from the data stack and then the operation can statge wh
executing the subsequent CAS loop of the free stack. However, ptedids violated at most
once in infinite runs, which corresponds to our more generic proof dldigéb) that tolerates
an arbitrary finite number of such violations.

6 Related Work

This section compares our work with related approaches. Full covesaggossible here for
two reasons: the plentitude of existing approaches and the lack of space.

To our knowledge, the only proof of the stack with modification counters ipéineand-paper
proof in Groves et al. §C09. Their verification approach is rather different from ours, since
it is based on trace reduction and incremental refinement. They considarifiability of a
data stack with modification counters that reuses memory from an abstrattfie® locations,
while we consider an actual implementation of a free stack and give fully mesthproofs of
memory-safety, ABA prevention, linearizability and lock-freedom.

RGSep VP07 is a program logic that combines RG reasoning and separation logicdpr he
modular, Hoare-style reasoning about the safety of concurrentgrsy A tool for automatically
verifying linearizability based on RGSep has also been developed. trasbto RGSep, heaps
are not part of the semantics of RGITL, which makes no restrictions orotgsge modifications
of a program to a heap variable. This makes it more difficult for us to espmich part of the
heap a program leaves unmodified, without changing the semantics, aodroent approach
with ownership annotations is a step towards this end. In RGSep, locdharetisassertions refer
to either the local heap of one process or the shared heap, whiclkmands to our annotations
of portions of the heap with a distinct owner. Different from RGITL, idieig decomposition
theorems, refinement and liveness proofs are not in the scope offRGSe

Most approaches to RG reasoning justify their rules on a semantic level[feBiH01]). A
mechanized soundness proof for global RG rules for interleavedanrmwith shared variables
has been given ir{re03. The verification is based on Isabelle’s higher-order logic and tbezef

13/15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL Eﬁ

in essence had to explicitly formalize intervals. Our soundness proofS afdeomposition rules
are simpler, since they are based on a compositional temporal logic, whemela are already
part of the semantics.

In general, reduction techniques for symmetric system components (asatheften be found
in concurrent data type implementations) have also been developed fot chedking. How-
ever, proving linearizability using (symmetric) model checking fails in gdri&faY09]. Model
checking approaches are fully automated and useful to quickly findlipugksecking short runs
of usually two interleaved operations, but do not give full derivations.

Several concepts that we use in our approach are also implemented inotoste€ific pro-
gramming languages, e.gGMST1Q JP0§ for annotated (concurrent) C code.

7 Conclusion

This paper describes an approach for the verification of concuatgatithms, which is based
on a combination of different techniques. These were illustrated on @&rvad-running exam-
ple. The approach incorporates RG reasoning into a compositional tenhpgicalwhich also
makes liveness proofs possible. For the verification of concurreag hkigjorithms, ownership
annotations and separation logic are used. Finally, we have briefly skietiwlo decomposition
theorems for the important properties of linearizability and lock-freedom.

Some possible areas of future work are as follows. Concrete progiseafise 2 of rule
(2) require several interactions (mainly for the symbolic execution of the atigin ¢»; with
induction). We leave it for our own future work to implement derived rutesspecific classes
of formulas, to better automate these proofs. Another option for futur& vgoto integrate
our current ownership and separation approach with the RG decomposit®) and the
verification of further challenging case studies.

Bibliography
[BDFT04] M. Barnett, R. DeLine, M. &hndrich, K. R. M. Leino, W. Schulte. Verification of
Object-Oriented Programs with Invariandsurnal of Object Technology, 2004.

[BSTR11] S.Baumler, G. Schellhorn, B. Tofan, W. Reif. Proving Linearizability with Temgbo
Logic. Formal Aspects of Computing (FA@3(1):91-112, 2011.

[CMST10] E. Cohen, M. Moskal, W. Schulte, S. Tobies. Local verif@aof global invariants
in concurrent programs. IRroc. of CAV Pp. 480-494. Springer, 2010.

[GCO9] L. Groves, R. Colvin. Trace-based Derivation of a ScalablektFree Stack Algo-
rithm. Formal Aspects of Computing (FAQ)L(1-2):187-223, 2009.

[HW90] M. Herlihy, J. Wing. Linearizability: A Correctness Condition fooRurrent Ob-
jects.ACM Trans. on Prog. Languages and Systdi2(8):463-492, 1990.

[Jon83] C. B. Jones. Specification and Design of (Parallel) ProgramBroceedings of
IFIP'83. Pp. 321-332. North-Holland, 1983.

Proc. AVoCS 2013 14 /15

@ ECEASST

[JPO8] B. Jacobs, F. Piessens. The VeriFast Program Verifiehniel Report CW-520,
KU Leuven, 2008.

[KIV13] KIV. Presentation of KIV proofs for AVOCS'13. 2013. URL
https://swt.informatik.uni-augsburg.de/swt/projects/avocs13.html

[Mos00] B. C. Moszkowski. A Complete Axiomatization of Interval Tempdragic with In-
finite Time. InLICS 2000: Proc. of the 15th IEEE Symposium on Logic in Computer
SciencePp. 241-252. IEEE Computer Society Press, 2000.

[MP91] H. Massalin, C. Pu. A Lock-Free Multiprocessor OS Kernelchrecal re-
port CUCS-005-91, Columbia University, 1991.

[Pre03] L. Prensa Nieto. The Rely-Guarantee method in Isabelle /HODetyano (ed.),
ESOP’03 LNCS 2618, pp. 348-362. Springer, 2003.

[RBHT01] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. leakhrM. Poel,
J. Zwiers.Concurrency Verification: Introduction to Compositional and Noncompo
sitional MethodsCambridge Tracts in TCS 54. Cambridge University Press, 2001.

[Rey02] J.Reynolds. Separation Logic: A Logic for Shared Mutabl@&B#&ructures. liProc.
of LICS Pp. 55-74. IEEE Computer Society, 2002.

[STER11] G. Schellhorn, B. Tofan, G. Ernst, W. Reif. InterleavedgPams and Rely-
Guarantee Reasoning with ITL. Proc. of TIME IEEE CS, pp. 99-106. 2011.

[TBSR10] B. Tofan, S. Bumler, G. Schellhorn, W. Reif. Temporal Logic Verification of Lock-
Freedom. Irin Proc. of MPC 2010Springer LNCS 6120, pp. 377-396. 2010.

[Tre86] R. K. Treiber. System programming: Coping with parallelism. Teximeport RJ
5118, IBM Almaden Research Center, 1986.

[TSR11a] B. Tofan, G. Schellhorn, W. Reif. Formal Verification of ackd-ree Stack with
Hazard Pointers. IRroc. ICTAC Pp. 239-255. Springer LNCS 6916, 2011.

[TSR11b] B. Tofan, G. Schellhorn, W. Reif. Local Rely-Guaranteaditions for Linearizabil-
ity and Lock-Freedom. Reports in Informatics 26, KIT, 2011.

[VPO7] V. Vafeiadis, M. J. Parkinson. A Marriage of Rely/Guaranteé Separation Logic.
In CONCUR Springer LNCS 4703, pp. 256-271. 2007.

[VYYO09] M. Vechey, E. Yahav, G. Yorsh. Experience with Model Ckimg Linearizability. In
Proceedings of the 16th International SPIN Workshop on Model Ghg&oftware
Pp. 261-278. Springer-Verlag, 2009.

15/15 Volume 66 (2013)

https://swt.informatik.uni-augsburg.de/swt/projects/avocs13.html

	Introduction
	The Lock-Free Data and Free Stacks
	RGITL
	Syntax and Semantics
	Deduction
	Rely-Guarantee Assertions

	Rely-Guarantee Reasoning with Ownership and Separation
	Rely-Guarantee Decomposition
	Ownership Annotations for the Stack
	Concurrent Heaps with Ownership and Separation
	Instantiating the RG Predicates for the Running Example

	A Decomposition of Linearizability and Lock-Freedom
	A Decomposition of Linearizability based on RG Reasoning and Refinement
	A Decomposition of Lock-Freedom based on RG Reasoning

	Related Work
	Conclusion

