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Abstract. This paper illustrates the integration of model checking in
SecureMDD, a model-driven approach for the development of security-
critical applications. In addition to a formal model for interactive verifi-
cation as well as executable code, a formal system specification for model
checking is generated automatically from a UML model. Model check-
ing is used to find attacks automatically and interactive verification is
used by an expert to guarantee security properties. We use AVANTSSAR
for model checking and KIV for interactive verification. The integration
of AVANTSSAR in SecureMDD and the advantages and disadvantages
over interactive verification with KIV are demonstrated with a smart
card based electronic ticketing example.

1 Introduction

Security-critical system vulnerabilities are reported constantly. Such systems
range from a desktop application (e.g., a browser) to security-critical systems like
MasterCard and VISA [22] or the Google single sign-on password system [21]. To
identify and eliminate protocol flaws during development model checking can be
used. Therefore, an input model for the model checker has to be created which
is then used to find attacks or automatically check security properties. There are
several model checkers (e.g. NuSMVI8|, SPIN[12], PRISM[11]) but only a few
are tailored towards cryptographic protocols. AVANTSSARJ1] is a project for
Automated Validation of Trust and Security of Service-oriented Architectures. It
integrates three different model checkers (Cl-AtSe, SATMC, OFMC) by using a
common input language called ASLan++[20]. It can be used to find flaws in cryp-
tographic protocols [2] or to prove security properties under some assumptions
(e.g. a fixed number of loop executions or a fixed trace length). Cryptographic
protocols are based on message exchange over channels that are influenced by an
attacker. Since the specification of a system using cryptographic protocols can
quickly become too large and complex for a model checker due to computing re-
source constraints, it is necessary to abstract and simplify this specification. When
security properties are to be checked for an application using cryptographic proto-
cols (such as an electronic ticketing system) then usually the whole application has
to be abstracted. This is time-consuming, error-prone and needs a lot of expertise.
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SecureMDD is a model-driven approach for developing security-critical appli-
cations. From a platform independent model runnable code as well as a formal
specification for interactive verification of application-specific security proper-
ties can be generated automatically. Interactive verification is time-consuming
and requires expert know-how but it guarantees the properties for an arbitrary
number of protocol runs and loop executions. On the other hand, classic model
checking assures an automatic validation of properties, but only for fixed number
of protocol runs. In our approach, model checking is meant to be an addition to
interactive verification by an expert and can be used to find attacks. It is also
useful to eliminate some security flaws before using interactive verification.

This paper focuses on the integration of AVANTSSAR into SecureMDD as well
as on the question how far a model of an application which is used to generate
runnable code can be abstracted automatically for validation of application-specific
security properties with AVANTSSAR. As aresult, a SecureMDD application can
be model-checked automatically.

This paper is structured as follows. Section 2 gives an overview of the model-
driven approach and Section 3 pictures an eTicket example. Section 4 describes
the transformation from a SecureMDD model into an ASLan-++ specification and
section 5 shows some abstraction rules. Section 6 explains some security flaws us-
ing the eTicket example and section 7 compares model checking and interactive
verification. Section 8 discusses related work and concludes this paper.

2 The SecureMDD Approach

SecureMDD is a model-driven approach to develop security-critical systems. From
a model that represents a system, runnable code, a formal specification for in-
teractive verification and an ASLan++ specification for model checking can be
generated automatically. The formal specification is used to verify application-
specific security properties for an infinite number of agents and protocol runs. The
ASLan++ specification is only used to find security flaws due to the limitations
like a finite number of agents and protocol runs. Examples for mentioned security-
properties are that during a transfer in an online banking system no money is
lost, that security-critical data remains secret or that a Dolev-Yao attacker [10]
cannot harm the system.

The SecureMDD approach (see Fig. 1) uses a platform-independent UML
model, a UML profile as well as a platform-independent and easy to use
modeling language MEL [17] [6] to define security-critical applications. Based
on the platform-independent application model a formal specification and three
platform-specific models (one for each component type) are generated. The
formal specification is the basis for the verification of application-specific security
properties [18] using the theorem prover KIV[4]. The platform-specific models
are tailored for their target platforms, e.g., Java Card for a smart card, Java
for a terminal or a PC, and Java based Web services for a service. A smart card
is a secure device that can be accessed only via a predefined interface and is
tamper-proof: nobody has access to the operating system or the internal memory
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Fig. 1. SecureMDD Approach

directly. A terminal is also a secure device that receives instructions from a user
and can have an interface for the communication with a smart card. A PC is
a personal computer where the user has access to internal storage. A service
will be deployed on servers that are assumed to be secure devices. Services can
be connected by terminals or other services over a network. To perform tasks,
a service can orchestrate other services, or several autonomous services can
collaborate together. Services can only be accessed via their specified interfaces.

The approach illustrated in Fig. 1 is fully tool-supported and all model
transformations are implemented. In this paper, we focus on the integration of
AVANTSSAR in SecureMDD.

3 Electronic Ticket Example

By using the electronic ticketing system a user is able to buy train tickets online.
The tickets are stored on his smart card and can be inspected multiple times. Only
a genuine inspector device is able to validate and “punch” tickets. Additionally,
only the card owner is able to buy tickets and to view or delete his purchased
tickets.

Fig. 2 shows the deployment diagram of the application. It defines the com-
ponents, the communication structure and the abilities of the attacker. There
are two kinds of users involved in the system, the card owner (User) and the
inspector (Inspector). The card owner can use his home PC (UserDevice) to
buy, show or delete tickets on the card (ETicketCard). To buy a new ticket, the
UserDevice connects to a server called ETicketServer. An Inspector is able to
validate and “punch” tickets on a valid card with his inspector device (Inspec-
torDevice) without access to the ETicketServer. The attacker has full Dolev-Yao
abilities on the connections. That means an attacker can read, send and suppress
messages that are exchanged over any connection. This is represented by the
stereotype Threat with the properties { read, send, suppress}. InspectorDe-
vice, ETicketCard and ETicketServer are secure devices. This means that neither
the modeled participants nor the attacker have access to their internal storage.



79

Fig. 2. Deployment diagram of the application

The assumptions are that a terminal is a closed and sealed device (e.g., an ATM
or cash card reader) and that the attacker has no physical access to the servers
running the services. UserDevice represents a personal computer, with its user
being able to access its internal storage. Additionally, the PC is insecure, which
means that an attacker also has access to the device, e.g., through malware.

Three security properties are required to hold for this system. Firstly, only
tickets issued by ETickerServer are valid and can be “punched”. Secondly, a paid
ticket can not be lost (i.e., a bought ticket is stored on the server until the card
has received the ticket and has sent a delete ticket confirmation to the server),
even if the UserDevice crashes, the ETicketCard is removed from the card reader
or because of an attacker. Thirdly, a ticket can not be “punched” twice.

4 Translation of a SecureMDD Model into ASLan-+-+
Specification

This section describes the transformation from a SecureMDD model (using
deployment diagrams (see Fig. 2), class diagrams and activity diagrams) into
ASLan-++. The focus is on the correct translation without regard to the execu-
tion time of model checking. The transformations are application-independent
but are illustrated using the electronic ticketing example.

SecureMDD uses UML that is tailored on security-critical applications. The
static view is modeled by class diagrams and a deployment diagram, and the dy-
namic view is modeled by activity diagrams. The class diagrams define the partici-
pants, their attributes and the messages classes. The deployment diagram defines
the communication structure as well as the attacker abilities. The activity dia-
grams contain the message exchange as well as the actions that will be executed
after receiving a message (e.g., decrypting of messages, comparing of values or deb-
iting a credit card). A platform-independent and domain-specific language called
MEL [17] [6] is used. It supports assignments, object creation, local variables, com-
parisons and predefined operation (e.g., encrypt, sign, hash, generateNonce, etc.).
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Fig. 3. A part of the activity diagram used by SecureMDD to describe the behavior of
ETicketCard

Fig. 3 depicts a snippet of an activity diagram that describes a part of ETicket-
Card’s behavior. It describes the first step of the protocol to buy a ticket (which
is initiated by the user) after a successful authentication between ETicketCard
and ETickerServer. The activity diagram shows two partitions. The left one de-
scribes the participant UserDevice and the right one (1) represents the participant
ETicketCard. UserDevice sends the message BuyTicket with ticketInfo and pin
to an ETicketCard. After ETicketCard receives the message BuyTicket (3-4) it
checks its state to ensure that an authentication has previously occurred and
compares the received pin with the correct one stored in the pin attribute of the
card(6). If the check fails, the state will be reset to StateCard.IDLE and the pro-
tocol step is finished (26). StateCard is an enumeration defined in a class diagram
that can be IDLE, AUTHENTICATED, EXP TICKET, etc. After a successful
check waitingForTicket is set to true and a new transactionld (of type Nonce)
is generated (8-9). waitingForTicket, transactionld, state and pin are class at-
tributes of ETicketCard defined in the class diagram. After creating the local
variable msg of type BuyInfo (11-14) this message is encrypted with a session
key (16-20) which was exchanged in a previous authentication protocol. At the
end, the state is set to EXP Ticket (22) and the message ReqTicket with the
encrypted content is sent to UserDevice (23).

ASLan++(20] is a textual language used by AVANTSSAR for specifying
security-critical applications. The major building blocks are entities. They
declare types, symbols, a body and other items. Each participant modeled as class
in SecureMDD is translated into an ASLan++ entity. These entities are called
agents. The local variables as well as class attributes are translated to symbols
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inside the resulting entities. The types of the attributes that are described by
classes or primitives in SecureMDD are defined as types in ASLan++. A body
section contains the dynamic part of the application as well as the communication
structure and the attacker abilities on the individual communication channels.

1 entity ETicketCard (...){

3 on(UserDevice $> Actor :

4 buyTicket .(ticketlnfo.(...).?M buyTicket pin))

5

6 if ( State = statecard authenticated & M buyTicket pin = Pin )
7 {

8 W aitingForTicket := t;

9 Transactionld := fresh ();

10

11 L buyTicket msg cclnfo .

12 L buyTicket msg ticketlnfo

13 L buyTicket msg cardID id := Id id;

14 L buyTicket msg transactionld := Transactionld;
15

16 L buyTicket enc := scrypt (SessionKey, buylnfo.(
17 cCinfo.(...).ticketlnfo.(...).

18 iD.(L buyTicket msg cardID id).

19 L buyTicket msg transactionld

20 )

21

22 State := statecard exp ticket;

23 Actor S> UserDevice : reqTicket.(L buyTicket enc);
24 }

25 else{

26 State := statecard idle;

27 '} }}

Listing 1. A part of the ASLan++ specification that describes the behavior of
ETicketCard

List. 1 shows the ASLan++ representation of the protocol step depicted in
Fig. 3. The participant ETicketCard is described by an entity (1). The ability to
receive the message BuyTicket from UserDevice is specified by the on(...) state-
ment (3-4). It describes a conditional branch without else case. If the condition
UserDevice  Actor : buyTicket... (3-4) inside the on statement is true then the
actor (ETicketCard) receives the message buyTicket... from the UserDevice.
describes that the attacker can read, send and suppress messages on this connec-
tion. In ASLan++ it is not possible to define complex data types (e.g., a class
that contains some attributes). Hence, for sending or receiving the message BuyT-
icket, only the attributes and the type information specified by constants to avoid
type confusion are used. After ETicketCard receives the message BuyTicket (3-
4) it checks its State and the received pin (6). If the check fails, the state will
be set to statecard idle (26). If the check was successful WaitingForTicket is set
to true (8). After that Transactionld is set to a “fresh” value (this value is new
and unique) (9). In SecureMDD we used for this the predefined function gener-
ateNonce. The assignment of complex data types has to be customized. Therefore,
an object assignment has to be fragmented in several assignments for existing data
types. The instantiation of complex data types, in this case BuylInfo, needs several
statements because each attribute has to be assigned separately (11-14). After the
instantiation msg is encrypted symmetrically with SessionKey (16-20). Finally,
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the state is set to statecard exp ticket (22) and the encrypted message is sent to
UserDevice (23). The complete SecureMDD model and ASLan++ specification
of eTicket is available on our website?.

In the following some interesting aspects of the transformation of the UML
application model into ASLan++ are described. In SecureMDD a participant is
able to receive any known message type while he is waiting for a message. In
our ASLan++ specification this behavior is formalized with an infinite loop and
a non-deterministic choice of receiving messages inside the body of each agent
(see List. 2). A non-deterministic choice is defined by the select statement that
contains conditional branches without an else case (on(...)). A Actor : M1
means that the actor receives the message M1 from the agent A.

1 while(true)

2

3 select

4 {

5 on(AS>Actor @ M1):{...}
6 on(AS>Actor : M2):{...}
7

8 on(BS>Actor : Mn):{...}
9 }}

Listing 2. Definition of agent behavior

If/else statements, equality checks, logical expressions (e.g., AND, OR) as well
as encrypt and sign operations can be directly mapped to existing equivalent
ASLan++ language constructs. SecureMDD supports lists and key-value con-
tainers, whereas ASLan++ only supports sets. For example, lists in SecureMDD
contain following operations:

— add(Element e) : void Adds the element e to the end of the list.
— remove(Element e) : void Deletes the element e from the list.

Therefore, SecureMDD lists are emulated using ASLan++ sets. Each ASLan++
list element is defined as a tuple consisting of the original list element and a unique
index, while the set maintains an index counter. Add and remove have been trans-
lated in a simple and efficient way into ASLan++. The add operation increases
this counter and inserts a new tuple into the set consisting of the original element
and the new counter value as index. This allows us to insert duplicate elements
into a set. The remove operation for a SecureMDD list is translated to an existing
remove operation on ASLan-++ sets. For this operation the index can be ignored.

Arithmetic operations like addition and multiplication are supported in Se-
cureMDD but not in ASLan++. For some examples like eTicket they are not
necessary but we have also examples modeled with SecureMDD that use arith-
metic operations. Currently, SecureMDD applications that use arithmetic will
not be translated into ASLan++. This is a severe limitation of AVANTSSAR
and the used model checkers. However, we are not aware of a model checker that
supports arithmetic and is tailored on security applications.

! http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/
secureMDD/


http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
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SecureMDD and ASLan++ support a full Dolev-Yao attacker [10] who is able
to read, send, and suppress messages on the fly. Secure devices in SecureMDD
like an InspectorDevice are translated to ASLan++ as an honest agent and an
insecure device like UserDevice becomes a dishonest agent. Dishonest means that
an attacker can play the role of such an agent.

SecureMDD uses invariants to specify security properties. The invariants can
be translated into ASLan—++ goals. The validated goals for our eTicket example
are described in section 6.

5 Automatic Abstractions

SecureMDD models like eTicket are too large for the model checkers integrated
in AVANTSSAR. The eTicket case study has 52 different protocol steps (where
one protocol step can lead to several transition rules in ASLan). More precisely,
an eTicket ASLan++ specification that is translated one-to-one without any ab-
stractions leads to 162 transition rules. This is a lot compared to the average 20
transition rules that are considered by the AVANTSSAR examples.

The execution time of model checking depends on several factors. One of those
factors is the number of agents as well as the complexity of their behavior. The
behavior of system participants can be specified in ASLan++ primarily using
guards and statements (e.g., the sending or receiving of a message, a conditional
branch or an assignment). ASLan++ is translated into ASLan by AVANTSSAR.
ASLan uses transition rules with pre- and postconditions to define the partic-
ipants’ behavior. A transition rule transfers a state machine from one state to
another if the precondition is true. The number of such transition rules as well
as their interconnectivity is also crucial for the complexity of the system specifi-
cation. The attacker capabilities are just as important. If an attacker is able to
generate and send messages to a system agent, it is checked at every transition
whether the attacker is capable of generating a message that could lead to a se-
curity property being violated. If loops or more than one session are specified,
the complexity of the specification depends on the number of transition rule ex-
ecutions and on the maximum trace length. A trace contains a list of transition
rules and represents one possible execution order of the specified system.

Since model checkers need a lot of computing resources which are not always
available, the application models need to be abstracted. This is usually done
manually [2] and only by security experts. A manually abstracted version of the
full eTicket example leads to 55 transition rules. In the following some automatic
abstractions are mentioned with that the generated specification has only 65 tran-
sition rules against the 162 without any abstractions. This is very close to the
manually abstracted version and can not be significantly reduced further without
omitting some of the applications functionality.

1. Removing participants that are not security-critical
An honest agent such as a terminal in SecureMDD which only forwards mes-
sages between other agents can be omitted in the abstract specification. In or-
der for all communication options to be preserved, new communication paths
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have to be created. The attacker abilities on a new communication path is the
most permissive combination of his abilities on the paths that are replaced
by the new, direct communication path. If, however, such an agent that only
forwards messages is dishonest (e.g., an “insecure” PC), the attacker abilities
on a new communication path are “read, send, suppress”. In the eTicket case
study (see Fig. 2) the agent UserDevice can be removed. A new communi-
cation path is created between User and ETicketServer, between User and
ETicketCard as well as between ETicketCard and ETicketServer. The at-
tacker capabilities on the new created communication paths are “read, send,
suppress”. Using this abstraction, the resulting specification for the eTicket
case study has 10% less transition rules.

. Deleting unused class attributes

Some class attributes are necessary for the implemented application but are
never used in the protocols. For example the attributes of TicketInfo (depar-
ture, destination, expiration, ...) are relevant for the real users and inspectors
but not for the formal specification. Hence, if the attributes of a class are never
used by the protocols (especially no constructor call of the class) and if the
security properties do not refer to those class attributes, they don’t need to be
specified in ASLan++. Consequently, such a SecureMDD class with unused
attributes is translated to an ASLan++ type. Model checking a simplified
eTicket version with the model checker Cl-AtSe using this abstraction, is five
times faster than a version of eTicket that does not use this abstraction.

. Reducing conditional branches

In SecureMDD, the section between receiving a message and sending the
next is called a protocol step and is considered to be atomic. If all steps in
ASLan++ could be specified to be atomic each step could be translated into a
single transition rule. However, in ASLan++ steps that contain branches are
translated into several transition rules in ASLan, which increases the com-
plexity of the specification. It is possible to merge several nested conditional
branches into one by combining the branch conditions with a logical AND if
only the innermost branch contains other statements. By doing so one can
eliminate transition rules from the resulting ASLan specification. This ab-
straction can be used quite often with SecureMDD models and is executed
automatically on the UML model.

In SecureMDD, any system participant can receive any modeled message
after having executed a step. For the state machine in ASLan this results
in a large number of possible transition combinations. In most protocols,
however, the message order is fixed by using explicit state variables that are
usually checked in a branch condition immediately after receiving a message
(see Fig. 3 (6)). But as already mentioned, conditional branches are to be
avoided in ASLan++. Because for receiving a message a conditional branch
without else case (on(...) see List. 1 (3-4)) is used, the mentioned abstrac-
tion would not be applicable. But because usually, in SecureMDD, all else
cases from the state checks are the same (e.g. only set the state to idle), it
is possible to get the required behavior by adding on(true) state:= idle; to
the ASLan++ select statement inside the infinite loop of an entity depicted
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in List. 2. This is done automatically if the assumptions hold. This abstrac-
tion reduces the number of transition rules of the eTicket case study by 50%
compared to a version of eTicket that does not use this abstraction.
4. Assuming a fixed message order

Another abstraction is to specify the message receive order statically in
ASLan++4. This means that the dynamic state check while receiving a
message has to be translated into cascading receive blocks in the ASLan++
specification where the inner one can only receive a message if the outer one
has received and executed a message. To guarantee that such abstraction
does not lead to false positives the dynamic state checks remains. The static
receive order is implemented very efficiently by the AVANTSSAR tools and
leads to a major speed up that makes it possible for the first time to find
security flaws in the eTicket case study.

The aforementioned abstractions are done automatically during the transforma-
tions and leads to a significant reduction of the system complexity and make model
checking of medium-sized systems like eTicket with ASLan++ and a model-
driven approach feasible in the first place. However, the execution time of model
checking rises exponential with the number of transition rules. Therefore, larger
systems like an electronic health card [16] which has 105 different protocol steps
(translated and abstracted to approx. 130 transition rules) are too big for model
checking application-specific properties for the whole application.

6 Security Flaws

AVANTSSAR is a project about ” Automated VAlidatioN of Trust and Security
of Service-oriented ARchitectures”. It integrates three model checkers (Cl-AtSe,
OFMC and SATMC) which use the same input language called ASLan++. But
not all model checkers support its full syntax. Because only Cl-AtSe[19] covers
all needed syntax elements and because speed tests illustrate that all three model
checkers are comparably fast [19] we decided to use Cl-AtSe for our tests. Cl-AtSe
is a " Constraint Logic based Attack Searcher” for security protocols. To find at-
tacks it uses rewriting and constraint solving techniques as well as different kinds
of backward strategies. Cl-AtSe supports a split function to split a specification
into subtasks that can be executed in parallel. The tests were performed on a
3GHz quad core computer. Without using the split function, the CPU load was
constantly at 13%, with the split function we were able to use the full capacity.

For the eTicket example we have defined three application-specific security
properties in ASLan++. They are used to test which kind of protocol flaws can
be found, which assumptions are necessary as well as how long it takes to find
those flaws.

1. Only tickets that were issued by the eTicket server can be “punched”
To ensure this application-specific security property it is also necessary that
only tickets that are stored on a valid card can be “punched”. Hence, before
an inspector “punches” a ticket, the card has to authenticate itself with the
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inspector device. This is done using certificates. Then, it is ensured that the
incoming messages were sent by the authenticated participant. This is done
using nonces. The inspector device has to send a nonce encrypted with the cer-
tified card public key to the card and the card has to answer with the received
nonce encrypted with the public key of the inspector device. If such a nonce
is not used, the attacker can inject an answer message and a ticket that is not
stored on a card will be “punched”. That would lead to the fact that the men-
tioned security property does not hold. For testing the model checker we have
removed the nonce. This security flaw has been detected with the abstracted
version in a few seconds. The split function was not used and the assumptions
were that each transition rule can be executed only once in a trace.

. A paid ticket cannot be lost (i.e., a bought ticket is stored on the

server until it has been received by the card)

Before a ticket can be bought, an authentication has to take place and a valid
PIN has to be provided. If the user buys a ticket but does not receive it be-
cause the attacker has suppressed the message that contains the ticket, then
the ticket is paid for but not stored on the buyer’s card. Hence, a recovery
protocol is used to be able to receive the last paid ticket until it can be stored
successfully on the card. Therefore, a previously processed authentication and
a boolean flag waitingForTicket set to true are necessary. WaitingForTicket is
set to true before the ReqTicket message is sent out (see Fig. 3) and it is set to
false after the ticket is received. However, after a ticket is bought but has not
been received yet, it is possible that the card owner buys a new one. In this
case, the first bought ticket which is stored on the server will be overwritten by
the new one and the old ticket is lost. But that is against the security property.
To find the flaw it is necessary that a ticket can be bought two times. Hence,
for Cl-AtSe it is necessary that each transition rule can occur in a trace at least
two times. This value has to be set manually and leads to a higher complexity
and a higher execution time. With the abstracted version and the split func-
tion that allows a full CPU load the flaw could not be found even after a week.
To ensure that this attack exists in the ASLan-++ specification, we predeter-
mined the attack trace. Then the attack was found. Another way to find the at-
tack but without giving the full attack trace, is to omit protocol steps that are
not necessary for the security property. This abstraction needs expert know-
how and can cause that some attacks can not be found. But it also reduces the
complexity and raises the chance to find an attack. In this way we delete the
inspector, the inspector device, all protocol steps that receive messages from
the inspector device as well as the show ticket and delete ticket functionality.
Then we were able to find the attack with the split function in 30 minutes.

. A ticket cannot be “punched” multiple times

After along time of analyzing the eTicket case study we have manually found a
security flaw (security property is violated) that was actually hard to find and
can only occur if almost all protocol steps are considered and the handshake is
executed three times. Taking this knowledge into consideration we have tried
to find the attack using model checking. Despite the abstraction, elimination
of all not used protocol steps and the split function that allows a full CPU



87

load the flaw could not be found even after a week. For the attack a handshake
between card and server has to be processed and a ticket has to be bought,
stored on the card and the delete ticket confirmation that should be sent to the
server has to be suppressed. Then the ticket has to be stamped by an inspec-
tor device. For that the public keys have to be exchanged between card and
inspector device and their certificates has to be verified. Additionally, a ticket
has to be chosen and then stamped. After that a new Ticket has to be bought
to set the WaitingForTicket flag to true. This means that a new handshake
has to be processed but this time the message to buy the ticket has to be sup-
pressed. After that the first bought ticket that is still stored on the server can
be recovered by processing a handshake and the recovery. That replaces the
stamped ticket with the same ticket but it is not stamped. After that the ticket
can be stamped a second time. This attack requires 73 steps, which is a lot.

7 Comparison: Model Checking vs Interactive Verification

Existing ASLan++ specifications that consider security applications can often
be checked within a few minutes. But to achieve this in the first place, the real
applications are abstracted manually. In case of a real application not the whole
system is considered but only a manually chosen part. For example, for our eT-
icket case study that has 52 different protocol steps (whereby one protocol step
can lead to several transition rules in ASLan) the ASLan++ specification also
considers that a user is able to view his purchased tickets. Because the exchanged
messages to view purchased tickets are not relevant for the considered properties,
a manual abstracted specification would omit those messages. But this has to be
done by an expert because it is non-trivial which parts of the application can
be omitted. Additionally, the assumptions (e.g., only one or maybe two protocol
runs are considered) are too restrictive.

In contrast to classic model checking, with interactive verification it is possible
to verify security properties of an application that uses cryptographic protocols
for an arbitrary number of agents and protocol runs. The formal model for in-
teractive verification with KIV is based on algebraic specifications and Abstract
State Machines (ASMs) [7]. It specifies a world in which agents exchange mes-
sages according to the protocols, and an attacker tries to break the security. The
interactive verification of the mentioned security properties for eTicket (see 6)
by an expert requires approx. three weeks to verify the properties for all possible
protocol runs and for an arbitrary but finite number of agents. For model check-
ing of medium-sized applications the application model has to be abstracted
to reduce the search space. If these abstractions are done manually they are
time-consuming, error-prone and require expert know-how. Interactive verifica-
tion is also time-consuming and requires expert know-how but with “simplifier
rules” that are generated automatically by KIV some verification steps can be
automated. Arithmetic is also a difficult task for most model checkers. For ex-
ample, ASLan++ only provides a successor as well as an equal function. Other
model checkers like NuSM V8] provide basic arithmetic like addition, subtraction,
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multiplication, comparison etc. But in those model checkers, a fixed range of val-
ues has to be specified. Model checkers that are able to verify properties for an
arbitrary number of agents and protocol runs are currently work in progress.
OFMC][15] is a model checker that implements a fixpoint module which uses an
over-approximation of the search space to allow a verification for an unbounded
number of transitions. To cope with the infinite set of traces, OFMC uses some
abstractions that are not safe, which can lead to false attacks. It is also possible
that the abstractions run into non-termination and nothing can be proved with
the fixpoint module. Although OFMC is integrated in AVANTSSAR, it only sup-
ports a subset of full ASLan, which is not enough to specify our eTicket example.
Hence, we were not able to test the fixpoint module of OFMC.

8 Related Work

Model checking is still used with a manual abstraction of an existing application
[2]. Such abstractions can be done systematically and fault-preserving [13] but
they are still time-consuming and need expert know-how. In our model-driven ap-
proach, runnable code as well as formal specifications are generated automatically
from a model. To ensure that the generated code and the formal specification fit
together, the resulting formal specification must not be adjusted manually. Hence,
abstractions have to be done automatically. There are model-driven approaches
that already generate formal specifications automatically for model checking.

The approach developed by Deubler et al. [9] considers the model-driven de-
velopment of secure service-based systems and uses SMV to automatically check
role-based access control policies. SecureUML [5] is also a model-driven ap-
proach that defines application behavior with UML. It uses Maude and Spin for
model checking and Isabelle for interactive verification. However, it is tailored to
role-based access control applications. Arsac et al. [3] use BPMN for model-
ing security-critical business processes and AVANTSSAR for model checking of
security properties like role-based access control.

But all these approaches are not able to check or verify application-specific
security properties. That is because they focus on the interaction between agents
and do not model the full application behavior. Hence, by using those approaches
one is only able to validate high level security properties like secrecy, integrity,
authentication, authorization and role-based access control. But many system
requirements are application-specific like “only tickets that were issued by a valid
ticket server can be punched”. Additionally, a few of them also generate code from
the application model automatically but this code has to be extended by logic that
is usually also security-critical. By combining our approach called SecureMDD
with AVANTSSAR it is possible to model check the full system behavior for
application-specific properties automatically.

UMLsec [14] describes another model-driven approach that uses sequence dia-
grams or state charts to model the system behavior and integrates model checkers
(e.g., Spin) and automated theorem provers (e.g., SPASS) to check security prop-
erties like secrecy and integrity but are not restricted to those. UMLsec does
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not integrate AVANTSSAR and has not demonstrated the limitations of model
checking in a model-driven approach.

9 Conclusion

Model checking can be used to find protocol flaws in security-critical systems.
In this paper we successfully integrate model checking using AVANTSSAR into
SecureMDD, a model-driven approach for security-critical applications. We have
written model-transformations to automatically transform a SecureMDD model
into ASLan++. The transformation automatically does abstractions on the UML
input model to reduce the complexity of the resulting specification. The gener-
ated specification is very close to a manually written one that specifies the full
application functionality. We have defined application-specific security proper-
ties for an eTicket application and have shown that within one week and a 3GHz
quad core computer some attacks could be found but not all. The properties are
checked for the whole system that has 52 protocol steps and represents a real
and medium-sized application. Because the system complexity rises exponential
with each protocol step, even larger applications than our eTicket case study are
too big for model checking of application-specific properties for the whole system
without omitting functionality. Finally, we have shown the difference between
interactive verification and model checking. Future work could be to annotate
protocol parts in the SecureMDD model that should be omitted in the resulting
ASLan++ specification to reduce the system complexity.

We come to the conclusion that model checking enriches a model-driven ap-
proach for security-critical applications greatly. Such an approach with automatic
generation and abstraction of formal specifications avoids expert know-how about
formal methods as needed for interactive verification. But for large systems the
complexity of model checking the whole system is too big. Furthermore, classic
model checking is suitable to find application-specific security flaws but for verifi-
cation (arbitrary number of agents and protocol runs) of large systems, interactive
theorem proving is needed.
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