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tional axioms for a domain and a codomain operation. KAD considerably augments the expres-
siveness of Kleene algebra, in particular for the specification and analysis of programs and state

transition systems. We develop the basic calculus, present the most interesting models and discuss

some related theories. We demonstrate applicability by two examples: algebraic reconstructions
of Noethericity and propositional Hoare logic based on equational reasoning.
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1. INTRODUCTION

Programs and state transition systems are often modelled in a bipartite world pop-
ulated by propositions and actions. While propositions express static properties
of states, actions model their dynamics. Propositions are usually organised in a
Boolean algebra, while the sequential, non-deterministic and iterative behaviour of
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actions can conveniently be modelled by a Kleene algebra. Reasoning about pro-
grams and state transition systems requires cooperation between the two parts of
the world. This can be achieved by two mappings, one sending actions and propo-
sitions to propositions in order to express properties of actions, the other sending
propositions to actions in order to model propositions as tests, measurements or
observations on states. This is needed in particular for programming constructs
like conditionals or loops.

There are two prominent complementary realisations of this two-world picture:
Propositional dynamic logic (PDL) and its algebraic variants (cf. [Harel et al.
2000; Kozen 1979; Németi 1981; Pratt 1988; 1991; Trnkova and Reiterman 1987])
and Kleene algebra with tests (KAT) [Kozen 1997]. In PDL, only propositions
are first-class citizens. This gives the approach a logical flavour. While equiva-
lence of propositions is directly expressible, actions can only be observed indirectly
through propositions; the algebra of actions is implicitly defined within that of
propositions. However, both mappings are present: modal operators from actions
and propositions into propositions and test operators that turn propositions into
actions. Modal operators introduce a very versatile and intuitive style of reason-
ing, in particular when actions are binary relations. In KAT, in contrast, only
actions are first-class citizens. This gives the approach an algebraic flavour. While
equivalence of actions is directly expressible, propositions can only be observed as
particular actions, by embedding them as a Boolean subalgebra into the Kleene
algebra of actions. Thus only the mapping from propositions to actions is present.
Since KAT does not depend on extensionality, it admits a rich model class beyond
relations. Consequently, many properties of programs and state transition systems
can succinctly be expressed and analysed in PDL or KAT. Each approach has its
particular merits, both concerning expressivity and complexity. PDL, for instance,
is EXPTIME-complete [Harel et al. 2000], while the equational theory of KAT is
PSPACE-complete [Kozen and Smith 1996].

The present paper shows how the worlds of KAT and PDL can be fruitfully
combined. To this end, we propose Kleene algebra with domain (KAD), an extension
of KAT by a domain operation. Domain forms a missing link between algebraic,
relational and modal approaches; it provides equal opportunities for propositions
and actions. KAD not only integrates the advantages of its predecessors, it also
offers additional flexibility and symmetry and yields new structural insights. In
particular, it gives a uniform view of hitherto separate approaches to program
analysis and development: modal formalisms such as PDL, algebraic formalisms
such as KAT, set-based formalisms such as B [Abrial 1996] and Z [Spivey 1988]
and semantic formalisms based on predicate transformers. It also allows equational
cross-theory reasoning between all these approaches. As in KAT, propositions are
embedded into actions. As in PDL, there is a mapping from actions to propositions:
the domain operation. Adding such a mapping to KAT is only natural: relations
are a standard model for KAT as well as for modal logics like PDL. Domain, or
more precisely preimage, provides the standard interpretation of the modal diamond
operator in this model. KAD provides an abstract algebraic formalism for reasoning
with this modality.

Here, the focus is on motivating the definitions, developing the basic calculus
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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and discussing the most interesting models of KAD. We also provide two examples
that underpin its applicability. Many interesting questions, for instance concern-
ing completeness, representability, expressivity, complexity, the precise relation to
modal algebras and a more extensive investigation of applications are the subject
of other publications, see [Desharnais et al. 2004a] for a survey. More precisely,
the main contributions of the present paper are the following.

—We propose finite equational axiomatisations of domain and codomain operations
for certain idempotent semirings and Kleene algebras.

—We develop a basic domain calculus for KAD. Our axioms capture many natural
properties of the relational domain operator and provide new insights into its
algebra.

—We show that the domain operation is well behaved on the standard models of
Kleene algebra.

—We define preimage and image operations in KAD. These are interesting for the
specification and analysis of programs and state transition systems. They allow
the definition of modal operators.

—We show that Noethericity and well-foundedness can be expressed in KAD. This
allows termination analysis by algebraic calculation.

—We algebraically reconstruct Hoare logic in KAD. This gives an abstract ax-
iomatic semantics and equational calculus for imperative programming languages.

Besides these main contributions we present further results. We show indepen-
dence of the domain and codomain axioms of KAD. We discuss their compatibility
with those for related structures. We provide translations from a class of KAD-
expressions to KAT without domain. We introduce two notions of duality that
enable a transfer between properties of domain and those of codomain. We show
that KAD is not a finitely based variety, whereas idempotent semirings with domain
are. We derive implementation schemata for efficient reachability algorithms.

Domain has previously been axiomatised in extensions of Kleene algebra like
quantales and relation algebras (cf. [Aarts 1992; Desharnais and Möller 2001; De-
sharnais et al. 2000; Schmidt and Ströhlein 1993]), but there is no straightforward
transfer. KAD offers several benefits. It generalises previous approaches and there-
fore admits a richer model class. It focuses on the essential operations for programs
and state transition systems. And it is first-order, whence better suited for auto-
mated reasoning.

The remainder of this text is organised as follows. Section 2 introduces idem-
potent semirings, Kleene algebras and their standard models. Section 3 introduces
idempotent semirings with tests, KAT and again the standard models. Section 4
presents an equational axiomatisation of domain for idempotent semirings. We
show independence of the axioms, provide some standard models and outline a ba-
sic domain calculus. A further important concept, locality of domain and codomain,
paves the way to multi-modal logics, in particular PDL. Section 5 presents two no-
tions of duality that couple the concepts of domain and codomain. In Section 6,
image and preimage operators are derived from the domain and codomain opera-
tions. Section 7 presents basic properties of domain and codomain in KAD, includ-
ing algebraic techniques for induction and reachability analysis. Section 8 contains
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some basic meta-results on KAD. Section 9 compares our domain axioms with
those for related structures. Section 10 algebraically reconstructs Noethericity and
well-foundedness in KAD. Section 11 reconstructs Hoare logic in KAD. Section 12
draws a conclusion and points out some further work.

2. IDEMPOTENT SEMIRINGS AND KLEENE ALGEBRA

This section introduces idempotent semirings and Kozen’s variants of Kleene alge-
bras. It also discusses some important models, such as the relational model, the
language model, the path model, the (min,+)- and (max,+)-models and some of
Conway’s small finite Kleene algebras. We will later tie them in with the domain
approach.

Kleene algebras axiomatise the regular operations of addition, multiplication and
Kleene star as they arise in formal languages and in the analysis of programs and
state transition systems. Traditionally, there are two main approaches, one based
on semirings, one on lattices. Here, we will reserve the notion of Kleene algebra
exclusively for the former.

2.1 Semirings

A semiring is a structure (A,+, ·, 0, 1) such that (A,+, 0) is a commutative monoid,
(A, ·, 1) is a monoid, multiplication distributes over addition in both arguments and
0 is a left and right annihilator with respect to multiplication (a · 0 = 0 = 0 · a).

As usual in algebra, we write ab for a · b and stipulate that multiplication binds
stronger than addition. A semiring is trivial if 0 = 1, since then all elements are
zero. We will consider only non-trivial semirings, unless otherwise stated.

Every semiring A comes with an opposite semiring Aop in which the order of
multiplication is swapped. If a statement holds in a semiring, a dual one holds in
its opposite. This duality will later relate domain and codomain.

A semiring is idempotent (an i-semiring) if its addition is. The relation ≤ defined
for all a, b on an i-semiring A by a ≤ b ⇔ a + b = b is a partial ordering, in fact the
only partial ordering on A for which 0 is the least element and for which addition
and multiplication are isotone in both arguments. It is therefore called the natural
ordering on A. It follows that inequalities and equations are interdefinable. We
will use the notion of equation or identity freely for both kinds of expressions.

Obviously, every i-semiring A is a semilattice (A,≤) with addition as join and
with least element 0. Thus a ≤ c ∧ b ≤ c ⇔ a + b ≤ c holds for all a, b, c ∈ A.

2.2 Kleene Algebras

A Kleene algebra [Kozen 1994a] is a structure (A,+, ·, ∗, 0, 1) such that (A,+, ·, 0, 1)
is an i-semiring, ∗ is a unary operation, a∗b is the least pre-fixed point of the function
λx.b + ax and ba∗ is the least pre-fixed point of λx.b + xa. Formally, the Kleene
star ∗ satisfies, for all a, b, c ∈ A, the star unfold axioms

1 + aa∗ ≤ a∗, (1)
1 + a∗a ≤ a∗ (2)

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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and the star induction axioms

b + ac ≤ c ⇒ a∗b ≤ c, (3)
b + ca ≤ c ⇒ ba∗ ≤ c. (4)

The expressions a∗b and ba∗ are uniquely characterised by the respective axioms.
We now recall some standard properties of Kleene algebras (cf. [Kozen 1994a]).

The identities are familiar from formal language theory (cf. [Eilenberg 1974]).

Lemma 2.1. Let A be a Kleene algebra. For all a, b, c ∈ A we have the identities

1 ≤ a∗, (5)
a∗a∗ = a∗, (6)

∀ i ∈ N . ai ≤ a∗, (7)
a∗∗ = a∗, (8)

(ab)∗a = a(ba)∗, (9)
(a + b)∗ = a∗(ba∗)∗, (10)

a∗b = b + a∗ab = b + aa∗b (11)

and the quasi-identities

a ≤ 1 ⇒ a∗ = 1, (12)
a ≤ b ⇒ a∗ ≤ b∗, (13)

ac ≤ cb ⇒ a∗c ≤ cb∗, (14)
ca ≤ bc ⇒ ca∗ ≤ b∗c. (15)

2.3 Example Structures

The classes of idempotent semirings and Kleene algebras are quite rich. We now
present some standard models. We will later show that the domain and codomain
operations are well-behaved on them. The first examples present some finite Kleene
algebras with at most four elements from Conway’s book (cf. [Conway 1971], p.
101). They will later be used as counterexamples.

Example 2.2. The structure A2 = ({0, 1},+, ·, 0, 1) with addition and multipli-
cation defined by

1

0

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

is an i-semiring, called the two-element Boolean semiring. The operations + and
· play the roles of disjunction and conjunction. A2 can uniquely be extended to a
Kleene algebra by setting 0∗ = 1∗ = 1.

Example 2.3. The structure A1
3 = ({a, 0, 1},+, ·, 0, 1) with addition and multi-

plication defined by
a

1

0

+ 0 a 1
0 0 a 1
a a a a
1 1 a 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1
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is an i-semiring. It can uniquely be extended to a Kleene algebra by setting 0∗ =
1∗ = 1 and a∗ = a.

Example 2.4. The structure A2
3 = ({a, 0, 1},+, ·, 0, 1) with addition and multi-

plication defined by

1

a

0

+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

is an i-semiring. It can uniquely be extended to a Kleene algebra by setting a∗ =
0∗ = 1∗ = 1.

Example 2.5. The structure A3
3 = ({a, 0, 1},+, ·, 0, 1) with addition and multi-

plication defined by

1

a

0

+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

is an i-semiring. It is like A2
3 except for the value of aa. It can uniquely be extended

to a Kleene algebra by setting a∗ = 0∗ = 1∗ = 1.

Example 2.6. The structure A1
4 = ({a, b, 0, 1},+, ·, 0, 1) with addition and mul-

tiplication defined by

b

1

a

0

+ 0 a 1 b
0 0 a 1 b
a a a 1 b
1 1 1 1 b
b b b b b

· 0 a 1 b
0 0 0 0 0
a 0 0 a a
1 0 a 1 b
b 0 a b b

is an i-semiring. It can be extended to a Kleene algebra by setting 0∗ = a∗ = 1∗ = 1
and b∗ = b.

Conway has shown that there are eighteen non-isomorphic four-element Kleene
algebras.

Example 2.7. Consider the structure REL(M) = (2M×M ,∪, ◦, ∅,∆) over a set
M , where 2M×M denotes the set of binary relations over M , ∪ denotes set union, ◦
denotes relational product, ∅ denotes the empty relation and ∆ denotes the identity
relation {(a, a) | a ∈ M}. Then REL(M) is an i-semiring with set inclusion as the
natural ordering. It can be extended to a Kleene algebra by defining R∗ as the
reflexive transitive closure of R for all R ∈ REL(M), that is, R∗ =

⋃
i≥0 Ri, with

R0 = ∆ and Ri+1 = R ◦ Ri. We call REL(M) the (full) relational i-semiring or
Kleene algebra over M .

Example 2.8. Let (A,+, ·, 0, 1) be a semiring and M be a finite set. Then the
set AM×M can be viewed as the set of |M | × |M | matrices with indices in M and
elements in A. Now consider the structure MAT(M,A) = (AM×M ,+, ·,0,1) where
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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+ and · are matrix addition and multiplication, and 0 and 1 are the zero and unit
matrices. Then MAT(M,A) again forms a semiring, the matrix semiring over M
and A. MAT(M,A) is idempotent if A is. In this case, the natural order is the
componentwise one.

If A is the two-element Boolean semiring A2, this yields another representation
of REL(M) as MAT(M,A) in terms of adjacency matrices.

If A is a Kleene algebra then MAT(M,A) can be extended to a Kleene alge-
bra (see [Conway 1971]) by partitioning a non-singleton matrix into submatrices
a, b, c, d, of which a and d are square, and setting(

a b
c d

)∗

=
(

f∗ f∗bd∗

d∗cf∗ d∗ + d∗cf∗bd∗

)
,

where f = a + bd∗c.

Example 2.9. Let Σ∗ be the set of finite words over some finite alphabet Σ
and consider the structure LAN(Σ) = (2Σ∗

,∪, ., ∅, {ε}), where 2Σ∗
denotes the set

of languages over Σ, and ∪ denotes set union, L1.L2 = {vw | v ∈ L1, w ∈ L2},
where vw denotes concatenation of v and w, ∅ denotes the empty language and
ε denotes the empty word. Then LAN(Σ) is an i-semiring and language inclusion
is its natural ordering. It can be extended to a Kleene algebra by defining L∗ =
{w1w2 . . . wn |n ≥ 0, wi ∈ L} in the standard way. We call LAN(Σ) the language i-
semiring or Kleene algebra over Σ. The operations ∪, . and ∗ are often called regular
operations and the sets that can be obtained from finite subsets of Σ∗ by a finite
number of regular operations are called regular subsets or regular events of Σ∗. The
equational theory of the regular subsets is called algebra of regular events. There
is a natural homomorphism L from the term algebra over the signature of Kleene
algebra generated by a set Σ onto the algebra REG(Σ) of regular events over Σ∗,
given by L(a) = {a} for each a ∈ Σ, L(a+b) = L(a)∪L(b) and L(a ·b) = L(a).L(b).
In [Kozen 1994a] it has been shown that REG(Σ) is the free Kleene algebra generated
by Σ. In this sense, Kleene algebra is the algebra of regular events and we can freely
use all regular identities, that is, all valid identities of the algebra of regular events,
in our calculations.

Example 2.10. Consider a set Σ of vertices (or states). Then subsets of Σ∗

can be viewed as sets of possible graph paths (or state sequences in a transition
system). ε can be viewed as the empty path. The partial operation of fusion product
of elements of Σ∗ is, for all s, t ∈ Σ∗ and x, y ∈ Σ, defined as

ε ./ ε = ε,

ε ./ (y.t) is undefined,

(s.x) ./ ε is undefined,

(s.x) ./ (y.t) =
{

s.x.t when x = y,
undefined otherwise.

It glues paths together at a common point. It is extended to subsets of Σ∗ by

S ./ T = {s ./ t | s ∈ S ∧ t ∈ T ∧ s ./ t defined}.
Then PAT(Σ) = (2Σ∗

,∪, ./, ∅,Σ∪{ε}) is an i-semiring called the path i-semiring over
Σ. It can be extended to a path Kleene algebra as in the i-semiring of relations.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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Example 2.11. Using matrices over the language algebra we can also model
labelled transition systems. Assume a set Q of states and a set Σ of labels. The
matrices in MAT(Q, LAN(Σ)) record possible sequences of labels (traces) that con-
nect two states. When there is no possible transition between two states, the
corresponding matrix element is the empty language.

Example 2.12. Set N∞ = N∪{∞} and define the operations min and + in the
obvious way. Then the structure (min,+) = (N∞,min,+,∞, 0) is an i-semiring,
called the tropical semiring [Kuich 1997]. Its natural ordering is the converse of
the standard ordering on N∞. Hence 0 — the semiring multiplicative unit — is
the largest element, so that by (12) (min,+) can uniquely be extended to a Kleene
algebra by setting n∗ = 0 for all n ∈ N∞.

Example 2.13. Let N−∞ = N ∪ {−∞} and consider the structure (max,+) =
(N−∞,max,+,−∞, 0) with operations defined in the obvious way. Then (max,+)
is an i-semiring, called the max-plus semiring [Gaubert and Plus 1997]. Its natural
ordering coincides with the standard ordering on N−∞. Unlike the tropical semiring,
the max-plus semiring cannot be extended to a Kleene algebra. For a > 0 the set
{an |n ∈ N} = {na |n ∈ N} is unbounded, whereas, according to (7), it should have
a∗ as an upper bound.

3. SUBIDENTITIES AND KLEENE ALGEBRA WITH TESTS

We now take the first step towards the axiomatisation of domain and codomain
operations on i-semirings. We discuss the subidentities of idempotent semirings and
Kleene algebras. Subidentities are those elements that lie below the multiplicative
unit. A subset of these, the tests, will allow us to embed propositions into the space
of actions. This leads to idempotent semirings with tests and Kleene algebras with
tests. Finally, we discuss some important models of these structures.

As a motivating example, consider the relational i-semiring from Example 2.7.
Here, the domain of a relation is a set. Abstracting to arbitrary i-semirings, the
domain operation should be a mapping from the i-semiring to some appropriate
Boolean algebra. In the matrix representation for finite relations based on the
Boolean semiring, obviously, a characteristic matrix can be associated with each
subset of M . Setting n = |M |, the empty set is characterised by the n × n zero
matrix, the set M by the n× n unit matrix and all other sets by matrices smaller
than the unit matrix. Obviously, there are 2n such matrices, which is also the
number of subsets of A. Consequently, we will model domain and codomain in an
i-semiring as mappings into the set of subidentities.

3.1 Subidentities

An element of an i-semiring A is a subidentity if it is smaller than 1. It is easy to
show that the set of subidentities of an i-semiring forms an i-semiring.

Lemma 3.1. For subidentities in an i-semiring, multiplication

(i) is a lower bound operation,
(ii) need not be idempotent, whence not a greatest lower bound operation.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



Kleene Algebra with Domain · 9

Proof.

(i) Let A be an i-semiring with subidentities p, q. Then p = p1 ≥ pq ≤ 1q = q.
Thus pq is a lower bound of p and q.

(ii) In the i-semiring A2
3 from Example 2.4, a is a subidentity that is not multiplica-

tively idempotent. Rather we have aa = 0 < a, and so aa is not the greatest
lower bound of a and a.

By contrast, in the relational i-semiring and many related structures, the subiden-
tities form a Boolean algebra or at least a lattice (cf. Example 3.5). In i-semirings,
further properties are needed for modelling sets, propositions or tests. There are
essentially two alternatives (cf. [Kozen 1997]). First, one can impose the restriction
that all subidentities form a Boolean algebra. Second, one can explicitly embed a
Boolean algebra of tests into the algebra of subidentities. We will adopt the second,
more general alternative.

3.2 Test-Semirings and Kleene Algebras with Tests

Following Kozen, we say that a test semiring (a t-semiring) is an i-semiring A with
a distinguished Boolean subalgebra test(A) of the algebra of subidentities with
greatest element 1, least element 0 and join operation +, such that test(A) is closed
under multiplication. We call test(A) the test algebra of A. A t-semiring is a Kleene
algebra with tests if the t-semiring is also a Kleene algebra [Kozen 1997]. The class
of Kleene algebras with tests is denoted by KAT.

We will henceforth use letters a, b, c, . . . for arbitrary semiring elements (actions)
and the letters p, q, r, . . . for tests (propositions). Moreover, we denote by p′ the
complement of test p in test(A) and by p u q the meet of p and q. We will freely
use the standard concepts and laws of Boolean algebra.

Lemma 3.2. Every i-semiring is a t-semiring.

Proof. Let A be an i-semiring. If 0 = 1 then the claim is trivially satisfied.
Otherwise, let test(A) = {0, 1} with p t q = p + q, p u q = pq for all p, q ∈ test(A)
and 1′ = 0, 0′ = 1. This yields a Boolean subalgebra.

We call t-semirings with test algebra {0, 1} discrete.

Lemma 3.3. In every t-semiring,

(i) multiplication of tests is idempotent,
(ii) the product of two tests is their meet.

Proof. Let p, q ∈ test(A) for some t-semiring A. By Lemma 3.1(i), pq ≤ p u q.

(i) p = p1 = p(p + p′) = pp + pp′ ≤ pp + (p u p′) = pp + 0 = pp ≤ p1 = p.
(ii) Let r ≤ p and r ≤ q for some r ∈ test(A). Then r = rr ≤ pq ∈ test(A) by (i)

and isotonicity. Hence pq is the greatest lower bound of p and q in test(A) and
therefore equal to p u q.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



10 · J. Desharnais et al.

The following lemma collects some properties of test semirings that are helpful for
computing with abstract image and preimage operations in Section 6.

Lemma 3.4. In a t-semiring A with a ∈ A and p, q ∈ test(A), the following
properties are equivalent.

pa ≤ aq, aq′ ≤ p′a, paq′ ≤ 0, pa = paq.

Proof. Let pa ≤ aq. We calculate, for the second inequality,

aq′ = 1aq′ = (p + p′)aq′ = paq′ + p′aq′ ≤ aqq′ + p′a = a0 + p′a = p′a.

Let aq′ ≤ p′a. Then paq′ ≤ pp′a = 0a = 0.
Let paq′ ≤ 0. Then pa = pa1 = pa(q + q′) = paq + paq′ = paq.
Let pa = paq. Then pa = paq ≤ aq.

The equivalence of the following properties follows from Lemma 3.4 by duality with
respect to semiring opposition.

ap ≤ qa q′a ≤ ap′, q′ap ≤ 0, ap = qap.

3.3 Example Structures

We now consider some models of test semirings and Kleene algebras with tests.
First, note that Conway’s algebras from Section 2 (that is, Example 2.2 to Exam-
ple 2.6) are all discrete and therefore not very interesting.

Example 3.5. In REL(M), there are 2|M | subrelations of ∆. They form a
Boolean algebra with P u Q = P ◦ Q and P ′ = ∆ − P . For finite relations, in
particular, this can be verified in the matrix representation.

Example 3.6. In LAN(Σ), the only subidentities are ∅ and {ε}. They also form
the only possible test algebra; hence LAN(Σ) is always discrete.

Example 3.7. In the path i-semiring PAT(Σ) over Σ, a subidentity P ⊆ Σ∪{ε}
models a set of nodes or states, where ε also serves as the only “pseudo-node” or
“pseudo-state” in an empty sequence.

Example 3.8. In the tropical semiring, all elements are subidentities. However,
except for 0 and ∞, they are not idempotent. Thus the only possible test algebra
consists of the elements 0 and ∞, so that the tropical semiring is discrete.

Example 3.9. In the max-plus semiring, the only multiplicatively idempotent
subidentities are −∞ and 0. These two elements also form the only possible test
algebra, so that the max-plus semiring is discrete.

4. DOMAIN

In this section, we introduce several equivalent axiomatisations of a domain opera-
tion on test semirings, among them an equational one. For a differentiated picture,
we present two notions of different expressive power:

—A notion of predomain that suffices for deriving many natural properties of do-
main, as we will show in Section 4.3.

—A notion of domain that is necessary for more advanced applications, for instance
multi-modal operators parameterised by actions.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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We also show independence of the equational axioms and provide examples.

4.1 Domain in the Relational i-Semiring

As a motivation, consider again the relational i-semiring of Example 2.7. Let R be
a binary relation on some set M . Then the domain δ(R) of R is given by the set

{a ∈ M | ∃ b ∈ M . (a, b) ∈ R}.

For our abstraction to t-semirings, it should be represented as a binary relation
instead, that is, as the subidentity

δ(R) = {(a, a) ∈ M ×M | ∃b ∈ M . (a, b) ∈ R}.

In the following subsections, we will propose algebraic point-free characterisations
of predomain and domain operations. We leave it to the reader to show that they
are consistent with the relational semiring. But first, let us replace the set-theoretic
characterisation of domain by two more algebraic ones.

First, δ(R) is the least X ⊆ ∆ with R ⊆ X ◦R. Second, using Example 3.5, the
complement δ(R)′ of δ(R) in the Boolean lattice of subidentities of REL(M) — the
set of all pairs below ∆ that are not in δ(R) — is the greatest X ⊆ ∆ with X◦R ⊆ ∅.
Without the restriction to subidentities, solutions might not be subidentities. Since,
by Example 3.5, the subidentities of REL(M) form a Boolean algebra, Lemma 3.4
implies that the definitions in terms of least and greatest solutions are equivalent.

4.2 Predomain Axioms

As a first step in abstracting to semirings, we introduce some auxiliary concepts.
Let A an i-semiring and a, b ∈ A. We say that b is a left preserver of a if a ≤ ba
and that a is left-stable under b if ba ≤ a. If a = ba we say that a is left-invariant
under b. We say that a is a left annihilator of b if ab = 0. The concepts of right
preservation, right stability, right invariance and right annihilation are dual with
respect to semiring opposition.

Although a more general approach based on subidentities might be possible, the
Boolean structure of the test algebra is very convenient for making our definitions
coherent.

Lemma 4.1. Let A be a t-semiring and a ∈ A. The element p ∈ test(A) is the
least left preserver of a in test(A) iff for all q ∈ test(A),

p ≤ q ⇔ a ≤ qa. (16)

Proof. We show that (16) is equivalent to

a ≤ pa, (17)
a ≤ qa ⇒ p ≤ q. (18)

Equation (18) is one direction of (16). Setting p = q in (16) yields (17). Moreover,
a ≤ pa ≤ qa follows immediately from (17) and p ≤ q.

Lemma 4.2. Let A be a t-semiring and a ∈ A. Then p is the greatest left anni-
hilator of a in test(A) iff for all q ∈ test(A),

q ≤ p ⇔ qa ≤ 0. (19)
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Proof. We must show that (19) is equivalent to

pa ≤ 0, (20)
qa ≤ 0 ⇒ q ≤ p. (21)

The calculations are similar to those in the proof of Lemma 4.1.

As to the existence of least left preservers and greatest left annihilators, two facts
should be distinguished. For a given i-semiring, least left preservers and greatest
left annihilators can always be obtained by choosing the discrete t-semiring. But a
given t-semiring with fixed test algebra need not admit arbitrary least left preservers
and greatest left annihilators. The following example is due to Dexter Kozen.

Lemma 4.3. There is a t-semiring where certain elements do not have least left
preservers and greatest left annihilators in the test algebra.

Proof. Let M be an infinite set and let T consist of the finite or cofinite subsets
of M . Then (2M , T,∪,∩, ∅,M) is a Boolean algebra that is also a t-semiring. Its
test algebra T is incomplete. A test q is a left preserver of p ⊆ M iff p ∩ q = p.

Let now p be infinite, but not cofinite, and assume that r is a least left preserver
of p. Then p ( r and therefore r − p 6= ∅. For x ∈ r − p, the set r − {x} is again
cofinite and p− {x} = p. Therefore p ∩ (r − {x}) = r ∩ (p− {x}) = r ∩ p = p, that
is, r − {x} is again a left preserver. This is a contradiction.

The following example shows that the non-existence of least left preservers and
greatest left annihilators does not depend on the incompleteness of the test algebra.

Lemma 4.4. There is a t-semiring with complete test algebra in which certain
elements do not have least left preservers and greatest left annihilators in the test
algebra.

Proof. We only sketch the proof; details can be found in [Möller 2005]. Let M
be an infinite set. For p ∈ 2M , let bpc be a copy of p and let b2Mc be the set of all
copies of subsets of M . We assume that 2M ∩ b2Mc = ∅ and set S = 2M ∪ b2Mc.
As usual, a filter on M is a non-empty collection of sets that is closed under finite
intersections and upwards closed with respect to inclusion. An ultrafilter U is a filter
that contains every subset of M or its complement, but not both. For p, q ⊆ M ,
define

p � bqc =
{
bp ∩ qc, if p ∈ U,
p ∩ q, otherwise,

and

+ q bqc
p p ∪ q bp ∪ qc
bpc bp ∪ qc bp ∪ qc

· q bqc
p p ∩ q p � bqc
bpc q � bpc bp ∩ qc

Then it can be shown that (S, 2M ,+, ·, ∅,M) is a t-semiring with complete test
algebra 2M .

Let C be the Fréchet filter of all cofinite subsets of M and let p ( M be infinite,
but not cofinite. Then p′ 6= 0 and p, p′ 6∈ C, but C can be extended in the standard
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way to an ultrafilter U that contains p′, but not p. Similarly to above, the set of
left preservers of bpc is

L = {q ∈ U : p ⊆ q},

but, by assumption, the infimum p of L is not in U , whence not in the test alge-
bra.

But properties of partial orderings imply that least left preservers and greatest left
annihilators are unique if they exist. And they do exist, for instance, when the test
algebra is finite.

The following proposition relates preservers and annihilators.

Proposition 4.5. Let A be a t-semiring. For all a ∈ A, let p be the least left
preserver and let q be the greatest left annihilator of a in test(A). Then p = q′.

Proof. Immediate from Lemma 3.4.

We now axiomatise a predomain operation on t-semirings as yielding the least left
preserver. Proposition 4.5 provides an equivalent characterisation via the greatest
left annihilator. Moreover, we present a further equivalent axiomatisation in terms
of two simple equations. We also show independence of the equational axioms.

Definition 4.6. A structure (A, δ) is a t-semiring with predomain (a δ-semiring)
if A is a t-semiring and the predomain operation δ : A → test(A) satisfies, for all
a ∈ A and p ∈ test(A),

δ(a) ≤ p ⇔ a ≤ pa. (llp)

By this definition, the presuppositions for existence of predomain are the same as
for least left preservers above. While a semiring may be made into a t-semiring in
various ways by choosing different test algebras, for a fixed test algebra predomain
is always unique if it exists. A predomain operation always exists on discrete t-
semirings. We distinguish between predomain and domain, since, as already noted,
the weaker definition suffices for deriving many natural properties.

Proposition 4.7. Let A be a t-semiring and let δ : A → test(A) be a predomain
operation. Then for all a ∈ A and p ∈ test(A),

δ(a) ≤ p ⇔ p′a ≤ 0. (gla)

Proof. Immediate from Proposition 4.5.

This characterisation uses the lattice dual of the greatest left annihilator property.
We now present an equational characterisation of predomain.

Theorem 4.8. Let A be a t-semiring and let δ : A → test(A) be a mapping.
Then δ satisfies (llp) iff it satisfies, for all a ∈ A and p ∈ test(A), the identities

a ≤ δ(a)a, (d1)
δ(pa) ≤ p. (d2)

Proof. We prove a somewhat stronger statement. First, we show that (d1) is
equivalent to

δ(a) ≤ p ⇒ a ≤ pa, (22)
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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which is one direction of (llp). Obviously, (22) implies (d1), setting p = δ(a). For
the converse direction, a ≤ δ(a)a and δ(a) ≤ p imply a ≤ pa by isotonicity of
multiplication.

Second, we show that (d2) is equivalent to

a ≤ pa ⇒ δ(a) ≤ p, (23)

which is the other direction of (llp). Obviously, (23) implies (d2), instantiating a by
pa and using multiplicative idempotence of p. For the converse direction, observe
that a ≤ pa implies a = pa, since p ≤ 1. Thus δ(a) = δ(pa) ≤ p by (d2).

We have thus presented three equivalent axiomatisations for predomain. Each is
of particular interest. The equivalences (llp) and (gla) allow us to reduce certain
expressions over δ-semirings to expressions over t-semirings that do not mention
predomain. Moreover, both capture the basic algebraic intuition behind domain.
The equational axioms (d1) and (d2) are perhaps less intuitive, but very beneficial
for several reasons. First, they allow us to classify t-semirings with domain in
Section 8. Second, they connect δ-semirings with modal algebras and modal logics,
which is, however, beyond the scope of this work. Third, they support a simple
check whether some given mapping in some t-semiring is a predomain operation.
The three axiomatisations taken together give us flexibility in calculations.

We now show that the equational axiomatisation is minimal and irredundant.

Theorem 4.9. (d1) and (d2) are independent in t-semirings.

Proof. We provide t-semirings in which precisely one of these axioms holds.
Set δ(0) = δ(1) = 1 in A2 (Example 2.2). Then (d1) holds by neutrality of 1.

But δ(01) = 1 6≤ 0. Thus (d2) does not hold.
Set δ(0) = δ(1) = 0 in A2. Then (d2) holds, since 0 is the least element. But

1 6≤ 0 = 01 = δ(1)1. Thus (d1) does not hold.

We will see in the following subsection that (d1) and (d2) together imply that
δ(a) = 0 iff a = 0.

We now show that there is always a meaningful — albeit not very interesting —
predomain definition for an i-semiring.

Lemma 4.10. A discrete t-semiring A admits precisely one predomain operation,
namely δ(0) = 0 and δ(a) = 1 for all 0 6= a ∈ A.

Proof. We show that δ satisfies (d1) and (d2).
For (d1), if δ(a) = 0 then a = 0. Hence δ(a)a = δ(0)0 = 0 = a. Otherwise, if

a 6= 0 then δ(a) = 1. Hence δ(a)a = 1a = a.
For (d2), if δ(pa) = 0 then (d2) holds trivially. Otherwise, if δ(pa) = 1 then

pa 6= 0 and therefore also p 6= 0. Thus p = 1 by discreteness and (d2) also holds.
Thus δ is a well-defined predomain operation for A.
Finally, uniqueness is immediate from Lemma 4.11(i) below.

The arguments of this and the following section show that basing predomain
on test algebras is indeed convenient: It leads to simple natural axioms; further
meaningful properties can be derived in a simple way, as will be shown in the next
section. Nevertheless there are interesting possibilities for generalisation. The test
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algebra could, for instance, be only a Heyting algebra or a distributive lattice. Also,
domain could more generally be defined as a mapping into the set of subidentities.
Our definitions are a suitable starting point for such investigations.

4.3 Predomain Calculus

The statements of this section allow a more intuitive understanding of domain and
yield a basic predomain calculus. We leave a comparison with relational properties
to the reader.

Lemma 4.11. Let A be a δ-semiring. Let a, b ∈ A and p ∈ test(A).

(i) δ is fully strict:

δ(a) ≤ 0 ⇔ a ≤ 0. (24)

(ii) δ is additive:

δ(a + b) = δ(a) + δ(b). (25)

(iii) δ is isotone:

a ≤ b ⇒ δ(a) ≤ δ(b). (26)

(iv) δ is an identity on tests:

δ(p) = p. (27)

(v) δ is idempotent:

δ(δ(a)) = δ(a). (28)

(vi) δ yields a left invariant:

a = δ(a)a. (29)

(vii) δ satisfies an import/export law:

δ(pa) = pδ(a). (30)

(viii) δ satisfies a sublocality law:

δ(ab) ≤ δ(aδ(b)). (31)

(ix) δ commutes with complementation on tests:

δ(p)′ = δ(p′). (32)

Proof.

(i) δ(a) ≤ 0 ⇔ a ≤ 0a ⇔ a ≤ 0 follows from (llp).
(ii) Using (gla), we calculate

δ(a + b) ≤ p ⇔ p′(a + b) ≤ 0
⇔ p′a + p′b ≤ 0
⇔ p′a ≤ 0 ∧ p′b ≤ 0
⇔ δ(a) ≤ p ∧ δ(b) ≤ p

⇔ δ(a) + δ(b) ≤ p.

But δ(a + b) ≤ p ⇔ δ(a) + δ(b) ≤ p implies the claim.
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(iii) Using (25), this is a standard result from lattice theory.
(iv) p ≤ δ(p)p ≤ δ(p) follows immediately from (d1) and p ≤ 1. δ(p) = δ(p1) ≤ p

follows immediately from (d2).
(v) Immediate from (27).
(vi) By (d1) it remains to show that δ(a)a ≤ a, which follows from δ(a) ∈ test(A).
(vii) By Boolean algebra and (25) we have δ(a) = δ(pa) + δ(p′a). Now

pδ(a) = pδ(pa) + pδ(p′a) = δ(pa),

since δ(pa) ≤ p and δ(p′a) ≤ p′ by (d2).
(viii) By (llp) it suffices to show that ab ≤ δ(aδ(b))ab. We calculate

ab ≤ aδ(b)b ≤ δ(aδ(b))aδ(b)b ≤ δ(aδ(b))ab.

(ix) Immediate from (27).

4.4 Domain Axioms

Our axiomatisation of domain in t-semirings still lacks a natural property of domain
— called locality — that holds in the relational model but is independent of (d1)
and (d2). Namely, for all binary relations R,S on a set M ,

δ(R ◦ S) = δ(R ◦ δ(S)).

Intuitively, for computing the domain of a relation R ◦ S, local information about
the domain of S suffices; information about the inner structure or the codomain of
S is not needed. In δ-semirings, one half of locality is derivable, as Lemma 4.11(viii)
shows. The other half is independent.

Lemma 4.12. There is a δ-semiring A and there are a, b ∈ A such that

δ(aδ(b)) 6≤ δ(ab).

Proof. Consider again the discrete t-semiring A2
3 of Example 2.4. According

to Lemma 4.10, the mapping δ : 0 7→ 0, δ : 1 7→ 1, and δ : a 7→ 1 is a predomain
operation. Then δ(aδ(a)) = δ(a1) = 1 and δ(aa) = δ(0) = 0. That is, δ(aa) ≤
δ(aδ(a)) holds, but not δ(aa) = δ(aδ(a)).

Due to independence of locality, we add the negated property of Lemma 4.12 to
the predomain axioms for a full domain operation.

Definition 4.13. A t-semiring with domain (a δ̂-semiring) is a δ-semiring in
which the predomain operation δ̂ : A → test(A) also satisfies, for all a, b ∈ A,

δ̂(aδ̂(b)) ≤ δ̂(ab). (d3)

Corollary 4.14. Let A be a δ̂-semiring. Then, for all a, b ∈ A,

δ̂(ab) = δ̂(aδ̂(b)). (loc)

The addition of the locality axiom leads to an unexpected consequence — there
is no longer any freedom in choosing the test set! This is stated formally as follows.
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Theorem 4.15. In every δ̂-semiring S the set test(S) consists of all subidentities
that have a complement relative to 1.

Proof. We show that every element a ≤ 1 with complement equals its own
domain and hence is a test. First, since δ̂ is a predomain operation, we have

a = δ̂(a)a ≤ δ̂(a) (33)

by a ≤ 1. Next, assume the existence of b ≤ 1 with a + b = 1 and ab = 0 = ba.
Then, by the locality axiom,

0 = δ̂(0) = δ̂(ba) = δ̂(bδ̂(a))

and hence bδ̂(a) = 0. Now

δ̂(a) = (a + b)δ̂(a) = aδ̂(a) + bδ̂(a) = aδ̂(a) ≤ a,

since δ̂(a) ≤ 1. Together with (33) we obtain a = δ̂(a).

4.5 Integral Domain Semirings

We now impose a necessary and sufficient condition on a discrete δ-semiring to be
a δ̂-semiring. In analogy to the definition of an integral domain in ring theory, a
semiring A is integral if it has no zero divisors, that is, for all a, b ∈ A,

ab ≤ 0 ⇒ a ≤ 0 ∨ b ≤ 0. (34)

Lemma 4.16. Every integral δ-semiring is a δ̂-semiring.

Proof. Let A be integral. Thus ab ≤ 0 implies a ≤ 0 or b ≤ 0. For the
claim it suffices to show that δ(ab) ≤ p ⇒ δ(aδ(b)) ≤ p for all p ∈ test(A). Using
Proposition 4.7, we calculate

δ(ab) ≤ p ⇔ p′ab ≤ 0 ⇒ p′a ≤ 0 ∨ b ≤ 0 ⇔ δ(a) ≤ p ∨ δ(b) ≤ 0.

Therefore, δ(aδ(b)) ≤ δ(a) ≤ p or δ(aδ(b)) = δ(a0) = δ(0) = 0 ≤ p.

For discrete semirings this condition is also necessary.

Lemma 4.17. A discrete t-semiring is a δ̂-semiring iff it is integral.

Proof. Let A be a discrete t-semiring. From Lemma 4.10 we know that δ
defined by δ : 0 7→ 0 and δ : a 7→ 1 for all 0 6= a ∈ A is the unique predomain
operation on A. Thus A is a δ-semiring.

Now let δ satisfy(d3), that is, δ(aδ(b)) ≤ δ(ab), and let ab ≤ 0. Thus δ(aδ(b)) ≤
δ(ab) ≤ 0 and hence aδ(b) ≤ 0 by construction of δ. There are two cases.

—If δ(b) = 1 then aδ(b) = a1 = a. Hence aδ(b) ≤ 0 implies a ≤ 0.

—If δ(b) = 0 then b = 0 by construction of δ.

Thus ab ≤ 0 implies a ≤ 0 or b ≤ 0, whence A is integral.
The other direction follows from Lemma 4.16.
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4.6 Example Structures

We now consider some models of δ-semirings and δ̂-semirings.

Example 4.18. In the Boolean semiring A2 (Example 2.2), the test algebra
coincides with A2. Setting δ(x) = 0 ⇔ x = 0 is compatible with the definition of
δ in Lemma 4.10. Thus it satisfies (d1) and (d2). Since A2 is integral, (d3) holds,
too. Moreover, this definition is unique.

Example 4.19. In A2
3 (Example 2.4), the test algebra is {0, 1}. Setting δ(0) = 0,

δ(a) = 1 and δ(1) = 1 is compatible with the definition of f in Lemma 4.10. Thus
it satisfies (d1) and (d2). Since A2

3 is integral, (d3) holds, too. Moreover, this
definition is unique.

Example 4.20. The only possible test algebra of the language i-semiring (Ex-
ample 2.9) is {∅, {ε}}. We set δ(∅) = ∅ and δ(L) = {ε} for all ∅ 6= L ⊆ Σ∗. This is
compatible with the definition of f in Lemma 4.10. Thus it satisfies (d1) and (d2).
Since the language model is integral (as a free algebra), (d3) holds, too. Moreover,
this definition is unique.

Example 4.21. In the path i-semiring (Example 2.10), the test algebra is 2Σ∪{ε}.
For S ⊆ Σ∗, the set δ(S) consists of all starting (pseudo-)nodes in S. Although the
semiring is not integral, (d3) holds.

Example 4.22. In the tropical semiring, the test algebra consists solely of 0
and ∞. Taking δ(∞) = ∞ and δ(n) = 0 is compatible with the definition of f in
Lemma 4.10. Thus it satisfies (d1) and (d2). Since the tropical semiring is integral,
(d3) holds, too. Moreover, this definition is unique.

These examples show that our domain axioms are meaningful in all the usual mod-
els, although non-trivial only in the relational model and the path model.

5. CODOMAIN

In this section, we introduce an equational axiomatisation of codomain for idempo-
tent semirings. It is based on dualities: first on duality with respect to opposition
in a semiring and second on duality with respect to an operation of conversion that
can be added to t-semirings. These dualities allow an automatic transfer between
statements about domain and codomain and save half of the work in proofs.

In set theory, the definition of codomain parallels that of domain. For a set-
theoretic relation R ⊆ M ×M , it is defined as

ρ(R) = {b ∈ M | ∃ a ∈ M . (a, b) ∈ R}.

For a t-semiring this suggests to define a codomain operation as the least right
preserver or the greatest right annihilator. Similarly to domain, there is a notion
of locality that is independent of the other axioms.

5.1 Codomain Definition

Definition 5.1.

(i) A t-semiring with precodomain (a ρ-semiring) is a structure (A, ρ) such that
(Aop, ρ) is a semiring with predomain.
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(ii) A t-semiring with codomain (a ρ̂-semiring) is a structure (A, ρ̂) such that
(Aop, ρ̂) is a semiring with domain.

Lemma 5.2. Let A be a t-semiring. Then (A, ρ) is a ρ-semiring iff, for all a ∈ A,
one and therefore each of the following equivalent conditions holds.

(i) ρ(a) is the least right preserver of a, that is, for all p ∈ test(A),

ρ(a) ≤ p ⇔ a ≤ ap. (lrp)

(ii) ρ(a) is the greatest right annihilator of a, that is, for all p ∈ test(A),

ρ(a) ≤ p ⇔ ap′ ≤ 0. (gra)

(iii) For all p ∈ test(A), the operation ρ satisfies the identities

a ≤ aρ(a), (cd1)
ρ(ap) ≤ p. (cd2)

Moreover, A is a ρ̂-semiring if ρ also satisfies the locality law

ρ(ρ(a)b) ≤ ρ(ab). (cd3)

The proof follows from the definition of precodomain and, by duality with respect
to opposition, from the results for predomain and domain in Section 4. In the same
way, all further results of that section carry over to precodomain and codomain.

We call a t-semiring with predomain and precodomain a δρ-semiring and a t-
semiring with domain and codomain a δ̂ρ̂-semiring. When we do not want to
distinguish between t-semirings with domain and t-semirings with codomain, we
uniformly speak about test semirings with domain.

Lemma 5.3. There is a non-integral δ̂ρ̂-semiring.

Proof. We have seen that (d1), (d2), (d3), and (cd1), (cd2), (cd3), respectively,
hold in the relational semiring. However, set-theoretic relations need not be integral:
Let R relate all even numbers and S all odd numbers on N. Then R 6= ∅ 6= S, but
RS = ∅.

The path semiring is another non-integral δ̂ρ̂-semiring.

5.2 Codomain via Converse

In the relational semiring, it is evident that the domain of a relation is the codomain
of its converse and vice versa. This leads to a second notion of duality.

Definition 5.4.

(i) An i-semiring with preconverse is a structure (A, ◦) such that A is an i-semiring
and ◦ : A → A is an operation that satisfies the equations

a◦◦ = a, (a + b)◦ = a◦ + b◦, (ab)◦ = b◦a◦.

(ii) A t-semiring with weak converse is a t-semiring with preconverse such that all
tests p satisfy

p◦ ≤ p.
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(iii) An i-semiring with converse [Crvenkovič et al. 2000] is an i-semiring with
preconverse that satisfies the equation

a ≤ aa◦a.

Obviously, 1◦ = 1, 0◦ = 0 and a ≤ b ⇔ a◦ ≤ b◦ holds in every i-semiring with
preconverse. p◦ = p holds in every i-semiring with weak converse. Moreover, every
i-semiring with converse is an i-semiring with weak converse.

We can now express the duality between domain and codomain within the test
semiring rather than at the meta-level.

Proposition 5.5. Let A be a δρ-semiring (or a δ̂ρ̂-semiring) with weak con-
verse. Then for all a ∈ A,

δ(a◦) = ρ(a), (35)
ρ(a◦) = δ(a). (36)

Proof. We show that δ(a◦) satisfies (cd1) and (cd2) if A is a δρ-semiring and
(cd3) if A is a δ̂ρ̂-semiring, which implies (35) by uniqueness of the solution.

(cd1) By (d1), a◦ ≤ δ(a◦)a◦, whence a = a◦◦ ≤ (δ(a◦)a◦)◦ = a◦◦(δ(a◦))◦ = aδ(a◦).
(cd2) By (d2), δ((ap)◦) = δ(p◦a◦) = δ(pa◦) ≤ p.
(cd3) By (loc), δ((ab)◦) = δ(b◦a◦) = δ(b◦δ(a◦)) = δ(b◦(δ(a◦))◦) = δ((δ(a◦)b)◦).

The proof of (36) is dual.

We could therefore take (35) for defining codomain in a t-semiring with weak con-
verse.

Corollary 5.6. Let A be a δρ-semiring with weak converse. For all a ∈ A and
p ∈ test(A),

δ(a◦p) = ρ(pa), (37)
ρ(a◦p) = δ(pa). (38)

5.3 Interdependence of Locality of Domain and Codomain

In this subsection we show that locality of domain and locality of codomain are not
independent. We prepare the proof by an auxiliary property.

Lemma 5.7. A δρ-semiring A satisfies locality (loc) iff for all a, b ∈ A,

ab ≤ 0 ⇔ ρ(a)δ(b) ≤ 0. (39)

Proof. We first show that (loc) implies (39).

ab ≤ 0 ⇔ δ(ab) ≤ 0
⇔ δ(aδ(b)) ≤ 0
⇔ aδ(b) ≤ 0
⇔ ρ(a) ≤ δ(b)′

⇔ ρ(a)δ(b) ≤ 0.

The first and third steps of the proof use (24), the second step uses (loc), the fourth
step uses (gra) and the last step is by Boolean algebra.
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Now we show that (39) implies (loc). First, by (30) ρ(a)δ(b) = ρ(aδ(b)) and
therefore, by (24) and (39)

ab ≤ 0 ⇔ aδ(b) ≤ 0. (40)

Using Boolean algebra, (40) thrice and Boolean algebra again we calculate

δ(ab) ≤ p ⇔ p′δ(ab) ≤ 0
⇔ p′ab ≤ 0
⇔ p′aδ(b) ≤ 0
⇔ p′δ(aδ(b)) ≤ 0
⇔ δ(aδ(b)) ≤ p,

whence δ(ab) = δ(aδ(b)) by general properties of inequalities.

Since (39) is symmetric in δ and ρ, we obtain the following interdependence result.

Corollary 5.8. A δρ-semiring is a δ̂-semiring iff it is a ρ̂-semiring.

6. IMAGE AND PREIMAGE

In many applications, domain and codomain operations occur more specifically
as image and preimage operations for some given test element. In the relational
semiring, the preimage of a set N ⊆ M under a relation R ⊆ M ×M is defined as

R :N = {x ∈ M | ∃ y ∈ N . (x, y) ∈ R}.

Replacing, like in the discussion of relational domain, the set N by the correspond-
ing subidentity Ṅ , we obtain the equivalent point-free definition R : Ṅ = δ(R ◦ Ṅ).
Dually, the image of N under R is defined as

N :R = {y ∈ M | ∃x ∈ N . (x, y) ∈ R},

which is equivalent to the point-free definition Ṅ :R = ρ(Ṅ ◦R).
As usual, we abstract from sets to semirings and define for every δρ-semiring the

image and preimage operators, both denoted by : , as mappings of type test(A) ×
A → test(A) and A× test(A) → test(A) for all a ∈ A and p ∈ test(A) by

p : a = ρ(pa), (41)
a : p = δ(ap). (42)

In particular, we can use a : 1 and 1 : a instead of δ(a) and ρ(a) and overload this
notation for the case of δ̂ and ρ̂. Since the image and preimage operators are
products, we stipulate that they bind stronger than addition.

Moreover, since image and preimage are defined by codomain and domain and
since codomain and domain are dual with respect to opposition, there is again
an automatic transfer of properties. Like in previous sections, we therefore only
mention properties of preimage and quote preimage properties even when talking
about the image operation.

The following lemma connects preimage with least left preservation and anni-
hilation. Like (llp) and (gla), this allows us to eliminate certain occurrences of
preimage and image operators.
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Lemma 6.1. Let A be a δ-semiring. For all a ∈ A and p, q ∈ test(A),

a : p ≤ q ⇔ ap ≤ qa, (43)
a : p ≤ q ⇔ q′ap ≤ 0. (44)

Proof. Immediate from (llp) and Lemma 3.4, respectively.

From (30) we get the following import/export rule for the preimage.

Corollary 6.2. Let A be a δ-semiring. For all a ∈ A and p, q ∈ test(A),

p(a : q) = (pa) : q. (45)

Lemma 6.1 has the following consequence that couples preimages and images.

Lemma 6.3. Let A be a δρ-semiring. The preimage and image operations satisfy
the following opposition law. For all a ∈ A and p, q ∈ test(A),

a : p ≤ q ⇔ q′ : a ≤ p′. (46)

Proof. Immediate from Lemma 6.1.

The opposition law is a weak analogue of the Schröder rule from the relational
calculus. Lemma 6.3 has the following immediate consequence.

Corollary 6.4. Let A be a δρ-semiring. For all a ∈ A and p, q ∈ test(A),

(p : a)q ≤ 0 ⇔ p(a : q) ≤ 0. (47)

Lemma 4.11 immediately yields the following property.

Corollary 6.5. Let A be a δ-semiring. Then : is strict, distributes over addi-
tion and hence is isotone in both arguments.

The sublocality law becomes

(ab) : p ≤ a :(b : p); (48)

in the presence of (loc) this becomes an equality. Finally, locality yields the follow-
ing interaction of domain with preimage and of codomain with image.

Lemma 6.6. Let A be a δ-semiring. Then for all a, b ∈ A,

δ̂(ab) = a : δ̂(b). (49)

The preimage operator a : p is a modal diamond operator 〈a〉p as used in proposi-
tional dynamic logic (PDL). Sections 10 and 11 will further exploit this connection.

7. DOMAIN AND KLEENE STAR

So far, we have investigated domain and codomain operations in absence of the
Kleene star. In fact, no further axioms are needed in its presence. Therefore, in this
section, we only need to consider its interaction with domain, codomain, image and
preimage. Only image and preimage show nontrivial behaviour. In particular, when
the Kleene star is restricted to occur only within domain and codomain operators, a
finite equational axiomatisation instead of the star induction axioms (3) and (4) is
possible. Moreover, one of these equational axioms can be interpreted as an efficient
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reachability algorithm, when interpreted over finite relations; its formal derivation
from a less efficient specification is particularly simple.

Henceforth, Kleene algebras with tests are called δ-Kleene algebras, δρ-Kleene
algebras, etc. when they extend the respective t-semirings. When we do not want
to distinguish between Kleene algebra with predomain and precodomain or Kleene
algebra with domain and codomain, we uniformly speak of Kleene algebra with
predomain or Kleene algebra with domain. We denote the classes by KAP and
KAD. First, the properties of the Kleene star from Lemma 2.1 have some trivial
consequences for domain and codomain.

Lemma 7.1. Let A ∈ KAP. Then for all a ∈ A,

δ(a)∗ = 1 = δ(a∗).

The Kleene star in combination with images or preimages is more interesting. The
laws in the following statements are analogous to the unfold axioms (1) and (2) of
Kleene algebra.

Lemma 7.2. Let A ∈ KAP. For all a ∈ A and p ∈ test(A),

p + a :(a∗ : p) ≥ a∗ : p ≤ p + a∗ :(a : p).

The inequalities become equations when A ∈ KAD.

Proof. By (11),

a∗ : p = (1 + a∗a) : p = (1 : p) + (a∗a) : p ≤ p + a∗ :(a : p).

The last step uses (31). The second half of the claim is shown analogously. The
equations follow by using (loc) instead of (31).

Note the analogy to (11). By Lemma 7.2, a∗ : p is a fixed point of the mapping
λx.p + a :x when A ∈ KAD.

Lemma 7.3. Let A ∈ KAP. For all a ∈ A and p ∈ test(A),

a : p ≤ p ⇒ a∗ : p ≤ p. (50)

Proof. Using Lemma 6.1 and (14), we calculate

a : p ≤ p ⇔ ap ≤ pa ⇒ a∗p ≤ pa∗ ⇔ a∗ : p ≤ p.

Lemma 7.3 can be viewed as an assertion about invariants: an invariant of a is also
an invariant of a∗. Moreover, it has two important consequences. First, we will
use it in the following lemma to derive variants of the statements of Lemma 7.2
that lead to more efficient evaluation of the expressions involved. Second, when
the Kleene star is restricted to occur only within preimages, we will show in the
following lemma that there are even equivalent equational characterisations.
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Lemma 7.4. Let A ∈ KAD. Let a ∈ A and p, q ∈ test(A). The following proper-
ties are equivalent. By Lemma 7.3 they hold in KAD.

a : p ≤ p ⇒ a∗ : p ≤ p, (50)
q + a : p ≤ p ⇒ a∗ : q ≤ p, (51)
a∗ : p ≤ p + a∗ :(p′(a : p)), (52)
a∗ : p = p + (ap′)∗ :(a : p). (53)

Proof. We first show that (50), (51) and (52) are equivalent.
(50) implies (51). a : p + q ≤ p iff a : p ≤ p and q ≤ p and therefore a∗ : p ≤ p by the
assumption. Hence also a∗ : q ≤ p by isotonicity.
(51) implies (52). For a∗ : p ≤ p + a∗ :(p′(a : p)) it suffices by (51) to show that

p ≤ p + a∗ :(p′(a : p)),
a :(p + a∗ :(p′(a : p))) ≤ p + a∗ :(p′(a : p)).

The first inequality is trivial. The second one is proved as follows:

a :(p + a∗ :(p′(a : p))) = (a : p) + a :(a∗ :(p′(a : p)))
= (p + p′)(a : p) + a :(a∗ :(p′(a : p)))
≤ p + p′(a : p) + a :(a∗ :(p′(a : p)))
= p + a∗ :(p′(a : p)).

The third step uses p(a : p) ≤ p; the last step uses Lemma 7.2 for KAD.
(52) implies (50). Assume a : p ≤ p. Then

a∗ : p ≤ p + a∗ :(p′(a : p)) ≤ p + a∗ :(p′p) = p + a∗ : 0 = p + 0 = p.

We now show that (51) implies (53) and that (53) implies (50). This yields simpler
proofs than a direct circle.
(51) implies (53). First, p + (ap′)∗ :(a : p) ≤ p + a∗ :(a : p) = a∗ : p by isotonicity of
the Kleene star, the fact that p′ ≤ 1 and Lemma 7.2 with (loc). For the converse
direction, that is, a∗ : p ≤ p + (ap′)∗ :(a : p), it suffices by (51) to show that

p ≤ p + (ap′)∗ :(a : p),
a :(p + (ap′)∗ :(a : p)) ≤ p + (ap′)∗ :(a : p).

The first inequality is trivial. The second one is proved as follows:

a :(p + (ap′)∗ :(a : p)) = a : p + (a(p + p′)) :((ap′)∗ :(a : p))
= a : p + (ap) :((ap′)∗ :(a : p)) + (ap′) :((ap′)∗ :(a : p))
≤ a : p + (ap) : 1 + (ap′) :((ap′)∗ :(a : p))
= a : p + (ap′) :((ap′)∗ :(a : p))
= (ap′)∗ :(a : p)
≤ p + (ap′)∗ :(a : p).

The first two steps use additivity of domain, the third step uses (ap′)∗ :(a : p) ≤ 1,
the fourth step uses that (ap) : 1 = a : p, the fifth step uses Lemma 7.2 for KAD.
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(53) implies (50). Assume a : p ≤ p. Then

a∗ : p = p + (ap′)∗ :(a : p)
≤ p + (ap′)∗ : p
≤ p + (ap′)∗ :((ap′) : p)
= p + (ap′)∗ : 0
= p.

The third step uses Lemma 7.2, the fourth step uses that (ap′) : p = δ(ap′p) =
δ(0) = 0, the fifth step uses a : 0 = 0.

Note the analogy of (51) to the star induction axiom b + ac ≤ c ⇒ a∗b ≤ c, that is,
(3) of Kleene algebra.

Corollary 7.5. Let A ∈ KAD. For all a, b, c ∈ A and p ∈ test(A),

b : q + (ac) : p ≤ c : p ⇒ (a∗b) : q ≤ c : p. (54)

Proof. The claim follows from (51), replacing p by c : p, q by b : q and using
(loc).

Lemma 7.2 describes an unfolding step of the preimage operation. However,
when viewed as a recursion for actually computing the preimage (say in reachability
algorithms on graphs), this is not the most efficient version. In a∗ : p = p+a∗ :(a : p),
for instance, it is not necessary to perform a full a-iteration from a : p. Since all steps
starting from p have already been considered, it suffices to perform the a-iteration
from p′-states. This is expressed by (53).

The unfold and induction laws for preimages are of further interest. The natural
ordering and the operations of addition and multiplication can be lifted point-wise
to the level of preimage operations. This yields operator semirings and operator
Kleene algebras and introduces a further level of abstraction. Details are presented
in [Möller and Struth 2005].

8. KLEENE ALGEBRAS AS VARIETIES

In this section we classify some of our results in the context of universal algebra.
As usual in this field, we identify varieties with equational classes. By Birkhoff’s

theorem, these are precisely the classes that are closed under subalgebras, products
and homomorphic images. A variety is finitely based if it can be axiomatised by a
finite set of equations. The following lemma is immediate.

Lemma 8.1. The class of δρ-semirings is a finitely based variety.

The next lemma is not so immediate. It has been shown in [Kozen 1994b; Pratt
1990] that Kleene algebras with a residuation operation are finitely based varieties.
The same phenomenon might occur when adding a domain or codomain operation.
The following lemma shows that this is not the case. A similar argument has been
used in [Hollenberg 1997] for algebras related to PDL.

Lemma 8.2. KAP and KAD are not finitely based varieties.
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Proof. In [Conway 1971], p. 106, an algebra Ap is given that shows that the
algebra of regular events (cf. Example 2.9) is not finitely based. For every finite
set of equations and every prime number p there is a particular valid equation φp

parameterised by p that is not deducible, and there is an algebra Ap parameterised
by p that satisfies the finite set of equations, but not φp. According to Conway,
every expression in the language of Kleene algebra is equivalent to some sum of
terms each of which is either 0 or 1 or is simultaneously 0-free, 1-free and +-free.
This implies that in Ap, which is constructed from such normal form terms, ab ≤ 0
implies that a ≤ 0 or b ≤ 0, so that the integrality condition (34) holds.

Now, in the presence of domain, we consider the discrete t-semiring on Ap. Then,
by Lemma 4.10 and Lemma 4.17, the mapping defined by δ(0) = 0 and δ(a) = 1
for all 0 6= a ∈ Ap satisfies (d1), (d2) and (loc). In particular 0 6= 1.

Thus the expansion of Ap satisfies the finite set of equations and the domain
axioms, but not φp. Consequently, the given finite set of equations is not complete
for KAP and KAD.

9. DOMAIN AXIOMS FOR RELATED STRUCTURES

The definition of predomain via (llp) looks very similar to a Galois connection. The
equational axioms (d1) and (d2) are also quite reminiscent of so-called cancellation
properties and Lemma 4.11 lists several further properties that would typically
follow from a Galois connection. But a closer look reveals that it is not possible to
rewrite (llp) in the form f(p) � q ⇔ p v g(q) for partial orderings � on set B and
v on set A, for f : A → B and g : B → A and for p ∈ A and q ∈ B. This explains
why the present definition differs from its predecessors in related structures. The
precise relation is as follows.

Lemma 9.1. Let A be a t-semiring with greatest element >. Then for all a ∈ A
and p ∈ test(A),

a ≤ pa ⇔ a ≤ p>. (55)

If A is a δ-semiring this implies the Galois connection

δ(a) ≤ p ⇔ a ≤ p>. (56)

Proof. We only show (55) from which (56) follows by (llp).
Let a ≤ pa. Then a ≤ p> follows by isotonicity.
Let a ≤ p>. Then a = (p + p′)a = pa + p′a ≤ pa + p′p> = pa.

Although the Galois connection (56) is equivalent to (llp) in t-semirings with
greatest element, this does not hold in general semirings and does not yield there
all desirable properties of predomain. We now investigate alternative conditions
under which the Galois connection (56) becomes equivalent to (llp).

A lattice-ordered monoid (an l-monoid) is a structure (A,+,u, ·, 1) such that
(A,+,u) is a lattice, (A, ·, 1) is a monoid and multiplication is additive in both
arguments. l-monoids are extensively studied in [Birkhoff 1984]. d-monoids and
b-monoids are l-monoids with lattice reducts that are distributive and Boolean,
respectively. When A is a b-monoid with complement a for each a ∈ A, comple-
mentation restricted to subidentities can be defined as p′ = 1 u p = 1 − p. This
turns the entire set of subidentities into a Boolean subalgebra of A.
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Lemma 9.2.

(i) Let A be a b-monoid. Let a ∈ A and p be an arbitrary subidentity. Then

a ≤ p> ⇔ a ≤ pa. (57)

(ii) In a b-monoid A, all subidentities are multiplicatively idempotent.
(iii) The left-to-right implication in (57) does not hold in all d-monoids with >.

Proof.

(i) With the definition of p′ as given above, the proof is the same as for Lemma 9.1.
(ii) Using isotonicity and (57) we calculate, for p ≤ 1,

true ⇔ p ≤ p> ⇔ p ≤ pp ⇔ p = pp.

(iii) The i-semiring A1
4 of Example 2.6 is clearly also a d-monoid with > = b, since

the natural ordering is a chain. It satisfies a = ab = a>, but a 6≤ 0 = aa.
Note that A1

4 can be made into a discrete domain semiring, but no other test
semiring, since the element a has no complement.

This lemma does not mention t-semirings and therefore is different from Lemma 9.1.
It implies that b-monoids also admit a definition of domain via the Galois connec-
tion (56). These statements could be sharpened by taking Heyting algebras into
account. This is, however, left for future work.

Computational algebras with a notion of iteration have also been based on l-
monoids, usually on complete l-monoids, for which the underlying lattice possesses
arbitrary infima and suprema. A quantale [Mulvey 1986], for instance, is a complete
l-monoid in which multiplication distributes over arbitrary suprema in both argu-
ments. Classical examples are the standard Kleene algebras of [Conway 1971] (where
meet is not explicitly present but can be defined by completeness of the underlying
lattice). Iteration on b-quantales has been studied, for instance, in [Desharnais
and Möller 2001; Desharnais et al. 2000]. The sequential algebras of [Hoare and
von Karger 1995] are also particular b-quantales. Now, the Knaster-Tarski theorem
guarantees existence of the Kleene star as the least fixed point of an isotone func-
tion and of predomain and domain defined via the Galois connection (56) (cf. [Aarts
1992]). Lemma 9.2, however, shows that these results do not transfer to the more
general case of (non-complete) t-semirings and Kleene algebras with tests.

But still our generalisation pays. First, it encompasses the definitions for the
more special structures, whence admits a larger model class, but nevertheless leads
to a simple calculus that entails many natural properties. Second, Kleene algebras
are first-order structures whereas quantales are essentially higher-order. This makes
Kleene algebras more suitable for automated reasoning. Third, the lattice-based
approaches introduce operations like meet and complementation that are not always
convenient in applications. The complement of a program, for instance, relates all
states that are not in the input/output relation. While this is fine for sequential
programs, it leads to difficulties in presence of parallelism. Kleene algebras offer
the advantage of avoiding this.
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10. RECONSTRUCTING NOETHERICITY

In this section we demonstrate the expressiveness and applicability of KAD in the
field of termination analysis of programs. We show that concepts of Noethericity
and well-foundedness can be algebraically reconstructed. We further show that our
formulation of Noethericity is more generally applicable than that of ω-algebra [Co-
hen 2000], an extension of Kleene algebra with infinite iteration that is defined as a
greatest fixed point by expressions similar to the star unfold and induction axioms.
Moreover, adapting a result from [Goldblatt 1985], we show that for transitive re-
lations our concept is also equivalent to an algebraic variant of Löb’s formula from
modal logic (cf. [Bull and Segerberg 1984; Chellas 1980]). Finally, we show that
some well-known properties of well-founded relations can be calculated in KAD in
a simple concise way.

According to the standard definition, a relation R on a set M is well-founded
iff every non-empty subset of M has an R-minimal element. In a δ -semiring A,
the minimal part of p ∈ test(A) with respect to some a ∈ A can algebraically be
characterised as p− p : a, that is, as the set of points that have no a-predecessor in
p. So, by contraposition, the well-foundedness condition holds iff for all p ∈ test(A)
one has p − p : a ≤ 0 ⇒ p ≤ 0. Using Boolean algebra we therefore obtain the
following abstract characterisation of well-foundedness and its dual, Noethericity.

10.1 Noethericity: Axioms and Simple Properties

Abstracting to a δρ-semiring A, we say that a is well-founded if for all p ∈ test(A),

p ≤ p : a ⇒ p ≤ 0. (58)

Moreover, a is Noetherian if for all p ∈ test(A),

p ≤ a : p ⇒ p ≤ 0. (59)

We now calculate abstract variants of some simple well-known properties of well-
founded and Noetherian relations. Again, as in previous sections, we restrict our
attention to Noethericity, which is expressed in terms of preimages. We do not
explicitly mention well-foundedness properties that hold by duality in the opposite
semiring. In the context of termination, reflexivity is not a desirable property, as
we will see. The transitive closure a+ = aa∗ is more interesting than a∗ itself. We
say that a is transitive if aa ≤ a.

Lemma 10.1. Let A ∈ KAD. Let a, b ∈ A and let 0 6= 1.

(i) 0 is Noetherian.
(ii) Every test p 6= 0 is not Noetherian.
(iii) If a is Noetherian and b ≤ a, then b is Noetherian.
(iv) If a is Noetherian, then the only test below a is 0. In particular, 1 6≤ a.
(v) If a 6≤ 0 is Noetherian then a 6≤ aa, that is, a is not dense.
(vi) a is Noetherian iff a+ is Noetherian.
(vii) a∗ is not Noetherian.

Proof.

(i) Let p ≤ 0 : p. Then p ≤ 0, since 0 : p = 0.
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(ii) Every such p satisfies p ≤ pp = p : p.

(iii) Let a be Noetherian and let b ≤ a. Then p ≤ b : p ⇒ p ≤ a : p ⇒ p ≤ 0. Thus
b is Noetherian.

(iv) Assume p ≤ a. Then by (iii) p is Noetherian, so that by (ii) we infer p = 0.

(v) Let a be dense and Noetherian. a ≤ aa implies a : p ≤ a :(a : p), by isotonicity
and (31). Thus a : p ≤ 0 for all p ∈ test(A). The particular case p = 1 yields
a ≤ 0, a contradiction.

(vi) Let a be Noetherian and remember that a+ = aa∗. We calculate

p ≤ a+ : p ⇒ a∗ : p ≤ a∗ :(a+ : p)
⇔ a∗ : p ≤ a :(a∗ : p)
⇒ a∗ : p ≤ 0
⇒ 1 : p ≤ 0
⇔ p ≤ 0.

The second step uses (loc), a∗a∗ = a∗ and aa∗ = a∗a. The third step uses
Noethericity of a. The fourth step uses 1 ≤ a∗. Thus a+ is Noetherian.
Now let a+ be Noetherian. Then, by (iii) and a ≤ a+, a is Noetherian.

(vii) By (ii), 1 is not Noetherian. Then 1 ≤ a∗ implies that a∗ is not Noetherian
using (iii).

10.2 Noethericity and ω-Algebra

We now investigate how our Noethericity axiom relates to ω-algebras. We do not
introduce the axioms for this class. Intuitively, while an expression a∗ denotes finite
iteration of a, aω denotes strictly infinite iteration. Consequently, in ω-algebra,
Noethericity of a means absence of proper infinite iteration of a; thus aω = 0. In
our calculations we only need the property

aω ≤ aaω. (60)

Lemma 10.2. Let A be an ω-algebra that is also a δ-semiring. Then for all
a ∈ A, if a is Noetherian then aω = 0.

Proof. Let a be Noetherian. Using (31) we obtain

δ(aω) ≤ δ(aaω) ≤ δ(aδ(aω)) = a : δ(aω).

Thus δ(aω) = 0 by Noethericity axiom (59). By Lemma 4.11(i), this is the case if
and only if aω = 0.

The converse implication does not hold. The language semiring of Example 2.9 can
be extended to an ω-algebra by setting aω = Σ∗ if ε ∈ a and aω = 0 otherwise.
Then aω = 0 if 1 u a = 0. But for a 6= 0 also a : p = p holds for all tests p, so that
then a is not Noetherian.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



30 · J. Desharnais et al.

10.3 Noethericity and Löb’s Formula

We now investigate an alternative characterisation of Noethericity for transitive
relations that is even equational. Remember that an element of a semiring is
transitive if aa ≤ a. In modal logic, Noethericity of the underlying Kripke frame is
characterised by Löb’s formula (cf. [Bull and Segerberg 1984; Chellas 1980])

2(2p → p) → 2p.

For our purposes, the dual version 3p → 3(p ∧ ¬3p) is more convenient, since it
can immediately be translated into KAD:

a : p ≤ a :(p− a : p). (61)

Here we have transcribed 3p into a : p, where a is a Kleene element that represents
the underlying Kripke frame, and p− q stands for pq′.

We say that a is Löbian if it satisfies (61). In relational Kleene algebra, Löb’s
formula states that a is transitive and that there are no infinite a-chains. We will
now relate Löb’s formula and our Noethericity axiom. But first we need a technical
lemma.

Lemma 10.3. Let A ∈ KAD. Let a ∈ A and p, q ∈ test(A).

(i) a : p− a : q ≤ a :(p− q),
(ii) a+ : p = a :(p + a+ : p).

Proof.

(i) a : p = a :(p(q + q′)) = a :(pq)+a :(pq′) ≤ a : q +a :(pq′). The result then follows
from the definition of subtraction.

(ii) Immediate from Lemma 7.2 and the definition of a+.

The following theorem is essentially due to [Goldblatt 1985].

Theorem 10.4. Let A ∈ KAD and let a ∈ A.

(i) a is Noetherian if it is Löbian.
(ii) If a is Noetherian then, for all p ∈ test(A),

a : p ≤ a+ :(p− a : p). (62)

(iii) a is Löbian if it is Noetherian and transitive.

Proof.

(i) Let p ≤ a : p. Thus equivalently p − a : p ≤ 0 by Boolean algebra. Using (61)
we calculate p ≤ a : p ≤ a :(p− a : p) ≤ a : 0 = 0.

(ii) First, observe that (62) is equivalent to a : p − a+ :(p − a : p) ≤ 0. Thus by
Noethericity of a it suffices to show that

a : p− a+ :(p− a : p) ≤ a :(a : p− a+ :(p− a : p)).
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We calculate

a : p− a+ :(p− a : p) = a : p− a :((p− a : p) + a+ :(p− a : p))

≤ a :(p− ((p− a : p) + a+ :(p− a : p)))

= a :((p− (p− a : p))− a+ :(p− a : p))

≤ a :(a : p− a+ :(p− a : p)).

The first and second step use Lemma 10.3(ii) and (i). The third step uses
p− (q + r) = (p− q)− r, which holds in Boolean algebra. The fourth step uses
p− (p− q) = pq ≤ q, which holds again in Boolean algebra, and isotonicity.

(iii) For transitive a we have a = a+ as the following instantiation of (4) shows:

aa∗ ≤ a ⇐ a + aa ≤ a.

Now the claim is immediate from (ii).

Theorem 10.4 is a modal correspondence result. In this view, Noethericity expresses
a frame property, which is part of semantics, whereas Löb’s formula represents a
part of modal syntax. KAD allows expressing syntax and semantics in one single for-
malism. Moreover, while the traditional proof of correspondence uses an (informal)
semantic argument, the present one is entirely calculational. Further investigations
of Noethericity in the context of KAD are outside the scope of the present paper;
see [Desharnais et al. 2004b] for more details.

11. RECONSTRUCTING HOARE LOGIC

In this section we consider another application of KAP: an algebraic reconstruction
of propositional Hoare logic. This kind of analysis is a popular exercise for many
programming logics and algebras, among them PDL [Fischer and Ladner 1979]
and KAT [Kozen 2001]. Since KAP is an extension of KAT, our overall result is no
surprise. However it is interesting for at least two reasons. First, the encoding of the
inference rules of the Hoare calculus in KAP is more direct and so are their soundness
proofs. Second, the properties of the standard partial correctness semantics for
Hoare logic [Loeckx and Sieber 1987; Apt and Olderog 1997] mirror precisely those
of domain, so that KAP yields a natural algebraic semantics. A particular advantage
over KAT is the possibility to express the weakest liberal precondition operator as

wlp(a, p) = (a : p′)′ = [a]p

and to reconstruct the entire wlp-calculus as an equation-based calculus in KAP.
This is, however, beyond the scope of the present text; see [Möller and Struth 2005]
for details.

We now encode the relevant programming constructs in KAT,

a ; b = ab, if p then a else b = pa + p′b, while p do a = (pa)∗p′,

and briefly recall the syntax and semantics of Hoare logic. Basic formulas are partial
correctness assertions of the form {p} a {q}, where p and q (the precondition and
postcondition) denote properties of the store and a denotes an action or program.
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Intuitively, p models a property of the input states of a program, while q models a
property that is intended to hold at the output states. The program a is interpreted
as a relation between input and output. Traditionally, the Hoare calculus uses the
following inference rules for reasoning about programs.

Assignment {p[e/x]} x := e {p},

Composition
{p} a {q} {q} b {r}

{p} a ; b {r}
,

Conditional
{p ∧ q} a {r} {p′ ∧ q} b {r}
{q} if p then a else b {r}

,

While
{p ∧ q} a {q}

{q} while p do a {p′ ∧ q}
,

Weakening
p1 → p {p} a {q} q → q1

{p1} a {q1}
.

Assignment is a non-propositional inference rule that deals with the internal struc-
ture of states. It is therefore abstracted away in this approach. Following [Kozen
2001], we call the fragment of Hoare logic without assignment propositional Hoare
logic (PHL) and define partial correctness assertions in KAT by

{p} a {q} ⇔ paq′ ≤ 0.

Using the dual of (44), we can rewrite this definition more directly as

{p} a {q} ⇔ p : a ≤ q. (63)

Accordingly, the inference rules of PHL can be encoded as

Composition p : a ≤ q ∧ q : b ≤ r ⇒ p :(ab) ≤ r,

Conditional (pq) : a ≤ r ∧ (p′q) : b ≤ r ⇒ q :(pa + p′b) ≤ r,

While (pq) : a ≤ q ⇒ q :((pa)∗p′) ≤ p′q,

Weakening p1 ≤ p ∧ p : a ≤ q ∧ q ≤ q1 ⇒ p1 : a ≤ q1.

Theorem 11.1. The encoded rules of PHL are derivable in KAP. Therefore PHL
is sound with respect to this algebraic semantics.

Proof. (Composition): p :(ab) ≤ (p : a) : b ≤ q : b ≤ r.
The first step uses (31), the second one the assumption and isotonicity.
(Conditional): q :(pa + p′b) = (pq) : a + (p′q) : b ≤ r + r = r.
(While): (pq) : a ≤ q ⇒ q :(pa)∗ ≤ q ⇒ (q :(pa)∗)p′ ≤ qp′ ⇔ q :((pa)∗p′) ≤ p′q.
The first step uses commutativity of tests and (50). The third step uses again
import/export and commutativity of tests.
(Weakening): p1 : a ≤ p : a ≤ q ≤ q1.

Now soundness means that for every PHL-provable partial correctness assertion
there is a calculation in KAP using translated statements. This follows by induction
on the structure of PHL-proofs and our previous considerations.

Thus, soundness of PHL can be proved literally in four lines from our domain cal-
culus in KAP. Compared to the KAT-based approach, our encodings and proofs
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are more direct and intuitive. Compared to standard set-theoretic proofs (c.f [Apt
and Olderog 1997; Loeckx and Sieber 1987]), our proof is about ten times shorter,
without taking into account the fact that many logical and set-theoretic assump-
tions are left implicit there. Moreover, it has already been observed in [Kozen 2001]
that all Horn clauses built from partial correctness assertions in Hoare logic that
are valid with respect to the standard semantics are derivable in KAT. This result
holds a fortiori for KAP. PHL is too weak to derive all such formulas. Finally, Hoare
logic is an example where the domain operator can be completely eliminated from
all expressions by using (gla). Even more, all inference rules of Hoare logic can be
translated into Horn clauses in KAT, where all antecedents are of the form p = 0.
A technique for hypothesis elimination [Cohen 1994; Kozen 2001; Kozen and Smith
1996] yields decidability of this fragment.

In [Möller and Struth 2005], using KAD instead of the weaker KAP, even a fully
algebraic proof of relative completeness of PHL is presented. As a conclusion, we
can only support [Kozen 2001] thatthe specialised syntax and deductive apparatus
of Hoare logic are inessential and can be replaced by simple equational reasoning.
We also believe that KAP and KAD offer further advantages. They combine the
intuitiveness and readability of specifications in Hoare logic and imperative program
semantics with the algorithmic power and the equational reasoning of KAT.

12. CONCLUSION AND OUTLOOK

We have presented equational axioms for domain and codomain operations for
certain idempotent semirings and Kleene algebras. This algebraic abstraction is in-
tended as a unified view on modal, relational and algebraic approaches to program
analysis and development as different as PDL, KAT, B and Z. We have outlined a
calculus for KAD, defined preimage and image operators and presented two appli-
cations of KAD: algebraic accounts of Noethericity and Hoare logic. Our results
provide the foundations of KAD, introduce the basic calculus and form the basis
for further investigations.

On the theory side, expressiveness, complexity, representability or completeness
of KAD have not been investigated in this text. The same holds for the apparent
relation to modal algebras, algebraic variants of PDL, temporal logics, the modal
µ-calculus and process algebras. On the application side, it will be interesting to
continue our work in program semantics and termination, rewriting theory, algo-
rithm development and the analysis of hardware and software systems. Some results
on these topics are surveyed in [Desharnais et al. 2004a].

In general, the flexibility and naturalness of KAD make it a promising tool for the
specification and analysis of state transition systems. As often with Kleene algebra,
KAD might offer a simple uniform calculus where different specialised formalisms
and complicated reasoning had to be used before.
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Desharnais, J., Möller, B., and Struth, G. 2004a. Applications of modal Kleene algebra —

a survey. JoRMiCS — Journal on Relational Methods in Computer Science 1, 93–131.
http://www.cosc.brocku.ca/Faculty/Winter/JoRMiCS.
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Schmidt, G. W. and Ströhlein, T. 1993. Relations and Graphs: Discrete Mathematics for
Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer.

Spivey, J. M. 1988. Understanding Z. Cambridge University Press.

Trnkova, V. and Reiterman, J. 1987. Dynamic algebras with tests. J. Comput. System Sci. 35,

229–242.

Received October 2003; revised November 2004; accepted January 2005

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.


