
Redundant Execution on Heterogeneous
Multi-Cores Utilizing Transactional Memory

Rico Amslinger, Sebastian Weis, Christian Piatka, Florian Haas, and
Theo Ungerer

University of Augsburg, Germany
{rico.amslinger, sebastian.weis, christian.piatka, florian.haas,

theo.ungerer}@informatik.uni-augsburg.de

Abstract. Cycle-by-cycle lockstep execution as implemented by cur-
rent embedded processors is unsuitable for heterogeneous multi-cores,
because the different cores are not cycle synchronous. Furthermore, cur-
rent and future safety-critical applications demand fail-operational exe-
cution, which requires mechanisms for error recovery.
In this paper, we propose a loosely-coupled redundancy approach which
combines an in-order with an out-of-order core and utilizes transactional
memory for error recovery. The critical program is run in dual-modular
redundancy on the out-of-order and the in-order core. The memory ac-
cesses of the out-of-order core are used to prefetch for the in-order core.
The transactional memory system’s checkpointing mechanism is lever-
aged to recover from errors. The resulting system runs up to 2.9 times
faster than a lockstep system consisting of two in-order cores and con-
sumes up to 35% less energy at the same performance than a lockstep
system consisting of two out-of-order cores.

Keywords: fault tolerance, multi-core, heterogeneous system, transac-
tional memory, cache

1 Introduction

c© Springer International Publishing AG, part of Springer Nature 2018

This is the accepted version of this paper. The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-77610-1 12

Cite as: Amslinger R., Weis S., Piatka C., Haas F., Ungerer T. (2018) Redundant Execution on
Heterogeneous Multi-cores Utilizing Transactional Memory. In: Berekovic M., Buchty R., Hamann
H., Koch D., Pionteck T. (eds) Architecture of Computing Systems - ARCS 2018. ARCS 2018.
Lecture Notes in Computer Science, vol 10793. Springer, Cham.
https://doi.org/10.1007/978-3-319-77610-1 12

Heterogeneous multi-cores like ARM big.LITTLETM-systems [2] combine fast
and complex (i. e. out-of-order) cores with slow and simple (i. e. in-order) cores
to achieve both high peak performance and long battery life. While these archi-
tectures are mainly designed for mobile devices, modern embedded applications,
e. g. those used for autonomous driving, also require high performance and power
efficiency.

Additionally, these applications require high safety levels, as they are sup-
ported by current safety-critical lockstep processors [1,7,11]. However, cycle-by-
cycle lockstep execution requires determinism at cycle granularity, because the
core states are compared after every cycle. This strict determinism complicates
the use of modern out-of-order pipelines, limits dynamic power management
mechanisms [5], and also prevents the combination of a fast out-of-order core
with an energy-efficient in-order core, even if both execute the same instruction

https://doi.org/10.1007/978-3-319-77610-1_12
https://doi.org/10.1007/978-3-319-77610-1_12


set. In contrast to lockstep execution, loosely-coupled redundant execution ap-
proaches [13,14,15], where the cores are not synchronized every cycle, allow the
cores to execute more independently. As a cycle-based synchronization between
the redundant cores is not necessary, resource sharing of parts of the memory
hierarchy becomes possible. In that case, a heterogeneous dual-core may benefit
from synergies between the cores, where a slower in-order core checks the results
of a faster out-of-order core. In case an application does not need result verifi-
cation, the redundant core can be switched off for energy savings or used as a
separate unit for parallel execution.

Furthermore, current safety-critical lockstep cores only support fail-safe ex-
ecution, since they are only able to detect errors. However, future safety-critical
applications may additionally demand a fail-operational execution, which re-
quires the implementation of recovery mechanisms. In this paper, we present a
loosely-coupled fault-tolerance approach, combining a heterogenous multi-core
with hardware transactional memory for error isolation and recovery. Its advan-
tages are a more energy efficient execution than an out-of-order lockstep system,
more performance than an in-order lockstep system, and less hardware and en-
ergy consumption than a triple modular redundant system.

Due to the loose coupling it is possible to combine different cores and to
employ fault-tolerance on a heterogeneous dual-core. In this case, the out-of-
order core can run ahead of the in-order core. This enables the leading (out-
of-order) core to forward its information about memory accesses and branch
outcomes to the trailing (in-order) core to increase its performance. Therefore,
the approach provides a desirable trade-off between a homogeneous lockstep
system consisting of either out-of-order or in-order cores as it is more power
efficient or faster, respectively. The hardware cost for the implementation can be
reduced by utilizing existing hardware transactional memory (HTM) structures.
The HTM system provides rollback capabilities, which enable the system to make
progress even if faults occur. The affected transactions are re-executed, until they
succeed. No additional main memory is required, as the HTM system isolates
speculative values in the caches. If a parallel workload does not require a fault-
tolerant execution, the loose coupling can be switched off at run-time to benefit
from the multi-core CPU and the transactional memory for multi-threading.

The contributions of this paper are: (1) A mechanism to couple heterogeneous
cores for redundancy that speeds up the trailing core by forwarding data cache
accesses and branch outcomes. (2) A design of a HTM for embedded multi-
cores to support loosely-coupled redundancy with implicit checkpoints. (3) An
evaluation of throughput and power consumption of our proposed heterogeneous
redundant system compared to a lockstep processor.

The remainder of this paper is structured as follows. Related work is discussed
in Section 2. Section 3 describes our redundant execution implementation. The
baseline system is depicted first. Then our loose coupling and the rollback mech-
anism are explained. The following subsection describes the necessary changes to
the HTM system. The last subsection specifies the advantages for heterogeneous
systems. Section 4 contains a performance evaluation of several microbench-



marks. Our approach is compared to a lockstep system and a stride prefetching
mechanism. The paper is concluded in Section 5.

2 Related Work

Reinhardt et al. [14] propose to use the simultaneous multithreading capabilities
of modern processors for error detection. The program is executed twice on the
same core. The executions are shifted and can use different execution units for
the same instruction. It is proposed to maintain a constant slack to minimize
memory stalls.

AR-SMT [15] is a time redundant fault-tolerance approach. An SMT-processor
executes the same program twice with some delay. The execution state of the
second thread is used to restore the first thread to a safe state if an error occurs.

The Slipstream Processor [17] is a concept which does not only provide fault
tolerance, but also higher performance by executing a second, slimmer version
of the program on either the same or another core. The second version of the
program is generated by leaving out instructions which are predicted to be inef-
fective. The resulting branch outcomes and prefetches are used to accelerate the
full version of the program. Errors are detected by comparing stores.

LBRA [16] is a loosely-coupled redundant architecture extending the trans-
action system LogTM-SE [19]. The old value for every memory location accessed
by the leading thread is stored in a log. For writes the new value is immediately
stored in memory. The trailing thread uses the log values for input duplication.
Both cores calculate signatures for every transaction. If an error is detected, the
log is traversed backwards to restore the old memory state.

FaulTM [18] is a fault-tolerance system utilizing transactional memory. Their
approach differs from ours in that it executes redundant transactions synchro-
nously. The write-sets and registers of both transactions are compared simulta-
neously, with one transaction committing to memory. This prohibits one thread
to run ahead of the other and thus suppresses possible cache-related performance
benefits.

Haas et al. [8,9] use the existing Intel HTM system (TSX) for error detection
and recovery. As Intel TSX does not support automatic transaction creation or
write set comparison, the protected software is instrumented to provide those
features itself. Transactional blocks are executed with an offset in the trailing
process, as TSX does not allow checksum transfer within active transactions. As
the redundant processes use the same virtual addresses, but different physical
memory locations, no speedups due to positive cache effects occur in the trailing
process.

3 Transaction-Based Redundant Execution Model

The baseline multi-core architecture with HTM is shown in Figure 1 as an ab-
straction of a state-of-the-art heterogeneous multi-core. The architecture con-



sists of two different cores with private L1 data and instruction caches that are
connected to a shared L2 cache. Cache coherence is guaranteed by hardware.

Hardware facilities support the execution of transactions, similar to Intel
Haswell [10]. The register sets of the cores are extended to provide snapshot
capabilities. The data caches and the coherence protocol are enhanced to manage
the read and write sets. The affected cache blocks cannot be evicted during the
transaction. The instruction caches do not require read and write sets since
self-modifying code is not supported. Transactional conflicts are detected by an
extended cache-coherence protocol.

Core 1

Register Snapshot

Core 2

Register Snapshot

Sphere of Replication

I$
D$

Write Set
Read Set I$

D$

Write Set
Read Set

L2$

RAM

Fig. 1. Baseline multi-core architecture, enhanced to support hardware transactions.

3.1 Loosely-Coupled Redundancy with Checkpoints

The proposed fault-tolerance mechanisms can detect and recover from faults that
occur in the pipelines of the cores, which is shown by the Sphere of Replication
in Figure 1. While there are two instances of the L1 caches and register sets, a
distinct fault-tolerance mechanism like ECC is still required for all caches and
the registers sets to ensure the consistency of the generated checkpoints.

Figure 2 shows the redundant execution approach. The redundant system
proposed in this paper executes the same code on both cores. The execution on
the cores is shifted by a dynamic time offset, called slack. Both cores will start
execution at the same instruction, when redundancy is enabled. Later the out-
of-order core is running ahead of the in-order core, except for I/O operations or
error recovery, that require synchronization of the cores to be resolved. As the
leading core usually runs faster, the slack increases. For implementation reasons



like buffer sizes the slack is limited to a certain number of instructions. This
hard limit will not be hit often, as accelerating effects for the trailing core like
forwarding memory accesses will become more effective with increasing slack.

To enable recoverability, checkpoints are automatically created by the cores,
when a transaction is started. The cores will automatically start and commit
transactions in a way that minimizes transaction and comparison overhead, while
ensuring that they fit in the cache. Instrumentation of the program with explicit
transaction instructions is not required.

While the trailing core only keeps the last checkpoint, the leading core must
retain two. This enables the rollback after an error, regardless of the core it
occurs on. If the leading core gets more than two checkpoints ahead (e. g. after
TX2), it has to wait. As the HTM system uses the caches to hold unverified data,
the cache size also limits the slack. When the trailing core reaches a checkpoint,
the current state is compared to the corresponding checkpoint of the leading
core. The new checkpoint for the trailing core is only created after a successful
comparison. The leading core on the other hand can speculatively progress as
long as it keeps at least one confirmed checkpoint.

Leading:

TX1 TX2 · · · TX3 TX4 TX5 	 TX4 TX5

X X X 7 X
Trailing:

TX1 TX2 TX3 TX4 E 	 TX4 TX5

slack

time

X= checksum-
match,

7= checksum-
missmatch,

· · · = cpu blocks, E= error, 	 = rollback

Fig. 2. Redundant execution with transactions.

Unconfirmed data is never written back to memory or transferred to another
cache. Only after confirming correct execution, the trailing core writes modified
data back to memory or marks it as valid for the cache coherence protocol. The
leading core’s cache silently evicts modified cache lines that were already verified
instead of writing them back. It relies on getting their data back from memory or
by cache to cache transfer from the trailing core. As none of the caches can evict
data written after active checkpoints, the cache size clearly limits the distance
between subsequent checkpoints.



Figure 2 also shows the handling of an error. After the error occurs, the
next comparison after TX4 results in a mismatch. The leading core has already
advanced past the potential erroneous checkpoint, but is still keeping an older
confirmed checkpoint at the start of TX4. Thus both cores rollback to the start
of TX4. As all changes after the confirmed checkpoint are confined in the cores
and their L1 caches, the rollback is fast. If the fault was transient, the next
comparison will succeed and the execution resumes regularly.

3.2 Extension of HTM to Support Fault Tolerance

If the processor already includes support for HTM to speculatively speed up
parallel execution, the implementation of the redundant system can be simplified.
The HTM system already provides support for isolation and checkpointing. Thus
those components can simply be reused. As the leading core requires multiple
checkpoints, the checkpointing capabilities of some simple transaction systems
may be insufficient.

The conflict detection component of HTM is unnecessary for redundant ex-
ecution on a dual-core, as both cores execute the same thread. The obvious
approach is to disable it completely, in order to avoid detection of false conflicts
between the leading and trailing core. The commit logic of the leading core can
be simplified, as writeback of confirmed data is handled by the trailing core.

Some additions are still required to support full fault tolerance. First, HTM
usually relies on special instructions to start and end transactions. For fault
tolerance another approach is preferred: The transaction boundaries should be
determined automatically at run-time, as it is hard to predict exact cache usage
at compile time. Second, regular HTM systems do not care about the content
of written cache blocks. Only their addresses need to be compared for conflict
detection. It is thus necessary to implement an additional unit to compare reg-
isters and cache block content. This unit will also need to restart both cores at
the correct checkpoints when a error has been detected.

3.3 Heterogeneous Redundant Systems

Tightly-coupled redundancy approaches like lockstep execution are not applica-
ble when heterogeneous cores are employed. Once a core executes an instruction
faster than the other core, a false error will be detected, causing the abort of
the application or a costly recovery attempt. Loosely-coupled redundant execu-
tion does not suffer from the disadvantage of false positives caused by different
microarchitectural implementations.

If the slack is sufficiently large, a cache miss is detected in the leading core
before the trailing core even reaches the instruction that causes the fetch. Thus
the leading core’s memory access addresses can be forwarded to the trailing
core, so it can prefetch them. This increases the performance, as cache misses
are often more expensive for simpler cores. Since the total run-time of the sys-
tem is determined by the slower core, this optimization improves total system
performance.



The trailing core can also benefit from other information. Even simple in-
order cores like the ARM Cortex-A7 feature branch prediction. As the cores’
data structures used for branch prediction are smaller than those of complex
cores, mispredictions are more common. These mispredictions can be eliminated
by forwarding branch outcomes from the leading core to the trailing core by
using a branch outcome queue [14]. This requires the leading core to stay far
enough ahead, so that it can retire the branch before the trailing core decodes
it. If the leading core is sufficiently fast, all branches in the trailing core are
predicted correctly. Thus, the performance improves in programs with many
data dependent branches. Error detection is not impacted, as the trailing core
will interpret different branch outcomes as mispredict.

With increasing differences between the cores, the implementation of such
enhancements becomes more difficult. For instance, a complex core may replace
short branches with predicated execution [12]. Thus the branch will not reach the
core’s commit stage. As a result the trailing core will not find a corresponding en-
try in the branch outcome queue, when it reaches the branch. Such problems can
cause the cores to lose synchronization and therefore decrease performance, as
shifted branch outcomes can be more inaccurate than the trailing core’s regular
branch prediction.

4 Evaluation

The suggested approach was modeled in Gem5 [6]. The fast and slow cores were
configured to match the ARM Cortex-A15 and ARM Cortex-A7, respectively.
Power consumption was approximated as the product of the simulated bench-
mark run-time and the average power consumption of an Exynos 5430 SoC. It
was assumed that a lockstep system runs as fast as a corresponding single-core
machine, but consumes twice the energy. For our approach, a limit was put in
place to prevent the leading core from running too far ahead. The leading core
stalls when it has committed 1,000 instructions more than the trailing core, or if
it tries to evict a modified cache line that the trailing core has not written yet.

We implemented several sequential microbenchmarks with different memory
access patterns. The following microbenchmarks were used to assess the perfor-
mance of the approach:

– The breadth-first benchmark calculates the size of a tree by traversing it in
breadth-first order. Each node has a random number of children.

– The heapsort benchmark sorts an array using heapsort. The array is initial-
ized with random positive integers.

– The matrixmul benchmark calculates the product of two dense matrices.
– The quicksort benchmark sorts an array using quicksort. The array is ini-

tialized with random positive integers.
– The red-black tree benchmark inserts random entries into a red-black tree.
– The shuffle benchmark shuffles an array using the Fisher-Yates shuffle.

The seed of the random number generator was constant for all runs.



0 20 40 60 80
0

10

20

30

breadth-first

0 500 1,000 1,500 2,000
0

0.5

1

heapsort

0 50 100
0

10

20

matrixmul

0 200 400 600 800
0

1

2

3

quicksort

0 50 100
0

10

20

red-black tree

0 5 10 15
0

50

100

150

shuffle

Energy per run [mJ]

2x Cortex-A7 2x Cortex-A15 Cortex-A7 + Cortex-A15

T
h
ro

u
g
h
p
u
t

[1
/
s]

Fig. 3. Trade-off between throughput and power consumption

Figure 3 shows the microbenchmarks’ throughput on the y-axis and the cor-
responding energy consumption per run on the x-axis. The microbenchmarks
were executed on a lockstep system consisting of two Cortex-A7, another lock-
step system consisting of two Cortex-A15 and our approach, using a Cortex-A15
as leading core and a Cortex-A7 as trailing core. To observe the maximum ef-
fect, the integrated prefetchers were disabled. The cores’ clock frequency were
varied in their frequency ranges (Cortex-A7: 500-1300 MHz, Cortex-A15: 700-
1900 MHz) in 100 MHz steps. For our approach the trailing core’s frequency was
fixed at 1300 MHz, while the leading core’s frequency was varied from 700 MHz
to 1900 MHz.

At first only a small increase in voltage per 100 MHz step is required to
allow the core to run stable. Thus for the lockstep systems, a large increase
in throughput can be achieved at low frequencies by a small increase in power
consumption. Note that the frequency itself has only minor influence on the
results, as power consumption is measured per benchmark run and not per time
unit. When the core’s approach their maximum frequency, the required increase
in voltage raises. At the same time the achieved acceleration decreases, as the



breadth-first heapsort matrixmul quicksort red-black tree shuffle

0

25

50

75

100

0

1

2

3

4

Reduction in miss rate [%]

Speedup, Prefetcher

Peak Speedup, our approach

Fig. 4. Performance gain by adding a stride prefetcher.

memory clock frequency remains constant. Thus for high frequencies only a small
increase in throughput can be achieved by a large increase in power consumption.
The effect is more pronounced on the Cortex-A15, as its IPC and maximum
frequency are higher.

Our approach shows a different pattern. For the frequency range, in which
the out-of-order core’s performance does not exceed the in-order core’s perfor-
mance at maximum frequency, the leading core slows down the entire system.
Increasing the leading core’s frequency, can reduce total power consumption
(e. g. in quicksort or shuffle), as the task finishes quicker, thus reducing the time
the trailing core is running at maximum voltage. After the leading core’s per-
formance exceeds the trailing core’s, there is a phase in which the trailing core
can be accelerated to the leading core’s level by prefetching. This area is the
most interesting as it offers higher performance than the trailing core, at a lower
power consumption than a lockstep system of two out-of-order cores. If the lead-
ing core’s frequency is increased further, eventually a point will be reached, at
which every memory access is prefetched. The graph asymptotically approaches
this performance level. As the leading core’s power consumption still raises, the
combination will eventually consume more energy than a lockstep system con-
sisting of two out-of-order cores would at the same performance level (apparent
in matrixmul). Thus further increasing the frequency of the leading core should
be avoided.

Figure 4 shows the performance improvement achieved when enabling the
stride prefetcher [4] on the Cortex-A7, which was clocked at 1300 MHz. Obvi-
ously the prefetcher by itself does not provide fault tolerance. The Cortex-A7
utilizes early issue of memory operations [3] in all variants. The stride prefetcher



tries to detect regular access patterns on a per instruction basis. If an instruction
accesses memory locations with a constant distance, the prefetcher will predict
the next addresses and preload them into the L1 cache. As the stride prefetcher
works on physical addresses, a detected stream will be terminated at the next
page boundary. For this evaluation the prefetcher was configured to observe 32
distinct instructions on a LRU basis and prefetch up to 4 cache lines ahead of
the last actual access. The amount by which the L1 cache miss rate (left y-axis)
was reduced and the total speedup (right y-axis) were measured. For comparison
the peak speedup (right y-axis) achieved by our approach was also included.

The effectiveness of the stride prefetcher varies depending on the benchmark’s
memory access pattern. For benchmarks with regular access pattern like matrix-
mul most cache misses can be eliminated. The first matrix is accessed linearly,
so nearly all cache lines are prefetched. As the second matrix is not transposed,
the stride prefetcher can only prefetch a few cache lines before encountering a
page boundary. Our approach can perfectly prefetch both matrices. Shuffle ac-
cesses the locations for the swap target at random. Thus, the stride prefetcher
is unable to predict the next access. However, forwarding the addresses from the
leading core to the trailing core is possible, as both cores use the same seed.

Tree-based benchmarks like breadth-first or red-black tree show a very irregu-
lar memory access pattern. They do not benefit as much from a stride prefetcher,
as it will rarely detect consistent strides when traversing the tree. However, it
can improve performance for the queues and stacks used in those algorithms, as
those show a regular access pattern. An overly aggressive prefetcher may reduce
performance for such algorithms, as it evicts cache lines that will be reused for
false prefetches. Our approach on the other hand can eliminate all cache misses
even for such irregular patterns, as long as the leading core runs fast enough.
Thus the resulting speedup exceeds, what is achievable with a simple prefetcher.

Our approach can achieve higher speedups than the stride prefetcher for both
sorting algorithms. However the reasons differ. Heapsort shows an irregular ac-
cess pattern, as the heap is tree-based. Thus, our approach benefits from supe-
rior prefetching performance. Quicksort on the other hand shows a very regular
access pattern, as it linearly accesses elements from both directions. However,
quicksort uses data dependent comparisons as loop condition in the Hoare parti-
tion scheme. Regular branch predictors can not predict those branches, as they
are essentially random for random data. However, in our approach the trailing
core can use the forwarded branch outcomes from the leading core to further
increase performance.

5 Conclusion

Loosely-coupled redundant execution with transactional memory to support
checkpointing has the potential to be an alternative to current lockstep systems.
As the HTM system already provides mechanisms like isolation and checkpoint-
ing, the required hardware enhancements are small. The isolation allows both
cores to operate on the same memory region, while the checkpointing mecha-



nism enables error recovery even with just two cores. The loose coupling makes
it possible to use the approach in heterogenous multi-cores.

The evaluation of the proposed approach showed that a slower in-order core
is able to keep up with a faster out-of order core to provide redundancy. This
requires a near-optimal data prefetching in the trailing core, which is achieved
by forwarding the memory accesses of the leading core. Supplying branch out-
comes further increases the throughput of the slower core. The combination of
heterogeneous cores for redundant execution results in a good trade-off between
performance and power consumption. It offers up to 2.9 times the performance
and up to 35% less power consumption than comparable lockstep systems con-
sisting of only slow or fast cores, respectively. Additionally, flexible coupling of
cores improves the flexibility for parallel applications with varying fault-tolerance
requirements.

As future work, we plan to extend our approach to larger heterogeneous
multi-cores, which will enable to change the coupling of cores dynamically at run-
time. Programs that exhibit a sufficient amount of cache misses benefit from a
heterogeneous coupling, since the in-order trailing core will be accelerated by the
cached data of the leading core. Otherwise, homogeneous coupling is preferred
for compute intensive programs to deliver better performance. Further, we plan
to extend the approach to support multi-threaded applications, regardless of the
synchronization mechanism they use.

References

1. ARM Ltd.: Cortex-R5 and Cortex-R5F - Technical Reference Manual.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_

cortexr5_trm.pdf (2011), Revision r1p1
2. ARM Ltd.: big.LITTLE Technology: The Future of Mobile (2013), https://www.

arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

3. Austin, T.M., Sohi, G.S.: Zero-cycle loads: Microarchitecture support for reduc-
ing load latency. In: Proceedings of the 28th annual international symposium on
Microarchitecture. pp. 82–92 (1995)

4. Baer, J.L., Chen, T.F.: An effective on-chip preloading scheme to reduce data access
penalty. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing.
pp. 176–186. Supercomputing ’91, ACM (1991)

5. Bernick, D., Bruckert, B., Vigna, P., Garcia, D., Jardine, R., Klecka, J., Smullen,
J.: NonStopR© Advanced Architecture. In: International Conference on Dependable
Systems and Networks (DSN). pp. 12–21 (2005)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The Gem5 Simulator. ACM
SIGARCH Computer Architecture News 39(2), 1–7 (2011)

7. Freescale Semiconductor: Safety Manual for Qorivva MPC5643L (2013), https:
//www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf

8. Haas, F., Weis, S., Metzlaff, S., Ungerer, T.: Exploiting Intel TSX for fault-tolerant
execution in safety-critical systems. In: IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). pp. 197–202
(2014)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf
https://www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf


9. Haas, F., Weis, S., Ungerer, T., Pokam, G., Wu, Y.: Fault-tolerant Execution
on COTS Multi-core Processors with Hardware Transactional Memory Support.
In: 30th International Conference on Architecture of Computing Systems (ARCS)
(2017)

10. Hammarlund, P., Martinez, A.J., Bajwa, A.A., Hill, D.L., Hallnor, E., Jiang, H.,
Dixon, M., Derr, M., Hunsaker, M., Kumar, R., et al.: Haswell: The Fourth-
Generation Intel Core Processor. IEEE Micro 34(2), 6–20 (2014)

11. Infineon Technologies AG: Highly integrated and performance optimized
32-bit microcontrollers for automotive and industrial applications (2017),
https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_

00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7

12. Klauser, A., Austin, T., Grunwald, D., Calder, B.: Dynamic hammock predication
for non-predicated instruction set architectures. In: International Conference on
Parallel Architectures and Compilation Techniques (PACT). pp. 278–285 (1998)

13. LaFrieda, C., Ipek, E., Martinez, J., Manohar, R.: Utilizing Dynamically Coupled
Cores to Form a Resilient Chip Multiprocessor. In: 37th International Conference
on Dependable Systems and Networks (DSN). pp. 317–326 (2007)

14. Reinhardt, S.K., Mukherjee, S.S.: Transient Fault Detection via Simultaneous Mul-
tithreading. In: 27th Annual International Symposium on Computer Architecture
(ISCA). pp. 25–36. ACM (2000)

15. Rotenberg, E.: AR-SMT: a microarchitectural approach to fault tolerance in mi-
croprocessors. In: 29th International Symposium on Fault-Tolerant Computing
(FTCS). pp. 84–91 (1999)

16. Sánchez, D., Aragón, J., Garcıa, J.: A log-based redundant architecture for reliable
parallel computation. In: International Conference on High Performance Comput-
ing (HiPC) (2010)

17. Sundaramoorthy, K., Purser, Z., Rotenberg, E.: Slipstream processors: Improving
both performance and fault tolerance. ACM SIGPLAN Notices 35(11), 257–268
(2000)

18. Yalcin, G., Unsal, O., Cristal, A.: FaulTM: error detection and recovery using
hardware transactional memory. In: Conference on Design, Automation and Test
in Europe (DATE). pp. 220–225 (2013)

19. Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: LogTM-SE: Decoupling hardware transactional memory from caches.
In: IEEE 13th International Symposium on High Performance Computer Archi-
tecture (HPCA). pp. 261–272 (2007)

https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7

	Redundant Execution on Heterogeneous Multi-Cores Utilizing Transactional Memory

