
http://www.sensorsportal.com/HTML/IFSA_Publishing.htm

Advances in Intelligent Systems:
Reviews

Book Series, Volume 1

S.Yurish
Editor

Advances in Intelligent Systems: Reviews

Book Series, Volume 1

 International Frequency Sensor Association Publishing

S. Yurish, Editor
Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

Published by IFSA Publishing, S. L., 2017
E-mail (for print book orders and customer service enquires):
ifsa.books@sensorsportal.com

Visit our Home Page on http://www.sensorsportal.com

Advances in Intelligent Systems: Reviews, Vol. 1 is an open access book which means
that all content is freely available without charge to the user or his/her institution. Users
are allowed to read, download, copy, distribute, print, search, or link to the full texts of
the articles, or use them for any other lawful purpose, without asking prior permission
from the publisher or the authors. This is in accordance with the BOAI definition of open
access.

Neither the authors nor International Frequency Sensor Association Publishing accept
any responsibility or liability for loss or damage occasioned to any person or property
through using the material, instructions, methods or ideas contained herein, or acting or
refraining from acting as a result of such use.

e-ISBN: 978-84-697-8923-0
ISBN: 978-84-697-8924-7
BN-20171226-XX
BIC: UYD

Contents

5

Contents

Contents ... 5
Preface ... 11
Contributors .. 15

1. Parallel Optimization for Intelligent Systems: Principles

and New Results ... 19
1.1. Introduction .. 19
1.2. Related Work ... 20
1.3. Basic Idea of the Self-Optimization Algorithm .. 21

1.3.1. No Optimization ... 22
1.3.2. Load Optimization .. 22
1.3.3. Trust Optimization ... 22
1.3.4. Trust and Load Optimization ... 23

1.4. Metrics and Notions ... 23
1.5. The Algorithm in Detail ... 25

1.5.1. No Optimization ... 26
1.5.2. Load Optimization .. 26
1.5.3. Trust Optimization ... 27
1.5.4. Trust and Load Optimization ... 27

1.6. Multiple Simultaneous Requests .. 28
1.6.1. Selective Request Handling .. 29
1.6.2. Parallel Request Handling ... 30

1.7. Evaluation .. 34
1.7.1. Results Regarding the Rating Function Fworkload 35
1.7.2. Results Regarding the Rating Function Ftrust.. 36
1.7.3. Basic Algorithm vs. Extensions .. 37
1.7.4. Different Network Settings ... 39

1.8. Conclusions and Future Work .. 44
References ... 45

2. Task Mapping in Heterogeneous NoC by Means of Population-Based
Incremental Learning .. 47
2.1. Introduction .. 47
2.2. The Population-Based Incremental Learning (PBIL) Algorithm 52
2.3. Experimental Results .. 60
2.4. Concluding Remarks .. 64
Acknowledgements ... 64
References ... 65

3. From Static to Dynamic: A New Methodology for Development
of Simulation Applications .. 69
3.1. Introduction .. 69
3.2. Methodology of Dynamic Simulation .. 74
3.3. Underground Mine Ventilation Systems as Objects of Dynamic Simulation ... 77

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

6

3.3.1. General Overview ... 77
3.3.2. Exemplary Models .. 80

3.4. Implementation with PHANTOM Framework ... 83
3.5. Conclusions .. 86
Acknowledgements ... 87
References ... 87

4. Improvement of the Calibration Uncertainty for Class E1 Weights
Using an Adaptive Subdivision Method on an Automatic Mass
Comparator .. 89
4.1. Introduction .. 89
4.2. Equipment and Standards used in Calibration .. 91

4.2.1. Some Aspects Regarding the Kilogram “Ni81” 92
4.2.2. The Weights Involved in Calibration .. 93
4.2.3. Precision (or Imprecision) of the Balance .. 93

4.3. Mass Determination of Reference Disc Weights Used as Check Standards
in the Calibration of E1 Weights ... 94
4.3.1. Measurement Matrix Design .. 94
4.3.2. Estimated Mass Values for Disc Weights ... 96

4.4. Statistical Tools for Evaluation of the Measurement Process and Mass
Determination of Class E1 Weights ... 97
4.4.1. Method Used to Evaluate the Efficiency of the Weighing Design 97
4.4.2. Mass Results Obtained in the Calibration of Weights 101

4.5. Analysis of Uncertainties .. 103
4.5.1. Uncertainty of the Weighing Process, uA .. 103
4.5.2. Type B Uncertainty ... 103
4.5.3. Combined Standard Uncertainty, uc ... 104
4.5.4. Expanded Uncertainty .. 104

4.6. Quality Assessment of the Calibration ... 104
4.7. Conclusions .. 108
References ... 108

5. RH Control Developments for Applied Uncertainty Management
in Industrial Processes ..111
5.1. Introduction .. 111
5.2. Safety and Security ... 112

5.2.1. Safety and Security Technologies ... 113
5.2.2. Emergency Shut Down Systems .. 114
5.2.3. Fire and Gas (F&G) Detection and Alarm Systems 115
5.2.4. Burner Management Systems ... 115

5.3. RH Control the New Level of Decision .. 116
5.3.1. Generalities .. 116
5.3.2. RH Control – the New Challenge ... 118
5.3.3. Control and Strategy .. 120
5.3.4. Reusability .. 122
5.3.5. Software Architecture ... 122

5.4. Emerging Technologies .. 123

Contents

7

5.4.1. Simulation Technologies .. 123
5.4.2. Developed Computer Networks .. 123
5.4.3. Intelligent I/O Interfaces .. 123
5.4.4. High Speed Simulators ... 124
5.4.5. The Systems Modeling and Simulating with Discrete or Hybrid Events

 124
5.4.6. On Line Testing and Diagnosis .. 124
5.4.7. Asset Management ... 125

5.5. System Development Methodologies and Techniques 125
5.5.1. System Engineering .. 125
5.5.2. Extended V Model for Uncertainty Control Development 128
5.5.3. Architecting Systems .. 130

5.6. Concurrent Engineering ... 131
5.7. Applying Uncertainty Management Principles for System

Architecture Design ... 137
5.7.1. A Framework for Control System Architecture Design 137
5.7.2. A Holonic Architecture for Plant Wide Control 138
5.7.3. Integrated Architecture for Real-time Control and Uncertainty

Management .. 139
5.8. Results and Discussion ... 142

5.8.1. Evaluation of the Response Time for Uncertainty Control 142
5.8.2. Methods for Response Elaboration .. 143
5.8.3. Developed Platforms and Case Studies .. 145

5.9. Conclusions .. 147
References ... 149

6. A Slow-growing Hierarchy of Time-bounded Programs 151
6.1. Introduction .. 151
6.2. Basic Instructions and Definition Schemes .. 153

6.2.1. Recursion-free Programs and Class T0 .. 154
6.2.2. Safe Recursion and Class T1 .. 155

6.3. Computation by Register Machines ... 156
6.4. The Time Hierarchy ... 159
6.5. Extending the Polynomial-Time Hierarchy to Transfinite 161

6.5.1. Structured Ordinals and Hierarchies ... 162
6.5.2. Diagonalization and Transfinite Hierarchy ... 162

6.6. The Time-Space Hierarchy ... 165
6.6.1. Recursion-free Programs and Class S0 .. 166
6.6.2. Safe Recursion and Class S1 ... 166

6.7. Conclusions and Further Work ... 169
References ... 170

7. 173Games as Actors: Interaction, Play, Design and Actor
Network Theory ... 173
7.1. Introduction .. 173
7.2. Actor Network Theory ... 174

7.2.1. The Traffic Example ... 175

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

8

7.2.2. Translation ... 176
7.2.3. Design as Inscription .. 177

7.3. Research Methodology ... 178
7.4. Case: The Game “Quackle” .. 179

7.4.1. Quackle! Explained .. 179
7.4.2. Game Inscription .. 180
7.4.3. Translation ... 181
7.4.4. What the Game Does .. 183

7.5. Playing a Computer Game .. 186
7.6. Theory of Play and Games ... 188
7.7. Exergames .. 191
7.8. Design Implications .. 195
7.9. A Word on Scripts .. 198
7.10. Conclusion and Future Work .. 199
References ... 200

8. Multiscale Modelling and Simulation of Fiber-Reinforced Plastics
Under Impact Loading ...203
8.1. Introduction .. 203
8.2. State-of-the-Art ... 204
8.3. Methods of Space Discretization .. 205
8.4. Ballistic Trials .. 206
8.5. Numerical Simulation ... 209

8.5.1. Modelling ... 210
8.5.2. Simulation Results .. 210
8.5.3. Further Validations .. 213

8.6. Conclusions .. 216
References ... 218

9. How to Improve Driving Perception on an Advanced Dynamic
Simulator While Cornering ..221
9.1. Introduction .. 221
9.2. Methods .. 222

9.2.1. Participants .. 222
9.2.2. Experimental Devices ... 223
9.2.3. Experimental Scenario ... 223
9.2.4. Task .. 224
9.2.5. Experimental Design .. 224
9.2.6. Data Analysis ... 226

9.3. Results .. 227
9.3.1. Subjective Analysis ... 227

9.3.1.1. Simulator Sickness ... 227
9.3.1.2. Realism of Vehicle Behaviour .. 228
9.3.1.3. Ease of the Task ... 231

9.3.2. Objective Analysis .. 233
9.3.2.1. Steering Wheel Reversal Rate .. 233
9.3.2.2. Lateral Deviation from the Reference Trajectory 236

9.4. Discussion of Results .. 238

Contents

9

9.4.1. Motion Gains .. 239
9.4.1.1. Motion Realism ... 239
9.4.1.2. Ease of the Task and Objective Variables 241

9.5. Conclusion .. 244
References ... 245

10. Step Climbing Strategy for a Wheelchair ... 249
10.1. Introduction .. 249

10.1.1. Wheelchair ... 249
10.1.2. Related Research of Wheelchair Step Climbing 251
10.1.3. Purpose of This Chapter .. 252

10.2. Theoretical Analysis of Step Climbing for a Wheelchair 252
10.2.1. Generating the Driving Force to Lift the Front Wheels

(Requirement (1)) .. 254
10.2.2. Avoidance from Tipping over Backward (Requirements (2), (3)) 257
10.2.3. Generating the Driving Force to Lift the Rear Wheels

(Requirement (4)) .. 260
10.2.4. Result of Simulations .. 262

10.3. Cooperative Step Climbing Using a Wheelchair and a Robot 263
10.3.1. Cooperative Step Climbing System .. 264
10.3.2. Process of Moving Over a Step .. 269

10.4. Theoretical Analysis of Cooperative Step Climbing Using
the Wheelchair and the Robot .. 273
10.4.1. Requirement of the Manipulator Angles to Avoid Collision

and to Grasp the Push Handle ... 277
10.4.2. Requirement to Exert Enough Driving Force on the Ground

to Climb a Step .. 279
10.4.3. Theoretical Analysis of Cooperative Step Climbing Using the

Wheelchair and the Robot ... 281
10.4.4. Simulation .. 283

10.5. Experiment of Cooperative Step Climbing ... 285
10.6. Conclusions .. 285
Acknowledgments ... 287
References ... 287

Index .. 289

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

19

1.

Parallel Optimization for Intelligent
Systems: Principles and New Results

Nizar Msadek and Theo Ungerer1

1.1. Introduction

Intelligent distributed systems are rapidly getting more and more
complex. Therefore, it is essential that such systems will be able to adapt
autonomously to changes in their environment. They should be
characterized by so-called self-* properties such as self-configuration
[1-3], self-optimization [4-6] and self-healing [7, 8]. The autonomous
optimization of nodes at runtime in open distributed environments is a
crucial part for developing self-optimizing systems. In this chapter, a
trust-aware self-optimization algorithm for self-* systems is presented.
It does not only consider pure load-balancing but also takes into account
trust to improve the assignment of important services to trustworthy
nodes. The proposed self-optimization approach makes use of different
optimization strategies based on trust to determine at runtime whether a
service should be transferred to another node or not. The trust definition
[9] adopted for this work is the definition provided by the research unit
OC-Trust of the German Research Foundation (DFG) by regarding
different facets of trust, as, for example, safety, reliability, credibility and
usability. The focus here lies on the reliability aspect. Furthermore, it is
assumed that a node can not realistically assess its own trust value
because it trusts itself fully. Therefore, the calculation of the trust value
in this work must be done with the previously introduced trust metrics
presented in [10]. With trust information, nodes of a system have a
reference about which nodes to cooperate with, and this is important for
self-optimizing systems. The chapter offers as contribution the following
aspects:

Nizar Msadek
Department of Computer Science, University of Augsburg, Germany

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

20

1) A decentralized self-optimization algorithm for load balancing
taking into account trust — respectively reliability — to increase
the robustness of important services in open distributed
environments (see Sections 1.3 and 1.4),

2) A formal description of the optimization strategies to determine at
runtime whether a service should be transferred to another node or
not (see Section 1.5), and

3) A set of extensions for the basic algorithm to further improve its
performance time in case of multiple simultaneous requests (see
Section 1.6).

All aspects are evaluated and discussed with respect to a toolkit based on
the TEM [11], a trustenabling middleware for building real-world
distributed Organic Computing systems. Section 1.7 provides evaluation
results of the proposed self-optimization algorithm and demonstrate the
benefits of the proposed extensions. Finally, the chapter is closed with a
conclusion and future work in Section 1.8.

1.2. Related Work

A lot of papers have been published to deal with the assignment problem
of services on nodes, either to achieve a static or dynamic load balancing
[12-17]. In most existing algorithms, the consideration of the
trustworthiness of nodes has been neglected so far. For instance, the
work of Rao et al. [18] proposes several methods for solving the load
balancing problem in distributed systems. One of these methods, called
one-to-one, is similar to our approach: two nodes are picked at random.
Then, a virtual server transfer is initiated if one of the nodes is heavy and
the other is light. Their method, however, does not consider how the
availability of important services may be improved, and does not
distinguish between trustworthy and untrustworthy nodes. Bittencourt et
al. [19] presented an approach to schedule processes composed of
dependent services onto a grid. This approach is implemented in the
Xavantes grid middleware and arranges the services in groups. It has the
drawback of a central service distribution instance and therefore a single
point of failure can occur. In [20], two different self-optimization
algorithms for LTE networks are presented. One of these algorithms,
called Load Balancing in Downlink LTE networks, is similar to our
approach. The authors try to shift the virtual load of overloaded cells to

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

21

less loaded adjacent cells by changing the virtual cell borders. The virtual
load is modeled as the sum of resources needed to achieve a certain QoS
for all active user equipment. Matrix [21] is another approach to combine
load optimization with data-aware scheduling. The authors propose to
apply adaptive work stealing techniques to achieve load balancing in
distributed many-tasks computing environment. Tasks are organized in
queues based on their size and locations. Then, a ZHT is used to submit
tasks to idle schedulers and to monitor the execution progress of tasks in
a scalable way. Whenever a scheduler has no more tasks, it
communicates with other heavy-loaded schedulers to receive new tasks.
Their approach does not take the priority of different service classes into
account. In [22], the authors presented a receiver-initiated optimization
algorithm that automatically balances the workload of nodes in
distributed computing environments. It is implemented in the OCµ
middleware. In their algorithm, services can be relocated or transferred
to other nodes to balance the resource consumption among nodes.
Moreover, it takes the trust constraints of nodes into account to transfer
important services only to trustworthy nodes. However, it is based on the
unrealistic assumption that all nodes have the same resource capacity.
Contrary to this work, our approach is able to work with heterogeneous
capacities. More precisely, we are interested in a dynamic receiver-
initiated [23] self-optimization algorithm (i.e., since services are
assumed not to be stolen from other nodes) that has neither a central
control nor complete knowledge about the system. The algorithm must
not only consider pure load-balancing but also takes into account trust to
improve the assignment of important services to trustworthy nodes. And
all this at runtime.

1.3. Basic Idea of the Self-Optimization Algorithm

A distributed system consisting of a set of n nodes N ={n1,n2..,nn}	 is
considered, where each node can interact with each other through a set
of application messages. They can optimize at runtime the assignment of
services in the network by transferring their own services to other nodes.
Suppose that node j at a certain point during runtime sends an application
message to another node i. It appends onto the outgoing message (a) its
trust in node i (b) its current workload and (c) some information (i.e.,
importance level and consumption) about services, which are running on
it. Based on this information node i decides which of the following
optimization strategies should be performed:

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

22

1.3.1. No Optimization

Description: The workload between nodes is well balanced and their
trust values are similar enough.

Discussion: This is the simplest case that can happen between nodes.
Both of them are well optimized in terms of trust and workload.

Solution: Nothing will happen

1.3.2. Load Optimization

Description: Trust of nodes is similar enough but their workload is
unbalanced.

Discussion: This strategy aims to find a pure load balancing between
nodes since their trust is similar enough.

Solution: Services are transferred in order to balance the workload
between the nodes. Then, two cases are distinguished: (a) either the
workload of i is higher or (b) the workload of j is higher. In the case of
(a), node i balances the workload of the nodes by transferring a subset of
its services to j. Otherwise, node i sends an alert message to j together
with all information which are necessary for the optimization. Case (a)
will be then triggered on side of j.

1.3.3. Trust Optimization

Description: The workload between nodes is well balanced but their
trust values differ significantly. In this case important services might run
on untrustworthy nodes and are prone to fail.

Discussion: This strategy aims to use particularly trustworthy nodes for
important services. Therefore, important services have to be relocated to
more trustworthy nodes and unimportant services to less trustworthy
nodes. Furthermore, the overall workload resources between nodes
should still be well-balanced.

Solution: By this strategy, we distinguish between two cases: (a) either
i is more trustworthy than j or (b) j is more trustworthy than i. If (a), then
i swaps its unimportant services for important services of j. In the case
of (b), node i swaps its important for unimportant services of j. Note that

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

23

the load consumption between important and unimportant services
should be similar to keep the load-balancing property in both nodes
satisfied.

1.3.4. Trust and Load Optimization

Description: Trust of nodes differs significantly and their workload is
unbalanced.

Discussion: This strategy aims at workload balancing with additional
consideration of the services’ priority, i.e. to avoid hosting important
services on untrustworthy nodes.

Solution: Four cases are distinguished: (a) Either the workload of i is
higher and i is more trustworthy than j, (b) The workload of i is higher
but j is more trustworthy, (c) The workload of j is higher but it is less
trustworthy than i, or finally (d), The workload of j is higher and it is also
more trustworthy than j. In the case of (a), node i balances the workload
of load by transferring only unimportant services to j. If there are no
unimportant services available, then no optimization is done. The
rationale for this step is that there is a trade-off between trust and
workload. Improving one of these criteria will typically deteriorate the
other. In the case of (b), node i balances the workload by transferring
only important services to j. Just as the case of (b), no optimization is
done, if there are no available unimportant services. In other cases (i.e.,
c and d), node i sends an alert optimization message to j to piggy-back
information necessary for self-optimization. Depending on the situation,
case (a) or (b) will be then triggered on side of j.

1.4. Metrics and Notions

Since it is very complex to address the self-optimization problem in its
full generality, we make some simplifying assumptions. Firstly, we
assume that the load of a service is stable (or can otherwise be predicted)
over the time interval it takes for the self-optimization algorithm to
operate. Secondly, we assume there is only one bottleneck resource we
are trying to optimize for. Let wi denote the workload of a node i, where
wi represents the sum of the resource consumptions of all services
running on node i (see Formula 1.1).

ݓ ൌ ∑ ܿ௦௦∈ௌ , with 0 ≤	wi ≤Ci
max	 (1.1)

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

24

It is to note that cs means the resource consumption of a service s. The
maximum resource capacity of a node i is denoted by Ci

max and its set of
services by Si. Moreover, we divide services Si into two sets based on
their importance levels:

• Si
imp: Set of important services (running on node i), which are

necessary for the functionality of the entire system.

• Si
unimp: Set of unimportant services (running on node i), which have

only a low negative effect on the entire system if they fail.

Then, considering only the context of pure load optimization, our goal is
to balance the workload between nodes. Let us assume two nodes, i and
j: node i is underloaded. However, node j is overloaded and its task is to
balance the workload by service transfers to i. Thus, as you can see
Fig. 1.1: Simple load optimization method in Fig. 1.1, j transfers its
services whose cumulative resource consumption is close enough to
ห௪ೕି௪ห

ଶ
 (optimal balancing). Although this simple idea seems to make a

lot of sense, its drawback arises when the resource capacities of nodes
are significantly different (see Fig. 1.2).

Fig. 1.1. Simple load optimization method.

Fig. 1.2. Nodes still unbalanced due to their different resource capacities.

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

25

 ܳ ൌ
௪ା௪ೕ

ೌೣାೕ

ೌೣ ܿ
௫ (1.2)

Therefore, we introduce a new optimal theoretical workload Oi, which
should serve as a target reference point for every node. The node which
surpasses this reference point (wi >	 Oi +δtol) is considered to be
overloaded, otherwise it is underloaded (wi <	 Oi −δtol) or balanced
(|Oi −wi|	≤	δtol), where a δtol is a tolerable threshold and represents the
quality to reach the perfect workload. The optimal theoretical workload
of a node i is calculated using Formula 1.2. Since wi is normalized in a
different capacity than wj, we must first divide the sum of workload wi

+wj by the sum of capacity cmax
i +cmax

j to obtain the optimal theoretical
workload per one unit capacity, which will be then multiplied by cmax

i .
Furthermore, each node has an individual trust value calculated based on
the previously introduced trust metrics presented in [10]. Recall, the trust
value ti(j)	 represents the subjective trust of node i in node j and will
always range between 0 and 1. The value of 0 means that i does not trust
j at all while a value of 1 stands for complete trust. Two nodes i and j are
considered to have a similar trust behavior if |ti(j)−tj(i)|	≤	γtol, where γtol

is a tolerable threshold and reflects the quality to achieve a good trust
similarity between nodes.

1.5. The Algorithm in Detail

The algorithm proposed in this section represents a best-effort approach
to improve the assignment of services on nodes so as to satisfy both
workload and trust constraints. It is used to solve this problem in a
distributed manner. We assume that nodes of the network do not know
the workload of others until they receive a message from a node with
information about that. The workload of nodes also might change over
time. We further assume that a node can not assess its own trust value,
but is rated by other nodes. Therefore, its trust value must be calculated
from the neighbor nodes of the network (see [10] for more details). Note
that the trust of nodes might also change over time. Again we are
considering two nodes i and j, where j sends an application message mj

to i, on which it piggybacks the following additional information:

• Sj
unimp: Set of less important services running on node j

• Sj
imp : Set of important services running on j

• tj(i): Current trust value of j in i
• wj: Current workload value of j

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

26

• cmax
j : Maximum resource capacity of j

Based on this information node i decides which optimization strategy
should be performed. In the following we consider all possible decisions
a node i has to make:

1.5.1. No Optimization

Formal description: |ti(j)−tj(i)|	≤	γtol and |Oi −wi|	≤	δtol

Solution: Nothing will happen

1.5.2. Load Optimization

Formal description: |ti(j)−tj(i)|	≤	γtol and |Oi −wi|	>	δtol

Case (a): wi >	Oi and wj <	Oj

Node i balances the workload by transferring some of its services to j,
regardless of whether they are important or not since the trust of nodes
is similar. Firstly, it determines Ψi,j (see Formula 1.3 and 1.4) as a set of
services that could be selected to balance the workload of nodes. Note
that C(Is)	represents the consumption function of a set of services Is and
is calculated by the sum of all its service consumptions.

 Ψ, ൌ ሼ	ܫ௦|ܫ௦ ⊆ ൫ ܵ
 ∪ ܵ

௨൯:݉ܽܥݔሺܫ௦ሻ	ܽ݊݀ (1.3)

௦ሻܫሺ	ܥ ൫ ܱ െ 0	ܽ݊݀	൯ݓ ൏ ௦ሻܫሺܥ ሺݓ െ ܱሻሽ

௦ሻܫሺܥ ൌ ∑ ௦௦∈ூೞܥ (1.4)

If Ψi,j is empty, then no optimization is done. Otherwise i transfers
Ψi,j to j.

Case (b): wi <	Oi and wj >	Oj

Since services are assumed not to be stolen from other nodes, node i
sends an alert message to j to piggy-back information necessary for self-
optimization as described above. Then, case (1.5.2-a) will be triggered
but on the side of j.

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

27

1.5.3. Trust Optimization

Formal description: |ti(j)−tj(i)|	>	γtol and |Oi −wi|	≤	δtol

Case (a): tj(i)	>	ti(j)

In this case i determines Ψi,j (see Formula 1.5) as a set of unimportant
services (i.e., with the maximum load consumption) that could be
exchanged for important services of j so that the difference of their load
consumption never exceeds Ctol to keep the loadbalancing property in
both nodes satisfied.

 Ψ, ൌ ሼ	ܫ௦|ܫ௦ ⊆ ܵ
௨, ௦ܬ∃ ⊆ ܵ

:݉ܽܥݔሺܫ௦ሻ	ܽ݊݀ (1.5)

௦ሻܫሺ	ܥ| െ ௦ሻܬሺܥ ௦ሻܫሺܥሺ	ܽ݊݀		௧ܥ ሻݓ 	 ܿ
௫ൟ

Then, after transferring Ψi,j, node i sends an alert optimization message
to j (i.e., including all information which are necessary for the
optimization) in order to trigger case (1.5.4-b) on side of j. Note that the
execution of this step aims to balance again the workload between the
nodes.

Case (b): tj(i)	<	ti(j)

In contrast to case (1.5.3-a), Ψi,j is determined only from important
services (see Formula 1.6), since j is more trustworthy than i. Then, i
sends an alert optimization message to j in order to trigger case (1.5.4-a)
on side of j.

 Ψ, ൌ ሼ	ܫ௦|ܫ௦ ⊆ ܵ
, ௦ܬ∃ ⊆ ܵ

௨:݉ܽܥݔሺܫ௦ሻ	ܽ݊݀ (1.6)

௦ሻܫሺ	ܥ| െ ௦ሻܬሺܥ ௦ሻܫሺܥሺ	ܽ݊݀		௧ܥ ሻݓ 	 ܿ
௫ൟ

1.5.4. Trust and Load Optimization

Formal description: |ti(j)−tj(i)|	>	γtol and |Oi −wi|	>	δtol

Case (a): wi >	Oi and wj <	Oj and tj(i)	>	ti(j)

Node i balances the workload only by transferring unimportant services
to j (i.e., due to the fact that i is more trustworthy than j). It determines

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

28

Ψi,j as a set of only unimportant services that could be selected to balance
the workload of nodes (see Formula 1.7). Then, i transfers Ψi,j to j.

 Ψ, ൌ ሼ	ܫ௦|ܫ௦ ⊆ ܵ
௨:݉ܽܥݔሺܫ௦ሻ	 (1.7)

௦ሻܫሺ	ܥ	݀݊ܽ ൫ ܱ െ 0	ܽ݊݀	൯ݓ ൏ ௦ሻܫሺܥ ሺݓ െ ܱሻሽ

Case (b): wi >	Oi and wj <	Oj and tj(i)	<	ti(j)

Since j is more trustworthy than i, Ψi,j will be determined only from
important services (see Formula 1.8). Then, just as the case of (1.5.4-a),
if Ψi,j is empty, no optimization is done. Otherwise i transfers Ψi,j to j.

 Ψ, ൌ ሼ	ܫ௦|ܫ௦ ⊆ ܵ
:݉ܽܥݔሺܫ௦ሻ	 (1.8)

௦ሻܫሺ	ܥ	݀݊ܽ ൫ ܱ െ 0	ܽ݊݀	൯ݓ ൏ ௦ሻܫሺܥ ሺݓ െ ܱሻሽ

In other cases:

Node i sends an alert message to j (i.e., including all information which
are necessary for the optimization). Depending on the situation, case
(1.5.4-a or 1.5.4-b) will then be triggered on the side of j.

1.6. Multiple Simultaneous Requests

In the evaluation, we have shown that the basic self-optimization
algorithm presented in Section 1.5 led to good performance in terms of
trust and workload, but we think that there is a room for improvement
with the mechanism presented in this section. Therefore, we analyze now
a network situation consisting of multiple simultaneous requests which
are addressed to a single node to trigger the self-optimization process.
Fig. 1.3 gives an overview of this situation. Let ni denote the node that
receives the requests and let be L i =	 {l1,l2,...,lk}	 the set of requesters
considered by ni. We first start with the description of the environment
of ni that has full information about its requesters. It can easily determine
the set of potential service transfers Ψni,lj for each requester lj ∈	L i, using
the equations cited in Section 1.5, depending on the current situation of
nodes. In the basic approach, as shown in Fig. 1.3, ni optimizes itself with
the requesters one after another in a random way without having
preference for those that have many potential service transfers. By this

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

29

means, the overall optimization in the system might take a long time
before a large amount of services are transferred, particularity with a
growing number of requesters. As a result, too much time can be spent
in the whole system to get better optimized nodes. Our goal is to reduce
this time by transferring the maximum amount of services as early as
possible at runtime. Two approaches can be used to handle this problem.

Fig. 1.3. Current execution of the basic algorithm.

1.6.1. Selective Request Handling

The first approach is called selective request handling because it always
allows ni to select the best requester to perform the optimization. We
make use of two parameters in our approach, namely X and SΨ. The first
parameter X is initialized as the set of all involved requesters — in our
case always L i — and SΨ is an empty list of fixed size |L i|	used to store
the potential number of service transfers. The basic idea behind the
algorithm is: Whenever ni receives multiples requests, it calculates the
number of service transfers for every requester and applies an
optimization with the requester whose services are most among the
remaining requesters in X. If there is no requester with such a property,
nothing will be done, as the nodes are already optimized. Otherwise, the

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

30

found requester is removed and this process is repeated until all
requesters are processed. In Algorithm 1, the above described algorithm
is formalized as pseudo-code. This approach is very simple – and even
in the worst case it is at least never worse than doing optimization with
random selection – but the optimization output might be suboptimal
regarding the overall self-optimization time due to its sequential
processing. Therefore, we are interested in the second approach to
provide a solution which supports parallelism through the optimization
of requesters.

Algorithm 1. Node ni:

1: X ←	L i .													→initialize X as the set of all involved requesters

2: SΨ = nil .													→	SΨ is initialized as empty list of fixed size |L i|

3: for x ∈	X do

4: calculate |Ψni,x|	and append it to SΨ

5: end for

6: while X ≠ ∅ do

7: select from SΨ the requester x with:

8: {x|∃x ∈	X : |Ψni,x|	is max and |Ψni,x|	>	0}

9: if no requester with such a property exists then

10: exit

11: else

12: x perform an optimization with ni

13: remove x from X

14: end if

15: end while

1.6.2. Parallel Request Handling

While in the first approach we match ni to a single requester to perform
the optimization process, in this approach we consider a parallel
optimization between requesters that work together to maximize the
number of service transfers, as shown in Fig. 1.4. This has the benefit to
further decrease the optimization time in the whole system. However,

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

31

nodes in our system have different trust and workload values and some
of them can transfer more services with one than others. Therefore, an
important aspect for ni is the formation of pairs between nodes — to
apply the optimization algorithm in pairs and parallel — but in a way
that the number of service transfers will be maximized in the system in
order to deliver better results. Algorithm 2 shows the proposed
mechanism formalized as pseudo-code.

Fig. 1.4. Simplified representation of the parallel request handling.

At the beginning, we initialize two parameters X and TΨ. The first
parameter X =	{ni}∪L i represents the set of all nodes involved in the
multiple requests, whereas the second parameter TΨ stands for an integer
matrix of size |X|×|X|, which we use to store the number of service
transfers between nodes. Again, we say that x can optimize itself better
with y than z, if and only if |Ψx,z|	≤	|Ψx,y|	with y ≠	z. Then, the algorithm
is split into two phases, the first of which is similar to the selective
request handling, but we now allow to calculate the number of service
transfers between any two nodes in X. Intuitively, reflexive suitability
values such as Ψx,x are not computable in this phase, simply because it is
not allowed that a node is optimizing itself. Afterwards, the algorithm
enters in its second phase exploring pairs having at least a service transfer
of one and maximizing at the same time the number of service transfers.
If there is no pair with such a property, the algorithm terminates.
Otherwise, the found pair becomes engaged to perform the optimization
process. Then, the pair is finally removed from the set of X. The while

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

32

loop continues until there are no more pairs to perform the optimization
process. To demonstrate the proposed algorithm an example is discussed.

Algorithm 2 Node ni:

1: X ←	{ni}∪L i
→ initialize X as the set of all
involved nodes

2: TΨ ←

 ni l1 ... lk

ni 0 0 ... 0

l1 0 ... 0

... 0 0

lk 0

→ is an empty lookup table of
size |X|×|X|

Phase 1
3: for x ∈	X do
4: for y ∈	X \{x}	do

5: calculate |Ψx,y|	and append it to TΨ
6: end for
7: end for

Phase 2
8: while two nodes remain in X do

9: select from TΨ the pair (x,y)	with:

10: {(x,y)|∃x,y ∈	X : |Ψx,y|	is max and |Ψx,y|	>	0}
11: if no pair with such a property exists then
12: exit
13: else
14: x and y become engaged to perform the optimization
15: remove x and y from X
16: end if
17: end while

Example: In this example, an instance of parallel request handling
involving five requesters is considered, with X =	 {ni,l1,l2,l3,l4,l5}. We

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

33

assume that the set of service transfers between nodes has already been
processed by ni, leading to the relation graph illustrated in Fig. 1.5.

Fig. 1.5. Relation graph of potential service transfers.

Based on this information, the algorithm starts its first phase by
calculating TΨ. So phase one ends with the table of matrix presented in
Fig. 1.6.

Fig. 1.6. A simplified representation of TΨ after the execution of phase one.

In the second phase, we need to define for each node its best partner that
contributes to maximize the service transfers in the whole system. In the
iteration loop1 the pair (l1,l3)	 is identified first. This is because (l1,l3)	
returns the maximum number of service transfers in TΨ. Eliminating

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

34

them gives X =	{ni,l2,l4,l5}. Next, pair (l4,l5)	is identified in loop2 and its
elimination yields X =	{ni,l2}. Finally, the pair (ni,l2)	is identified and its
elimination gives X =	 {0/}. Hence, the algorithm finishes with the
following optimization pairs {(l1,l3),	(l4,l5),	(ni,l2)}.

1.7. Evaluation

In this section an evaluation for the introduced self-optimization
approach is provided. For the purpose of evaluating and testing, an
evaluator based on the TEM middleware [11] has been implemented
which is able to simulate the self-optimization algorithm. The evaluation
network consists of 100 nodes, where all nodes are able to communicate
with each other using message passing. Experiments with more nodes
were tested and yielded similar results, but with 100 nodes more
observable effects were seen. Each node has a limited resource capacity
(memory) and is judged by an individual trust value without any central
knowledge. Furthermore, four type of nodes are defined with different
trust and resource values (see Table 1.1).

Table 1.1. Mixture of heterogeneous nodes.

Node Type Memory (MB) Trust Amount (%)

Type 1 [500 - 1000] [0.7 - 0.9] 10

Type 2 [500 - 1500] [0.3 - 0.6] 50

Type 3 [2000 - 4000] [0.4 - 0.8] 30

Type 4 [4000 - 8000] [0.4 - 0.9] 10

Then, a mixture of heterogeneous services with different resource
consumptions are randomly generated for nodes. The sum of all node’s
service consumptions does not exceed a node’s capacity (i.e., as defined
in Formula 1.1). If, for example, a trustworthy node is already full, then
the same procedure is repeated for an untrustworthy node and so on until
the average load of the system reaches 50 % (݈݀ܽ݇ݎݓതതതതതതതതതതതതത 	ൌ 	50	%). This
means that some nodes may have many services and others none to
unbalance the workload between nodes. Important services are created
only for untrustworthy nodes and unimportant services for trustworthy
nodes. Without the self-optimization techniques the workload of nodes
are still unbalanced. Moreover, important services running on

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

35

untrustworthy nodes are prone to fail. With the use of direct trust and
reputation, the trust of a node can be measured and taken into
consideration for the transfer of services. Two rating functions are used
to evaluate the fitness of a service distribution regarding trust and
workload. The first rating function for workload Fworkload aims to
calculate the average deviation of all nodes from the desired workload
 ,തതതതതതതതതതതതത (in our case, 50 %). This is expressed by the Formula 1.9݈݀ܽ݇ݎݓ
where N is the set of all nodes and |N |	the cardinality of N. The main
idea of the second rating function Ftrust is to reward important services
running on trustworthy nodes. This is expressed by the Formula 1.11,
where N is the set of all nodes, Sn is the set of services on a node n, t(n)	
its trust value and p(s) the priority of a service s (i.e., if s is important,
P(s)	has the value of 1, otherwise 0).

	݈݀ܽ݇ݎݓܨ ൌ
∑ |௪ௗሺሻି௪ௗതതതതതതതതതതതതതത|∈ಿ

|ே|
 (1.9)

തതതതതതതതതതതതത݈݀ܽ݇ݎݓ ൌ
∑ ௪ௗሺሻ∈ಿ

|ே|
 (1.10)

At the beginning of the simulation, the network is rated by using both
Ftrust and Fworkload. Then, the simulation is started and after each
optimization step the network is rated again. Within one optimization
step, 50 pairs of nodes (sender/receiver) are randomly chosen to perform
the self-optimization process, i.e., ρ =	50 %. Senders send an application
message to receivers to piggyback necessary information for the self-
optimization, as described in Section 1.3. Based on the extracted
information the receiver determines whether it transfers its services or
not. The goal is to maximize the availability of important services, which
means that Ftrust should be maximized (i.e., to an optimal theoretical point
that we explain later in 1.7.2). Therefore, it is necessary to transfer the
more important services to more trustworthy nodes. Furthermore, the
overall utilization of resources in the network should be well-balanced,
i.e., Fworkload should be minimized near to zero.

	 ௧௨௦௧ܨ ൌ ∑ ∑ ሺ݊ሻ௦∈ௌ∈ேݐሻݏሺ 	 (1.11)

1.7.1. Results Regarding the Rating Function Fworkload

As mentioned above, the first rating function Fworkload indicates the
average workload deviation of all nodes from the desired workload

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

36

 തതതതതതതതതതതതത (in our case, 50 %). The lower the value of Fworkload, the better݈݀ܽ݇ݎݓ
the performance of workload balancing.

Fig. 1.7 shows the result of this experiment, whereas the values on the x-
axis stand for optimization steps and the average workload deviation of
nodes is depicted on the y-axis. It can be observed that the proposed
algorithm improves the workload balancing by about 93 %. However, it
does not reach the theoretical maximum rate of 100 % due to the trade-
off between trust and workload.

Fig. 1.7. Rating function for the workload deviation (Fworkload).

1.7.2. Results Regarding the Rating Function Ftrust

In the following, the service distribution for the proposed self-
optimization algorithm is evaluated regarding Ftrust.

Fig. 1.8 shows the result of this experiment. The square line represents
the result of Ftrust using the proposed self-optimization algorithm. It can
be observed that the algorithm improves during runtime the availability
of important services. This means that the consideration of workload
does not prevent the algorithm to relocate important services to
trustworthy nodes. However, it remains to investigate the quality of the
obtained result compared to an optimal theoretical result, when all
important services are hosted only on trustworthy nodes (pure trust
distribution, i.e., regardless of whether nodes are balanced or not). For

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

37

this purpose we use an approximation algorithm that sorts in decreasing
order the trust values of nodes and relocates all important services only
to most trustworthy nodes until their capacity is full. The triangular
marked line in the figure illustrates the result of the approximation
algorithm. As a conclusion to all simulations we have done so far (about
1000 runs were evaluated) we can state that the proposed algorithm
greatly improves the trust distribution of services. More precisely, it
achieves 85 % of the theoretical maximum result. However, it stays by
15 % behind the theoretical maximum result due to the trade-off between
trust and workload.

Fig. 1.8. Rating function for Trust (Ftrust).

1.7.3. Basic Algorithm vs. Extensions

In this section, the gain of applying the proposed extensions with respect
to Section 1.6 is investigated. We use the similar parameter settings of
the initial evaluation, but we now allow for a certain percentage of
randomly chosen nodes to receive multiple optimization requests
simultaneously. This has the benefit to put the evaluation more in a
context of real life. In this part of work, the following three algorithms
are compared regarding their ability to perform the optimization in the
system.

 Basic algorithm (ALG.1): The basic optimization algorithm as in
the previous experiments.

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

38

 Basic algorithm + Selective Request Handling (ALG.2): A
variation of the basic optimization algorithm using the extension
of the selective request handling (see Section 1.6.1).

 Basic algorithm + Parallel Request Handling (ALG.3): A
variation of the basic optimization algorithm using the extension
of the parallel request handling (see Section 1.6.2)

The three algorithms differ in the way they handle multiple requests,
either sequential or parallel. Figs. 1.9 and 1.10 present their comparison
results with respect to the rating functions Ftrust and Fworkload.

Fig. 1.9. Comparison results according to the rating function Fworkload .

It is easy to see that both investigated variations of ALG.2 and ALG.3
indeed provide an even better optimization time than the basic algorithm
ALG.1, especially the variation of ALG.3, currently shows the best time
performance to achieve the optimization process. This is due to its ability
to support parallelism through the optimization of requesters such that
everyone optimizes itself with the node with the highest gain of service
transfers. This results - in the whole system - to a reduce of the processing
time into the overall optimization.

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

39

Fig. 1.10. Comparison results according to the rating function Ftrust .

1.7.4. Different Network Settings

In the following, additional experiments are conducted to further
investigate the behavior of the introduced self-optimization algorithm
with different network settings. We performed a binary classification of
nodes with a ratio of 50/50, and for each classification type, we
generated a different amount of memory resources and trust values, as
shown in Table 1.2. Generally, the more trustworthy the nodes are, the
higher is the amount of their memory resources. We argue that this is a
useful and realistic network parametrization since it enables to model the
behaviour of servers and workstations which are expected to be
trustworthy in real-world situations through the use of Type 1 as well the
behavior of mobile devices (i.e., expected in real-world to be less
trustworthy than servers and workstations) through the use of Type 2.
The average workload is set to 45 %. The experiments differ in the
adjustment of |N |	and ρ. Recall, |N |	states for the size of the network
and ρ represents the percentage amount of involved nodes within one
optimization step to perform the optimization process. In the following
the results of conducted experiments are presented. To ensure
representative values, any experiment is repeated 300 times and the
results are averaged.

The first three experiments examine the behaviour of the self-
optimization algorithm with a fixed |N |	=	100 but different percentage
of ρ.

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

40

Table 1.2. A binary classification of heterogeneous nodes.

zNode Type Memory (MB) Trust Amount (%)

Type 1 [8000 - 16000] [0.6 - 0.99] 50

Type 2 [1000 - 8000] [0.1 - 0.60] 50

• Experiment 1.1: |N |	=	100, ρ =	30 % (see Figs. 1.11 and 1.12)

• Experiment 1.2: |N |	=	100, ρ =	50 % (see Figs. 1.11 and 1.12)

• Experiment 1.3: |N |	=	100, ρ =	70 % (see Figs. 1.11 and 1.12)

Experiments 2.1-2.3 consider a fixed network size of |N |	 =	200 and
different percentage of ρ.

• Experiment 2.1: |N |	=	200, ρ =	30 % (see Figs. 1.13 and 1.14)

• Experiment 2.2: |N |	=	200, ρ =	50 % (see Figs. 1.13 and 1.14)

• Experiment 2.3: |N |	=	200, ρ =	70 % (see Figs. 1.13 and 1.14)

The following three experiments are similar to the first ones but the
network size is set to |N |	=400.

• Experiment 3.1: |N |	=	400, ρ =	30 % (see Figs. 1.15 and 1.16)

• Experiment 3.2: |N |	=	400, ρ =	50 % (see Figs. 1.15 and 1.16)

• Experiment 3.3: |N |	=	400, ρ =	70 % (see Figs. 1.15 and 1.16)

The last three experiments examine the behaviour of the introduced
algorithm with |N |	=	800 and different ρ.

• Experiment 4.1: |N |	=	800, ρ =	30 % (see Figs. 1.17 and 1.18)

• Experiment 4.2: |N |	=	800, ρ =	50 % (see Figs. 1.17 and 1.18)

• Experiment 4.3: |N |	=	800, ρ =	70 % (see Figs. 1.17 and 1.18)

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

41

Fig. 1.11. Result of experiments 1.1 - 1-3 according
to the rating function Fworkload .

Fig. 1.12. Result of experiments 1.1 - 1-3 according
to the rating function Ftrust .

Fig. 1.13. Result of experiments 2.1 - 2-3 according
to the rating function Fworkload .

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

42

Fig. 1.14. Result of experiments 2.1 - 2-3 according

to the rating function Ftrust .

Fig. 1.15. Result of experiments 3.1 - 3-3 according

to the rating function Fworkload .

Fig. 1.16. Result of experiments 3.1 - 3-3 according

to the rating function Ftrust .

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

43

Fig. 1.17. Result of experiments 4.1 - 4-3 according
to the rating function Fworkload .

Fig. 1.18. Result of experiments 4.1 - 4-3 according to the rating function Ftrust

Conclusion Deduced From Conducting Experiments. The experiment
results, with the focus on workload, are depicted in Figs. 1.11, 1.13, 1.15,
and 1.17. These figures show the optimization steps on the horizontal
axis and the workload deviation of nodes on the vertical axis. Values
near to the bottom left corner represent small deviation of workloads
with few number of optimization steps. The results attest the introduced
self-optimization algorithm a continuous reduction of the workload
deviations in all kind of settings. Beside the workload balancing, the
introduced algorithm provides also a good ability to improve its speedup
over the parametrization of ρ, making it suitable to be applied in
overfilled situations with too many number of messages. Figs. 1.12, 1.14,
1.16, and 1.18 show similar results to the workload experiments, but with
the focus on trust. The optimization steps are depicted on the horizontal
axis and the fitness function for trust on the vertical axis. Optimal
theoretical values considering pure trust distributions are marked with

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

44

red triangular lines for each experiment. Similarly to the last results, we
can state that the algorithm developed in this work is able to always
improve the availability of important services at runtime and that the
parametrization of ρ plays here also an important role to increase the
speedup of the trust optimization in the whole system.

1.8. Conclusions and Future Work

In this chapter, a novel self-optimization algorithm for open distributed
self-* systems has been proposed. The algorithm does not only consider
pure load-balancing but also takes into account trust to improve the
assignment of important services to trustworthy nodes at runtime. More
precisely, the algorithm makes use of different optimization strategies —
- as cited in the corresponding part of Section 1.5 — to determine
whether a service should be transferred to another node or not. Section
1.7 presents the results of the performance measurements that are
conducted to evaluate the algorithm. The results indicate that for our
model trust concepts improve significantly the availability of important
services while causing a small deterioration (i.e., by about 7 %) regarding
load balancing. Therefore, we classify our algorithm as a kind of best-
effort approach that provides good but not necessarily optimal solutions
to this trade-off problem. Then, a set of variations of the basic algorithm
are introduced in Section 1.6 to improve its performance in case of
multiple requests. The difference between the variations arises in the way
to handle requests, either sequential or parallel. In Section 1.7.3, a
comparative evaluation is conducted to analyze the performance results
of the variations compared to the basic approach. The results attest a
good performance for the extended optimization algorithm with parallel
request handling. In Section 1.7.4, an additional evaluation is provided
to further investigate the behavior of our approach for different network
settings. The results indicate here as well a good performance for our
algorithm. It clearly attains its goals of both trust and load optimizations
in all kind of parametrizations and network sizes. Apart from this, the
algorithm provides also a good possibility to increase its speedup over
the parametrization of ρ making it suitable to be applied in overfilled
situations with too many number of messages. In future work, extensions
are planned to deal with the Cold-Start-Problem, i.e., the need to
integrate new nodes with unknown trust values with other nodes in the
network. This is very important to improve the robustness of the
proposed self-optimization algorithm. One possible solution to address
this issue could be to make runtime prediction or online training for the

Chapter 1. Parallel Optimization for Intelligent Systems: Principles and New Results

45

new participating nodes, but as it goes beyond the scope of this work it
is not further discussed here.

References

[1]. Msadek, N., Kiefhaber, R., Fechner, B., Ungerer, T., Trust-enhanced self-
configuration for organic computing systems, in Proceedings of the 27th
International Conference on Architecture of Computing Systems
(ARCS2014), 2014.

[2]. Msadek, N., Kiefhaber, R., Ungerer, T., Simultaneous self-configuration
with multiple managers for organic computing systems, in Proceedings of
the 2nd International Workshop on Self-optimisation in Organic and
Autonomic Computing Systems (SAOS’14) in conjunction with ARCS’ 14,
2014.

[3]. Msadek, N., Kiefhaber, R., Ungerer, T., A trustworthy, fault-tolerant and
scalable self-configuration algorithm for organic computing systems.
Journal of Systems Architecture (JSA), Vol. 61, 2015, pp. 511 – 519.

[4]. Msadek, N., Kiefhaber, R., Ungerer, T., Trustworthy self-optimization in
organic computing environments, in Proceedings of the 28th International
Conference on Architecture of Computing Systems Series, Vol. 9017,
2015, pp. 123–134.

[5]. Msadek, N., Kiefhaber, R., Ungerer, T., A trust- and load-based self-
optimization algorithm for organic computing systems, in Proceedings of
the International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), 2014.

[6]. Msadek, N., Ungerer, T., Trustworthy self-optimization for organic
computing environments using multiple simultaneous requests, Journal of
Systems Architecture (JSA), Vol. 75, 2017, pp. 26 –34.

[7]. Msadek, N., Ungerer, T., Trust-based monitoring for self-healing of
distributed real-time systems, in Proceedings of the 7th IEEE Workshop on
Self-Organizing Real-Time Systems (SORT’16) in conjunction with
ISORC’16, 2016.

[8]. Msadek, N., Ungerer, T., Trust as important factor for building robust self-
x systems, in Proceedings of the Trustworthy Open Self-Organising
Systems, 2016.

[9]. Msadek, N., Trust as a principal ingredient to improve the robustness of
self-organizing systems, in Proceedings of the Organic Computing:
Doctoral Dissertation Colloquium, 2015.

[10]. Kiefhaber, R., Jahr, R., Msadek, N., Ungerer, T., Ranking of direct trust,
confidence, and reputation in an abstract system with unreliable
components, in Proceedings of the 10th IEEE International Conference on
Autonomic and Trusted Computing (ATC-13), 2013.

[11]. Anders, G., Siefert, F., Msadek, N., Kiefhaber, R., Kosak, O., Reif,
W., Ungerer, T., Temas a trust-enabling multi-agent system for open
environments. Technical report, Universitat Augsburg, 2013.

Advances in Intelligent Systems: Reviews, Book Series, Vol. 1

46

[12]. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis,
P., Mizan: a system for dynamic load balancing in large-scale graph
processing, in Proceedings of the 8th ACM European Conference on
Computer Systems, 2013, pp. 169–182.

[13]. Babak, H., Kit, L. Y., Lilja, D. J., Dynamic task scheduling using online
optimization, in Proceedings of the Journal IEEE Transactions on Parallel
and Distributed Systems., Vol. 11, Issue 11, 2000.

[14]. Panwar, R., Mallick, B., Load balancing in cloud computing using
dynamic load management algorithm, in Proceedings of the International
Conference on Green Computing and Internet of Things (ICGCIoT), 2015,
pp. 773–778.

[15]. Siar, H., Kiani, K., Chronopoulos, A. T., An effective game theoretic static
load balancing applied to distributed computing, Journal on Cluster
Computing, Vol. 18, Issue 4, 2015, pp. 1609–1623.

[16]. Anis Uddin Nasir, M., De Francisci Morales, G., Garcia-Soriano, D.,
Kourtellis, N., Serafini, M., The power of both choices: Practical load
balancing for distributed stream processing engines, in Proceedings of the
IEEE 31st International Conference on Data Engineering (ICDE’ 15),
2015, pp. 137– 148.

[17]. Akbar, A., Basha, S. M., Abdul Sattar, S., A comparative study on load
balancing algorithms for sip servers, Information Systems Design and
Intelligent Applications Series, Vol. 435, 2016, pp. 79–88.

[18]. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I., Load
balancing in structured p2p systems, in Proceedings of the 2nd
International Workshop (IPTPS), 2012.

[19]. Bittencourt, L., Madeira, E. R. M., Cicerre, F. R. L., Buzato, L. E., A path
clustering heuristic for scheduling task graphs onto a grid, in Proceedings
of the 3rd International Workshop on Middleware for Grid Computing
(MGC05), 2005.

[20]. Lobinger, A., Stefanski, S., Jansen, T., Balan, I., Coordinating handover
parameter optimization and load balancing in the self-optimizing
networks, in Proceedings of the IEEE 73rd Vehicular Technology
Conference (VTC Spring), 2011.

[21]. Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I., Optimizing load
balancing and data-locality with data-aware scheduling, in Proceedings of
the IEEE International Conference on Big Data, 2014, pp. 119–128.

[22]. Satzger, B., Mutschelknaus, F., Bagci, F., Kluge, F., Ungerer, T., Towards
trustworthy self-optimization for distributed systems, in Proceedings of
the Software Technologies for Embedded and Ubiquitous Systems Lecture
Notes in Computer Science, Vol. 5860, 2009, pp. 58-68.

[23]. Derek L, E., Edward, D. L., John, Z., A comparison of receiver-initiated
and sender-initiated adaptive load sharing, in Proceedings of the
Conference on Measurement and Modeling of Computer Systems, 1986.

http://www.sensorsportal.com/HTML/IFSA_Publishing.htm

