
Calculating With Acyclic and Cyclic Lists

Bernhard Möller
Institut für Informatik, Universität Augsburg,

D-86135 Augsburg, Germany.
email: moeller@uni-augsburg.de

Abstract

We use a relational model of pointer structures to calculate a number of standard algorithms
on singly linked lists, both acyclic and cyclic. This shows that our techniques are not just
useful for tree-like structures, but apply to general pointer structures as well.

Keywords: Pointer structures, sharing, destructive updating, program transformation, relational
calculus

1 Introduction

Although pointer algorithms are very error-prone they lie at the very heart of many implementa-
tions. Yet they have received surprisingly little attention in work on formal derivation and verifi-
cation of programs. If they are treated, mostly formulas from predicate logic are used, which tend,
however, to be very complex and unwieldy. A more algebraic approach was presented in the work
of Berger et al. (1991) and Möller (1991–1993) and developed into more general form by Möller
(1997). However, in the latter paper only examples with tree-like structures were treated. We show
that the approach covers cyclic structures as well. In fact, we demonstrate that the derivations for
the acyclic case can be carried over to the cyclic case quite simply and hence be re-used. Proofs
that are missing from the present paper are straightforward or can be found in Möller (1997).

2 Relational Notation

Our prominent mathematical tool are binary relations by which we model the directed graph
underlying a pointer structure and describe accessibility and sharing. Given a set X we denote

its power set by ℘(X). Now the set of all binary relations between sets M and N is M ↔ N
def
=

℘(M × N). We use the notations R ∈ M ↔ N and R : M ↔ N synonymously. By dom R
and ran R we denote domain and range of relation R. The converse R˘: N ↔ M of R is given by

R˘
def
= {(y, x) : (x, y) ∈ R}. The image of set L ⊆ M under R is R(L)

def
= {y : ∃ x ∈ L : (x, y) ∈ R}.

1

Particularly for analysing the reachable part of a pointer structure we shall use the domain
restriction of R to a subset L ⊆ M given by

L 1 R
def
= R ∩ L×N .

Dually, the range restriction of R : M ↔ N to a subset L ⊆ N is R 1 L
def
= R ∩ M × L.

The composition R ; S : M ↔ P of two relations R : M ↔ N and S : N ↔ P is defined

as R ; S
def
= {(x, z) : ∃ y ∈ N : (x, y) ∈ R ∧ (y, z) ∈ S}. Left and right neutral elements for R

w.r.t. this operation are provided by IM and IN , where for a set P one defines the identity relation

IP : P ↔ P by IP
def
= {(x, x) : x ∈ P}. The index P will be omitted when P is clear from the

context. As usual, R+ and R∗ are the transitive and the reflexive-transitive closures of relation R.
Relation R ⊆ M ×N is called a (partial) function iff R˘;R ⊆ IN , in other terms, iff

∀ x, y, z : xRy ∧ xRz ⇒ y = z .

We write R : M ; N to indicate that R is a partial function. For further notions and laws
concerning relations consider e.g. Schmidt, Ströhlein (1993).

3 Stores and Pointer Structures

A pointer structure consists of a set of records connected by pointers. Let A be a set of records
(represented, say, by their initial addresses). We assume a distinguished element 3 ∈ A which
plays the role of nil in Pascal or NULL in C, i.e., serves as a terminal pseudo-node for the underlying
graph. The elements of A\{3} are called proper records. Let, moreover, (Nj)j∈J be a family of
sets of node values, such as integers or Booleans.

The shape of records is usually defined by (the equivalent of) a type declaration. Recursive use
of the same type either has to be explicitly shielded by a corresponding pointer type (e.g. Pascal
or C/C++) or is implicitly played back to an anonymous pointer type (e.g. in functional languages
or Java). Our equivalent to a type declaration is a record type. It consists of a non-empty set K
of selectors each with a functionality A → A (corresponding to a pointer-valued field in a record
of that type) or A → Nj for some j ∈ J (corresponding to a scalar field). For simplicity we deal
here only with the case of a single (possibly) recursive record type; it should be obvious how to
generalise the treatment to systems of mutually recursive record types.

Whereas the record type describes the shape of the records, a concrete aggregation of records
of a given type in memory is described by a store, ie. a family S = (Sk)k∈K of partial functions
such that

1. Sk : A; A if k has functionality A → A,

2. Sk : A; Nj if k has functionality A → Nj and

3. 3 6∈ recs(S),

2

where recs(S)
def
=

⋃
k∈K

dom Sk is the set of records allocated in S.

A store may be viewed as a labeled directed graph: the records and node values are the vertices
and the selectors are the arc labels, where Sk is the set of arcs labeled by k. We keep these sets
separate to be able to model updating along a single selector adequately. The requirement that
the Sk be functions reflects that selection from a record yields at most one value. By the third
requirement, in a store, 3 is not related to anything and hence cannot be “dereferenced”. The
relational operations are extended componentwise to stores.

Our running example of a record type is one for singly linked lists. Assume a set N of node
values and two selectors head , tail of functionalities head : A → N and tail : A → A. Then a list
store L consists of two partial maps Lhead : A ; N and Ltail : A ; A, where Lhead returns the
first element of the list and Ltail gives the next record in the list.

Frequently we want to abstract from the node values of the records and consider just their
interrelationship through the pointers. For a store S = (Sk)k∈K , this is modeled by the binary
access relation [S] ⊆ A×A given by

[S]
def
=

⋃
k∈J

Sk ,

where J ⊆ K is the set of all selectors k of functionality A → A. In the graph view, this operation
“forgets” the arc labels and the arcs leading to the node values. For instance, the access relation
for a list store L is [L] = Ltail .

A store usually contains several record structures, eg. several lists. Each substructure is accessed
via an entry point, ie. the address of its “root” record (eg. the first cell of a singly linked list).
These entry points are usually kept in program variables (on the stack), whereas the “inner” links
of a pointer structure are anonymous addresses on the heap. Many algorithms deal with several
substructures within one and the same store (eg. concatenation of two lists). Therefore we say that
a pointer structure consists of a store together with a non-empty list of entry points. We choose
lists rather than sets or bags of entry points, since in pointer algorithms both order and multiplicity
of entries may be relevant, in particular when it comes to questions of sharing. For instance, the
well-known algorithm that concatenates two acyclic singly-linked lists in situ (see Section 8.3) does
not work when it attempts to concatenate a list to itself (it would create a circular list in this
case).

Under these considerations we use A+, the set of all non-empty finite lists of elements of A, as
the set of entries to pointer structures.

Let now P denote the set of all stores for a given record type. Then a pointer structure is an

element of P def
= A+×P . For convenience we introduce the functions ptr : P → A+, sto : P → P

and recs : P → ℘(A) defined by

ptr(s, S)
def
= s , sto(s, S)

def
= S , recs(s, S)

def
= recs(S) .

In denoting lists of entries we separate the elements by commas. So a pointer structure will be
written in the form x1, . . . , xn, S with entries xi and store S.

3

4 Reachability and Sharing

In a pointer structure (s, S) ∈ P we can follow the pointers from the entries s to other records.
This is modeled by the function reach : P → ℘(A) with

reach(s, S)
def
= [S]∗(set s) .

Here set s is the set of elements occurring in s ∈ A+. From this definition it is straightforward that

reach(n1, . . . , nn, S) = reach(n1, S) ∪ · · · ∪ reach(nn, S) . (1)

Associated with reach is the reachability relation ` : P ↔ ℘(A+) given by

p ` L def⇔ reach(p) ∩ setL 6= ∅ ,

where setL =
⋃
s∈L

set s. So this relation holds iff some record in the entries in L is accessible from

the entries of p. For singleton set L we will omit the set braces.
Moreover, we introduce a unary predicate sharing on P by setting

sharing(n1, . . . , nk, S)
def⇔

k∨
i=1

k∨
j=i+1

reach(ni, S) ∩ reach(nj , S) 6⊆ {3} .

So a pointer structure shows sharing iff a proper record is reachable from two of its entries. Note
that this predicate is independent of the order of the entries ni but not of their multiplicity. So if
a record occurs twice in a list of entries, there will be sharing, as expected.

The reachable set abstracts from the actual contents of the store in a pointer structure. There-
fore we characterise additionally that part of store S that is reachable from the entries s by the
restriction

from(s, S)
def
= (s, reach(s, S) 1 S) ,

i.e., the substructure that consists only of the records reachable from the entries s. The restriction
is again taken componentwise, i.e., for all k ∈ K.

Suppose that ¬ sharing(n1, n2, S) holds. Then the parts from(n1, S) and from(n2, S) of the
store are independent of each other, so that assignments to one part cannot influence the other
one. Therefore the function from is of essential importance for localising side effects.

5 Overwriting Pointer Structures

To describe selective updating, we use the operation of overwriting. Given relations R,S : M ↔ N ,
the relation R | S : M ↔ N (pronounced “R onto S”) is given by

R | S def
= R ∪ dom R 1 S ,

4

where dom R is the complement of dom R. Hence R | S results from S by changing the image
sets according to the prescription of R (if any). For example, if S is a function then {(x, y)} | S
“updates” S to make y the value corresponding to x.

The set M ↔ N of binary relations forms a monoid under | with ∅ as its neutral element.
Moreover, the set of M ; N of partial functions is a submonoid of M ↔ N . For further properties
see Möller (1993b).

Consider now two stores S and T over the same record type. The overwriting T | S is again
defined componentwise. For store S and pointer structure q we set

S | q def
= (ptr(q), S | sto(q)) .

The following lemma is important in localising the effects of an overwrite operation:

Lemma 5.1 p 6` recs(S) ⇒ reach(S | p) = reach(p).

This means that overwriting outside the reachable part of a pointer structure does not af-
fect reachability in that part. This will be most useful in connection with reasonable abstraction
functions (cf. Section 7.4).

In selective updating only one of the component functions of a store is overwritten properly. A

store which models the update along selector k is (x
k7→ y) given by

(x
k7→ y)k

def
= {(x, y)} ,

(x
k7→ y)j

def
= ∅ for j 6= k .

Let now N def
=

⋃
j∈K

Nj . To ease the notation and to keep with traditional programming

languages, we introduce an operation

. := : P ×K × (P ∪N) → P

for selective updating:

(n, S).k := (m,T)
def
= (n, (n

k7→ m) | T) if k has functionality A → A,

(n, S).k := x
def
= (n, (n

k7→ x) | S) if k has functionality A → Nj

and x ∈ Nj .

Moreover, we define the selection operation . : P ×K ; (A ∪N) by

(n, S).k
def
= (Sk(n), S) if k has functionality A → A and Sk(n) is defined,

(n, S).k
def
= Sk(n) if k has functionality A → Nj .

Otherwise, (n, S).k is undefined. When using selections as arguments, undefinedness is assumed to
propagate, according to the strictness of relational semantics. We have the following properties:

5

Lemma 5.2 Let m
def
= ptr(p), n

def
= ptr(q) and r

def
= (m, sto(q)). Moreover, assume the selector

functionalities j : A → Nj and k, k1, k2 : A → A.

1. ptr(p.k := q) = m.

2. (p.k := q).k = (m
k7→ n) | q.

3. k1 6= k2 ⇒ (p.k1 := q).k2 = (m
k17→ n) | r.k2.

4. (p.k := p.k) = p.

5. (p.k := q).j = r.j.

6. q 6` m ⇒ from((p.k := q).k) = from(q).

7. k1 6= k2 ∧ r.k2 6` n ⇒ from((p.k1 := q).k2) = from(r.k2).

8. q 6` L ⇒ q 6∈ setL ∧ q.k 6` L.

9. ¬ sharing(m,n, S) ⇒ ¬ sharing(Sk(m), n, S).

10. noreach(p) ⊆ noreach(p.k), i.e., p norea p.k.

11. noreach(p.k := q) = noreach({m} 1 r).

6 Acyclic Stores and Forests

We have seen that many properties depend on the absence of sharing. This is guaranteed by forests,
which are therefore of special interest. For their characterisation we need two notions about binary
relations. A relation R : M ↔ N is acyclic iff R+ ∩ I = ∅. Hence R is acyclic iff no element is
reachable from itself via a non-empty path. R is injective iff R ; R˘ ⊆ I, i.e., iff no two distinct
elements have a common successor under R. If T ⊆ S and S is acyclic or injective, then so is T ,
since all operations involved in the characterisations of these notions are monotonic w.r.t. inclusion.

These notions are carried over to stores as follows. A store S is called acyclic if [S] is acyclic,
and injective if [S] 1 {3} is injective. This means that no two different records point to the same
proper record or, equivalently, that the underlying directed graph has maximal in-degree 1, except
perhaps at the pseudo-record 3. Finally, S is called a forest if it is acyclic and injective. We have the
following separation properties for acyclic stores (and hence forests) which will allow localisation
of side effects:

Lemma 6.1 1. Let S be injective. Then for all x, y ∈ A we have

sharing(x, y, S) ⇒ ((y, S) ` x ∨ (x, S) ` y) .

2. Let S be acyclic and assume y ∈ [S]+(x). Then (y, S) 6` x.

6

3. Let S be acyclic and assume y ∈ [S]+(x). Then
∀ z ∈ A : ¬ sharing(z, x, S) ⇒ ¬ sharing(z, y, S).

4. Let S be a forest and y, z two distinct successors of x under [S], i.e., assume y, z ∈ [S](x)∧ y 6=
z. Then ¬ sharing(x, y, S).

5. Let S be a forest and assume y ∈ [S](x). Then

noreach(y, S) = noreach(x, S) ∪ {x} ∪
⋃

z∈[S](x)\{y}

reach(z, S) .

So far we have considered only stores. A pointer structure (n, S) is called acyclic, injective or
a forest if the store of its reachable part from(n, S) is acyclic, injective or a forest, respectively.

7 Pointer Implementations

7.1 Abstraction Functions

We now consider implementations of abstract objects of some set O by pointer structures in such
a way that each object is represented by a pointer structure (n, S) ∈ P with a single entry n ∈ A.
As usual (see e.g. Hoare (1972)), the relation between abstract and concrete levels is established by
a partial abstraction function F : A× P ; O such that F is surjective. To allow representations
of tuples of abstract objects, we extend F to a partial function F : P ; O+ on arbitrary pointer

structures by setting F (n1, . . . , nk, S)
def
= F (n1, S), . . . , F (nk, S).

7.2 Implementation of Operations

As usual (see e.g. Hoare (1972)), the general pattern for transferring operations from the abstract
level to the pointer level is as follows.

Consider an operation of functionality On ; B that leads into a set B of “external” values
such as integers or Booleans. We define an implementation relation OPOI : (P ; B)↔ (On ; B)
(“O” stands for “output”) by setting

gp OPOI g
def⇔ gp = F ; g .

So the implementation gp has to mimic the specification g faithfully. Note the implicit use of the
extended abstraction function F (cf. Section 7.1) for the representation of tuples in On.

For operations of functionality On ; O we are more liberal and allow the implementation
to be non-deterministic, i.e., a relation rather than a function. This is reasonable, since different
concrete objects may represent the same abstract object. A typical non-deterministic operation at
the pointer level would be the allocation of new records (see Möller (1997)).

Our notion of implementation will be parameterised by additional requirements on the operation
at the pointer level, such as preservation of certain aspects of the store. Such requirements are again

7

formulated as relations between “old” and “new” pointer structures. Hence our parameterised
implementation relation has functionality POI : (P ↔ P) → ((P ↔ P) ↔ (On ; O)) and is
defined by

fp POI req f
def⇔ fp ; F = F ; f ∧ fp ⊆ req .

Here req is the additional requirement, examples of which will be given later.

The most liberal specification POITRUE, where TRUE
def
= P×P is the universal relation, does

not exclude indirect side-effects on parts of p that point into the reachable part from(p). We also
want to give stronger specifications that guarantee that changes take place only in the relevant
reachable part or outside the current store, i.e., on “new” records. To this end we define the set

noreach(p)
def
= recs(p)\reach(p) = recs(p)\recs(from(p)) .

It is the set of all records that are not reachable from the entries of p and hence should better be
left alone by changes to the store of p. Note that

n ∈ noreach(p) ⇔ n ∈ recs(p) ∧ p 6` n . (2)

Now we can define two constraining relations local : P ↔ P and norea : P ↔ P. First we set

p local q
def⇔ L 1 sto(p) = L 1 sto(q) ,

where L
def
= noreach(p). So local requires that the part of the store that is unreachable in p is left

untouched in q; by our definition this does not exclude adding new records to the store.
However, local also holds if in the “modified” structure q there are pointers into noreach(p). So

records that were unreachable in p may become reachable by the modification and hence accessible
for subsequent modification. This potential source of problems for updates in q through ptr(p) is
excluded by requiring norea, defined by

p norea q
def⇔ noreach(p) ⊆ noreach(q) .

All three strengthenings POI local ,POI norea or even POI local∩norea of POITRUE still admit
implementation by copying and by re-use.

Another interesting invariant is preservation of certain selections. For selector k we set

p presk q
def⇔ sto(p)k = (dom sto(p)k) 1 sto(q)k .

This means that selection along k has the same effect in p and q, as long as only the “old” records
in p are considered. Using domain restriction on q allows us to allocate new records in q, about
which no assumptions are made by presk.

8

7.3 Development Strategy

Assume an abstraction function F . To calculate a pointer implementation fp : P ↔ P of f : On ;

O, we start with the expression f(F (p)), where p is an identifier of type P, and try to transform
it by equational reasoning into an expression F (E) such that F (E) = f(F (p)) and E does not

contain F . Then we can define fp by setting fp(p)
def
= E and are sure that fp POITRUE f holds.

Design decisions are reflected by the particular choice of the applied equations and generally result
in a reduction of nondeterminacy. For implementations of operations g : O ; N we may, more
directly, start with the expression g(F (p)) and transform it in such a way that F is eliminated
from it.

One design goal is to keep changes to a minimum. This has two aspects:

– preserve the entries to pointer structures, if possible;
– implement changes to single record components by selective updating, if possible.

We shall see these goals influence our example derivations. In particular, they will motivate the
introduction of strengthened requirements as additional invariants.

7.4 Reasonable Abstraction Functions

To prepare the following discussion we need an auxiliary notion. Consider an arbitrary partial
function f : P ;M for some set M . As usual, f induces an equivalence relation ∼f on P by

p ∼f q
def⇔ f(p) = f(q) .

In particular, this equivalence identifies all elements of P for which f is undefined.
The pointer representation of an abstract object should solely be determined by the store and

the entries to the structure; it should be independent of that part of the store that is not reachable
from the entries. Therefore, generalising from the case of an abstraction function, we say that a
function f : P ;M on pointer structures is reasonable if

∀ p, q ∈ P : from(p) = from(q) ⇒ p ∼f q .

So pointer structures that agree in the part reachable from the entries represent the same abstract
object (if any).

This seemingly simple concept is the key idea that makes our treatment work uniformly and
independently of particular data structures such as lists or trees. It allows us to reduce ques-
tions about the changes a selective updating effects to a much simpler analysis of the changes in
reachability. In particular, we can use the well-established relational calculus for that analysis.

Fortunately, there is a “canonical” class of abstraction functions that can be proved to be
reasonable. These functions are defined by recursion following the links in the pointer structure
while building up the abstract objects represented. This recursion pattern is typical of an unfold
operation or anamorphism (see Meijer et al. (1991), Bird (1996)). We quote from Möller (1998):

Lemma 7.1 Assume a function F with the recursive definition

9

F (p, x) = if Q(p, x)
thenE(p, x)
else C(F (f1(p, x), p.s1), . . . , F (fk(p, x), p.sk),

p.v1, . . . , p.vm)

where for all x the residual functions Q(, x), E(, x), f1(, x), . . . fk(, x) are reasonable. Then for
all x the residual function F (, x) is reasonable as well.

This lemma applies to all abstraction functions used in the present paper (and to many more,
see again Möller (1998)). It even extends to abstraction procedures like printing out all nodes of a
tree in infix order using indentation, such as the C routine

void print_btree (btree b, int indentation)

{ if (b)

{ print_btree(b->right, indentation+3) ;

printblanks(indentation) ;

printf("%d\n",b->node) ;

print_btree(b->left, indentation+3) ;

}

}

So our approach is directly usable for pointer programs in “real” programming languages.
For pointer implementations that use selective updating it usually is important that the updates

work locally. This can be established using the following localisation properties that follow from
Lemma 5.1 and Lemma 5.2:

Lemma 7.2 Assume that abstraction function F is reasonable and k has functionality A → A.

1. q 6` recs(S) ⇒ S | q ∼F q.

2. q 6` ptr(p) ⇒ (p.k := q).k ∼F q.

3. Let r
def
= (ptr(p), sto(q)) and assume j 6= k. Then

r.j 6` ptr(p) ⇒ (p.k := q).j ∼F r.j .

8 Calculating with Acyclic Lists

8.1 Abstract Lists

The set L of lists with elements of N as node values is defined inductively, ie. as the least set X
with

ε ∪ N × X ⊆ X ,

where ε denotes the empty list. A non-empty list, i.e., an element of N × L, will be denoted as a
pair 〈x, l〉 with head x ∈ N and tail l ∈ L.

10

8.2 The Abstraction Function For Acyclic Structures

Let now P denote the set of all pointer structures over the record type for lists, as discussed in
Section 3. The abstraction function list : P ; L constructs the list reachable from a record in a
store. For n ∈ A we set

list(p)
def
= if ptr(p) = 3 then ε else 〈p.head , list(p.tail)〉 .

In the case where a cycle is reachable from n in L, this recursion is non-terminating. In a strict
underlying semantics this means that the value of list(n,L) is undefined, whereas in a non-strict
setting the value of list(n,L) is an infinite list corresponding to an unwinding of the subgraph
reachable from n in L. Since we are working in a relational setting, the strict interpretation is
relevant here. So from now on we shall assume that list is used only for acyclic pointer structures.
Below we will present an abstraction function that copes with cyclic lists. By Lemma 7.1, the
abstraction function list is reasonable.

Moreover, we have

Lemma 8.1 An acyclic list pointer structure (m,L) with m ∈ A is a forest.

Proof: In the proof of Lemma 13 of Möller (1997) it was shown that

R ; S ⊆ I ⇒ R∗ ; S∗ ⊆ R∗ ∪ S∗ .

Hence for a partial function R, characterised by R ;R˘⊆ I, we obtain from this, setting S
def
= R ,̆

the property of downward local linearity of R∗:

R∗ ; (R)̆∗ ⊆ R∗ ∪ (R)̆∗ (†) .

Now assume Ltail(k1) = Ltail(k2) = n for k1, k2 ∈ reach(m,L) with k1 6= k2. Then by (†) w.l.o.g.
k1 L

+
tail k2. Since Ltail is a partial function it follows that k1 Ltail n L

∗
tail k2 Ltail n, i.e., n L+

tail n,
a contradiction to acyclicity of (m,L).

8.3 Concatenation

We now calculate pointer implementations of a number of sample operations. First we treat the
operation cat : L × L; L that concatenates two lists. It is recursively defined by

cat(ε, r) = r ,
cat(〈x, l〉, r) = 〈x, cat(l, r)〉 .

Using our scheme from Section 7 we specify a pointer implementation catp by requiring

catp POITRUE cat

and want to find an explicit version of catp. However, we will develop this only for the case of
arguments without sharing.

11

So assume that p = (m,n,L) with list entries m,n ∈ A and store L is acyclic and that
¬ sharing(p) holds. Then the specification of catp unfolds into

list(catp(m,n,L)) = cat(list(m,L), list(n,L)) .

If m = 3 we have list(m,L) = ε and hence list(catp(m,n,L)) = list(n,L), so that we may choose

catp(3, n, L) = (n,L) .

For m 6= 3 we calculate, with p = (m,L) and q = (n,L),

cat(list(p), list(q))

= {[unfold definition of list]}

cat(〈p.head , list(p.tail)〉, list(q))

= {[unfold definition of cat]}

〈p.head , cat(list(p.tail), list(q))〉

= {[fold with specification of catp, i.e., choose an arbitrary
q′ ∈ catp(Ltail(m), n, L)]}

〈p.head , list(q′)〉

= {[setting r
def
= p.tail := q′ and using Lemma 5.2.5,

assuming additionally catp ⊆ preshead]}

〈r.head , list(q′)〉

= {[by Lemmas 7.2.2, 6.1.2 and 8.1, assuming additionally
catp ⊆ norea]}

〈r.head , list(r.tail)〉

= {[fold with definition of list]}

list(r) .

For the correctness of the folding step we observe that the assumption ¬ sharing propagates to
the recursive call by Lemma 5.2.9. The derivation has shown the need for introducing the additional
invariants preshead and norea; they are established by the termination case and propagate to r by
a straightforward calculation using (1).

Altogether, for the following recursion we have catp POI preshead ∩norea cat :

catp(m,n,L) = if m = 3 then (n,L) else p.tail := catp(Ltail(m), n, L) .

12

8.4 Reversal

Next we want to derive a function for reversing a list. As reversal function rev : L; L on abstract
lists we use an embedding into a tail-recursive function rrev : L × L; L:

rev(l)
def
= rrev(l, ε),

rrev(ε, t)
def
= t ,

rrev(〈m, l〉, t) def
= rrev(l, 〈m, t〉) .

The additional parameter t of rrev accumulates the intermediate results. Using our scheme from
Section 7 we specify a pointer implementation revp by requiring revp POITRUE rev and want to
find an explicit version of revp. We do this by finding a pointer implementation of the auxiliary
function rrev . However, we do not carry the accumulating substructure itself as a parameter, but
just its head cell. Hence we specify, assuming ¬ sharing(m,n,L):

list(rrevp(m,n,L)) = rrev(list(m,L), list(n,L)) .

Since list(3, L) = ε, we can use revp(m,L) = rrevp(m,3, L) as an appropriate embedding. As
before, we now perform a case analysis.
Case 1:m = 3. Then list(m,L) = ε, and hence rev(list(m,L)) = ε. Thus list(rrevp(m,n,L)) =
list(n,L), so that we may choose rrevp(m,n,L) = (n,L) in this case.
Case 2: For m 6= 3 we calculate, with p = (m,L) and q = (n,L),

list(rrevp(m,n,L))

= {[unfold specification of rrevp]}

rrev(list(p), list(q))

= {[unfold definition of list]}

rrev(〈p.head , list(p.tail)〉, list(q))

= {[unfold definition of rrev]}

rrev(list(p.tail), 〈p.head , list(q)〉)

= {[setting r
def
= p.tail := q and using Lemmas 5.2.5 and 7.2.3

by ¬ sharing(m,n,L)]}

rrev(list(p.tail), 〈r.head , list(r.tail)〉)

= {[fold with definition of list]}

rrev(list(p.tail), list(r))

= {[definition of p]}

rrev(list(Ltail(m), L), list(r))

= {[by acyclicity of p and Lemmas 6.1.2 and 7.2.1]}

13

rrev(list(Ltail(m), sto(r)), list(r))

= {[fold with specification of rrevp]}

list(rrevp(Ltail(m), r)) .

Hence we may choose rrevp(m,n,L) = rrevp(Ltail(m), r) in this case. Altogether, we have obtained

revp(m,L) = rrevp(m,3, L) ,

rrevp(m,n,L) = if m = 3 then (n,L)
else let k = Ltail(m)

r = p.tail := q
in rrevp(k, r) .

The algorithm exploits that redirection of the head pointer of a list does not influence the tail
of that list. In this case no strengthening of the invariant TRUE was necessary.

Again, we have to check the validity of the assertion for the recursive call. Assume that m 6=
3 ∧ ¬ sharing(m,n,L) hold, and set k

def
= Ltail(m) and M

def
= (m

tail7→ n) | L. Then

reach(m,M) = {m} ∪ reach(n,M) = {m} ∪ reach(n,L)

by Lemma 5.1 and ¬ sharing(m,n,L). Moreover,

reach(k,M) = reach(k, L) ,

again by Lemma 5.1. Now ¬ sharing(k,m,M) is immediate using elementary set theory, acyclicity
of (m,L), Lemma 6.1.2 and Lemma 5.2.9.

8.5 Comparison of the Derivations

One may wonder why we needed to introduce additional requirements in the seemingly simpler
case of the concatenation algorithm. The reason for this is that a non-tail recursion arose. The
operations performed after the recursive call need some assertions about the connection between
arguments and results of the recursion.

Contrarily, the reversal algorithm shows a tail-recursive pattern and all the calculation is per-
formed on the arguments of the recursive calls. So we can check the required assertions directly on
the arguments without the need of additional requirements between arguments and results.

9 The Cyclic Case

9.1 The Abstraction Function for Circular Lists

We now treat the case of circular lists. We now say that a pointer structure (m,L) represents
the list which is obtained by following the links until an already visited record is reached. The

14

corresponding abstraction function is clist : P ; L. For m ∈ A with m = 3 or cyclic (m,L) we
set

clist(p)
def
= if ptr(p) = 3 then ε else 〈p.head , clis(p.tail , {ptr(p)})〉 ,

where the auxiliary function clis : P × ℘(A) ; L is given by

clis(p, V)
def
= if ptr(p) ∈ V ∪ {3}

then ε
else 〈p.head , clis(p.tail , V ∪ {ptr(p)})〉 .

Termination is now forced by the additional argument V of clis which remembers the set of already
visited records. Again we have an anamorphic recursion pattern. First we show the following
reasonableness properties for clis:

Lemma 9.1 1. For all V ⊆ A the residual function clis(, V) is reasonable.

2. ptr(p) = ptr(q) ∧ V 1 p = V 1 q ⇒ clis(p, V) = clis(q, V).

Proof:

1. Immediate from Lemma 7.1.

2. We use fixpoint induction with the continuous predicate

PP(h)
def⇔ ∀ p1, p2, V : ptr(p1) = ptr(p2)∧
V 1 p1 = V 1 p2 ⇒ h(p1, V) = h(p,V) .

The induction basis PP(∅) is trivial. Assume now PP(h). For the induction step we assume

the premise of PP and set m
def
= ptr(p1) = ptr(p2). Then

reach(pi)\V = {m}\V ∪ reach(pi.tail)\V .

Case 1: m ∈ V . By definition τ(h)(p1, V) = ε = τ(h)(p2, V).
Case 2: m 6∈ V . Then by assumption {m} 1 p1 = {m} 1 p2 and hence p1.head = p2.head
and ptr(p1.tail) = ptr(p2.tail). Moreover, since V ⊆ V ∪{m}, we have V ∪ {m} 1 p1.tail =
V ∪ {m} 1 p2.tail . So the induction hypothesis is satisfied and we have

τ(h)(p1, V) = 〈p1.head , clis(p1.tail , V ∪ {m})〉 =
〈p2.head , clis(p2.tail , V ∪ {m})〉 = τ(h)(p2, V) .

One can even show the stronger property

ptr(p) = ptr(q) ∧ (reach(p)\V) 1 p = (reach(q)\V) 1 q ⇒
clis(p, V) = clis(q, V) .

However, its premise is much harder to check than the one of 2 above, so that it is less useful.
From 1 it is immediate that

15

Lemma 9.2 The abstraction function clist is reasonable.

The function clis also shows an important localisation property:

Lemma 9.3 p 6`W ⇒ clis(p, V ∪W) = clis(p, V).

Proof: We use again fixpoint induction with the continuous predicate

PP(h)
def⇔ ∀ p, V,W : p 6`W = ∅ ⇒ h(p, V ∪W) = h(p, V) .

By Lemma 5.2.8 the premise of PP(h) implies

ptr(p) 6∈W ∧ p.tail 6`W . (∗)

The induction basis PP(∅) is trivial. Assume now PP(h). With τ as in the previous proof we
calculate

τ(h)(p, V ∪W)

= {[definition of τ]}

if ptr(p) ∈ V ∪W
then ε
else 〈p.head , clis(p.tail , V ∪W ∪ {ptr(p)})〉

= {[by (∗) and PP(h)]}

if ptr(p) ∈ V
then ε
else 〈p.head , clis(p.tail , V ∪ {ptr(p)})〉

= {[definition of τ]}

τ(h)(p, V) .

Finally we note that the representation of singleton lists is almost unique:

Lemma 9.4 clist(q) = 〈x, ε〉 ⇔ ptr(q) = ptr(q.tail) ∧ q.head = x.

9.2 Concatenation

Again we require catp POITRUE cat , but this time w.r.t. clist , and want to find an explicit version
of catp for the case of arguments without sharing.

Assume that p = (m,L) and q = (n,L) both represent circular lists and that ¬ sharing(m,n,L)
holds. In particular then m 6= n. The specification of catp now unfolds into

clist(catp(m,n,L)) = cat(clist(p), clist(q)) .

16

If m = 3, we have clist(p) = ε and hence clist(catp(m,n,L)) = clist(n,L), so that we may choose

catp(3, n, L) = (n,L) .

For m 6= 3 we have to consider clis. We introduce an auxiliary function cap, also with an
additional parameter, that mirrors the reduction of clist to clis. It is specified by

clis(cap(m,n,L, V), V) = cat(clis(m,L, V), clis(n,L, V)) .

To obtain a directly recursive version of cap we again employ a case analysis.
Case 1: m ∈ V . Then clis(m,L, V) = ε. Hence clis(cap(m,n,L, V), V) = clis(n,L, V), so that
we may choose cap(m,n,L, V) = (n,L) in this case.
Case 2: m 6∈ V . Set p = (m,L) and q = (n,L). We calculate

cat(clis(p, V), clis(q, V))

= {[unfold definition of clis]}

cat(〈p.head , clis(p.tail , V ∪ {m})〉, clis(q, V))

= {[unfold definition of cat]}

〈p.head , cat(clis(p.tail , V ∪ {m}), clis(q, V))〉

= {[by Lemma 9.3]}

〈p.head , cat(clis(p.tail , V ∪ {m}), clis(q, V ∪ {m}))〉

= {[fold with specification of cap setting l
def
= ptr(p.tail)]}

〈p.head , clis(cap(l, n, L, V ∪ {m}), V ∪ {m})〉

= {[fold with specification of cap, i.e., choose an arbitrary
q′ ∈ cap(l, n, L, V ∪ {m})]}

〈p.head , clis(q′)〉

= {[setting r
def
= p.tail := q′ and using Lemma 5.2.5,

assuming additionally cap ⊆ preshead]}

〈r.head , clis(q′, V ∪ {m}))〉

= {[fold with definition of clis, since ptr(r) = m
by Lemma 5.2.1, and using Lemma 9.1.2]}

clis(r, V) .

Again the assumption ¬ sharing propagates to the recursive call by Lemma 5.2.9. Altogether
we have obtained

catp(m,n,L) = if m = 3 then (n,L)
else p.tail := cap(Ltail(m), n, L, {m})

17

cap(m,n,L, V) = if m ∈ V then (n,L)
else p.tail := cap(Ltail(m), n, L, V ∪ {m})

Note the close correspondence between the derivations in the acyclic and in the cyclic case.

9.3 Reversal

Assume now the specification

clist(revp(p)) = rev(clist(p)) .

We have

rev(clist(p))

= {[definitions of clist and rev]}

if ptr(p) = 3 then ε
else rrev(clis(p.tail , {ptr(p)}), 〈p.head , ε〉) .

= {[definition of clist and Lemma 9.4]}

if ptr(p) = 3 then clist(p)
else rrev(clis(p.tail , {ptr(p)}), clist(p.tail := p)) .

This calls for the introduction of an auxiliary function rrevp specified by

clis(rrevp(m,n,L, V), V) = rrev(clis(m,L, V), clis(n,L, V))

provided ¬ sharing(m,n,L). Set p
def
= (m,L) and q

def
= (n,L). To obtain a directly recursive

version of rrevp we again employ a case analysis.
Case 1:m ∈ V . Then rrev(clis(p, V), clis(q, V)) = clis(q, V), and we may set rrevp(m,n,L, V) = q
in this case.
Case 2: m 6∈ V . We calculate

rrev(clis(p, V), clis(q, V))

= {[unfold definition of clis]}

rrev(〈p.head , clis(p.tail , V ∪ {m})〉, clis(q, V))

= {[unfold definition of rrev]}

rrev(clis(p.tail , V ∪ {m}), 〈p.head , clis(q, V)〉)

= {[by Lemma 9.3]}

rrev(clis(p.tail , V ∪ {m}), 〈p.head , clis(q, V ∪ {m})〉)

= {[setting r
def
= p.tail := q and using Lemmas 5.2.5 and 7.2.3

18

by ¬ sharing(m,n,L)]}

rrev(clis(p.tail , V ∪ {m}), 〈r.head , clis(r.tail , V ∪ {m})〉)

= {[fold with definition of clis]}

rrev(clis(p.tail , V ∪ {m}), clis(r, V))

= {[by Lemma 9.3 using ¬ sharing(m,n,L)]}

rrev(clis(p.tail , V ∪ {m}), clis(r, V ∪ {m}))

= {[definition of p]}

rrev(clis(Ltail(m), L, V ∪ {m}), clis(r, V ∪ {m}))

= {[by Lemma 9.1.2]}

rrev(clis(Ltail(m), sto(r), V ∪ {m}), clis(r, V ∪ {m}))

= {[fold with specification of rrevp]}

clis(rrevp(Ltail(m), r, V ∪ {m})) .

Hence we may choose

rrevp(m,n,L, V) = rrevp(Ltail(m), r, V ∪ {m})

in this case. Altogether, we obtain, using again Lemma 9.4 and Lemma 9.1.2,

revp(m,L) = if m = 3 then (m,L)

else rrevp(Ltail(m),m, (m
tail7→ m) | L, {m})

rrevp(m,n,L, V) = if m ∈ V then (n,L)
else let k = Ltail(m)

r = p.tail := q
in rrevp(k, r, V ∪ {m}) .

Again, the derivation was very similar to the one for the acyclic case.

10 Conclusion

The relational calculus has proved to be a very useful tool for modelling and analysing pointer
structures. The chosen abstraction seems adequate, as the fairly concise derivations in the examples
show. It is encouraging that to a large extent the treatment is independent of the particular data
structures involved. The extension to properly cyclic structures has proved to be relatively simple
and did not need additional concepts.

Acknowledgements I am grateful to R. Berghammer, T. Ehm and O. de Moor for a number of
valuable comments. This research was partially sponsored by Esprit Working Group 8533 NADA
— New Hardware Design Methods.

19

References

[1] U. Berger, W. Meixner, B. Möller: Calculating a garbage collector. In: M. Broy, M. Wirsing (eds.):
Methods of programming. Lecture Notes in Computer Science 544. Berlin: Springer 1991, 137–192

[2] R. Bird: Functional algorithm design. Science of Computer Programming 26, 15–31 (1996)

[3] C.A.R. Hoare: Proofs of correctness of data representations. Acta Informatica 1, 271–281 (1972)

[4] E.Meijer, M.Fokkinga, R. Paterson: Functional programming with bananas, lenses, envelopes and
barbed wire. In: J. Hughes (ed.): Functional programming and computer architecture. Lecture Notes
in Computer Science 523. Berlin: Springer 1991, 124–144

[5] B. Möller: Formal derivation of pointer algorithms. In: M. Broy (Hrsg.): Informatik und Mathematik.
Berlin: Springer1991, 419–440

[6] B. Möller: Development of graph and pointer algorithms. In: B. Möller, H.A. Partsch, S.A. Schuman
(eds.): Formal program development. Lecture Notes in Computer Science 755. Berlin: Springer 1993,
123–160

[7] B. Möller: Towards pointer algebra. Science of Computer Programming 21, 57–90 (1993)

[8] B. Möller: Calculating with pointer structures. In: R. Bird, L. Meertens (eds.): Algorithmic languages
and calculi. Proc. IFIP TC2/WG2.1 Working Conference, Le Bischenberg, Feb. 1997. Chapman&Hall
1997, 24–48

[9] B. Möller: Are anamorphisms reasonable abstractions? Proc. Workshop on Generic Programming,
Marstrand, 18 June, 1998. Chalmers University of Technology, Göteborg, 1998 (11 pp.)

[10] G. Schmidt, T. Ströhlein: Relations and graphs. Discrete Mathematics for Computer Scientists.
EATCS Monographs on Theoretical Computer Science. Berlin: Springer 1993

20

	Introduction
	Relational Notation
	Stores and Pointer Structures
	Reachability and Sharing
	Overwriting Pointer Structures
	Acyclic Stores and Forests
	Pointer Implementations
	Abstraction Functions
	Implementation of Operations
	Development Strategy
	Reasonable Abstraction Functions

	Calculating with Acyclic Lists
	Abstract Lists
	The Abstraction Function For Acyclic Structures
	Concatenation
	Reversal
	Comparison of the Derivations

	The Cyclic Case
	The Abstraction Function for Circular Lists
	Concatenation
	Reversal

	Conclusion

