
                                      

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                                                                         
Ratchet-driven fluid transport in bounded two-layer films of immiscible liquids
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We present a two-layer thin film model allowing us to study the behavior of a general class of

‘wettability ratchets’ that can be employed to transport a continuous phase. Brownian ratchets, in

contrast, are normally used to transport particles or molecules within a continuous carrier fluid without

transporting the fluid itself.

The wettability ratchet is based on a switchable, spatially asymmetric, periodic interaction of the free

surface of the film and the walls. To illustrate the general concept, we focus on an electrical dewetting

mechanism based on the effective force exercised by a static electric field on the liquid–liquid interface

between two dielectric liquids. In particular, we analyse (i) an on–off ratchet with a constant lateral

force resulting in a dewetting–spreading cycle, (ii) a ratchet switching between two shifted potentials

that shows a transition between oscillating and sliding drops, and (iii) a flashing external force ratchet.

For the three cases, the macroscopic transport is studied in its dependence on spatial and temporal

characteristics of the ratchet, and physical properties and volume of the liquids.
1 Introduction

In spatially extended systems without global gradients, transport

may be generated by Brownian ratchets.1–4 Many examples

involve particles or molecules in solution that perform a directed

net motion in response to the action of the ratchet. There, the

ratchet does not induce a mean flow of the solvent itself. For

instance, colloidal particles, suspended in solution, move when

exposed to a sawtooth electric potential, which is successively

turned on and off.5 A similar concept is employed to selectively

filter mesoscopic particles through a micro-fabricated macro-

porous silicon membrane with etched one-dimensional asymmet-

rical bottleneck-like pores6 using an oscillating pressure gradient

across the membrane.7,8 Brownian ratchets are also thought to

represent the underlying mechanism of molecular motors that

are responsible for the active transport of molecules along

filaments in biological cells.9,3

The underlying principle of Brownian transport was first

pointed out by Curie.10 He stated that even in a macroscopically

symmetric system, macroscopic transport can be induced if the

system exhibits local asymmetries and is kept out of equilibrium.

The local asymmetry can result, for instance, from a periodic but

asymmetric potential. The variation has to be on a small length

scale as compared to the system size. There are many ways to

keep the system out of equilibrium, e.g. a chemical reaction,9

an oscillating pressure8 or an electric potential that is periodically

switched on and off.5
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Most present applications use ratchets to transport or filter

discrete objects like colloidal particles or macromolecules.

However, ratchets may also serve to induce macroscopic trans-

port of a continuous phase using local gradients only. One

example, strongly related to the above cases of particle transport

in a ‘resting’ liquid phase, is the Brownian motion of magnetic

particles in ferrofluids when an oscillating magnetic field is

applied.11 In contrast to the above cases, the motion is also trans-

mitted to the liquid solvent by viscous coupling.

Another class of systems does not need colloidal particles to

drive the motion of the liquid phase. In a first example,

a secondary large scale mean flow is triggered in Marangoni–

Bénard convection over a solid substrate with asymmetric

grooves.12 The direction and strength of the mean flow can be

controlled by changing the thickness of the liquid layer and the

temperature gradient across the layer.

A second example are Leidenfrost drops that are placed on

a hot surface with a similar ratchet-like topography. The locally

asymmetric geometry induces a directed motion of the drops.13,14

The effect is observed for many liquids in a wide temperature

range in the film-boiling regime.

In a third example, micro-drops confined in the gap between

asymmetrically structured plates move when drop shape or

wetting properties are periodically changed by different means,

like vibrating the substrate, applying an on/off electric field

across the gap or a low-frequency electric field of zero mean

value along the gap.15 In a related experiment the motion of

drops on a global wettability gradient is strongly enhanced

when a periodic force is applied.16,17 The ratchet aspect is

introduced by the intrinsically asymmetric shape and contact

angle hysteresis of the drop on the gradient substrate.

Theoretical approaches are very well developed for Brownian

ratchets related to particle transport.3 Detailed studies exist for

many ratchet types like drift ratchets,7 inertia ratchets,18–20

ratchets with non-coherent switching.21 However, models for

ratchet-driven transport of a continuous phase are a rather
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Fig. 1 Panels (a) to (c) illustrate the working principle of a fluidic

ratchet based on a switchable wettability profile that causes dewetting–

spreading cycles. (d) illustrates the spatial asymmetric periodic interac-

tion profile F(x) responsible for the wettability pattern and (e) indicates

the time-dependence Q(t) of the switching in relation to the dewetting

and spreading phases in (a) to (c). The filled circle indicates a fluid

element that is transported during one ratchet cycle although the

evolution of the interface profile is exactly time-periodic.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
scarce commodity although the concept is thought to be impor-

tant for emerging microfluidic applications.22–24. Ref. 25

proposes a simple electro-osmotic model for liquid flow in

a channel induced by locally asymmetric periodic arrays of

electrodes under an AC voltage.26 In this way one can drive an

electrolyte depending on the surface properties, e.g. capacitance

or shape. The redistribution of charges in the Debye-layer leads

to an effective electro-osmotic slip velocity at the surface.

In the present work we propose and analyse a model for

ratchets related to the third experimental example above that

result in a macroscopic transport of a continuous phase. Speci-

fically, we study a model for the flow of two immiscible layered

liquids confined between two walls and driven by a flashing

‘wettability ratchet’. We employ a rather general concept of

wettability comprising all effective interactions between the

liquid–liquid free interface and the solid walls. Any such interac-

tion that is applicable in a time-periodic, spatially periodic (but

locally asymmetric) way can drive a mean flow, i.e. result in

transport. We thus extend our previously developed concept

for ratchet-driven transport in a single liquid layer bounded by

air27 to a liquid bilayer system confined by the capacitor walls.

One major result of this generalized model is the possibility to

increase the macroscopic flux in the bottom layer by bounding

it with a liquid of low viscosity and large dielectric permittivity

instead of air.

There exist several possibilities for an experimental realization

of spatially inhomogeneous interactions and switching in time. A

simple setup consists of thin films of dielectric liquids in a capac-

itor with a periodic, locally asymmetric voltage profile, that is

periodically switched on and off. A spatially homogeneous elec-

tric field destabilizes the interface between the two liquids.28,29

Initial surface fluctuations with a selected wavenumber are

most strongly amplified, resulting in droplet or column patterns

that might undergo a coarsening process for large times.30 This

scenario is reminiscent of spinodal dewetting.31–35 However, the

instability is driven by the electrostatic field and not by van der

Waals forces. One might call the process electro-dewetting. It

is already used to (hierarchically) structure one- or two-layer

polymer films.28,29,36,37 The basic mechanisms are rather well

modeled and understood.28,30,38,39 In particular, the models for

bilayer systems on solid substrates with two free interfaces

predict a rich interfacial phenomenology like, for instance, the

evolution of instabilities with two different wavelengths at the

two free interfaces.39 Similar behavior is also found for a bilayer

evolving under the sole influence of effective molecular interac-

tions.40,41 However, using a spatially heterogeneous electrical

field is similar to dewetting on heterogeneous substrates, where

a flat film is not only unstable with respect to the spinodal surface

instability but also to modes directly driven by the local wetta-

bility gradients.38,42–45 As a result the intrinsic spinodal wave-

length and the periodicity of the heterogeneity compete with

direct consequences for templating strategies: the heterogeneity

is only replicated if its length scale is comparable or slightly

larger than the spinodal wavelength.

Fig. 1 sketches an idealized electrical wettability ratchet based

on the above discussed effects. Schematically it works as follows.

A flat interface between two immiscible liquids that wet the

respective walls is stable when the electric field is switched off

[Fig. 1 (a)]. When switching on the spatially inhomogeneous
1184                             
electric field at t ¼ 0 [see spatial profile and time-dependence in

Fig. 1 (d) and (e), respectively] the films evolve into a set of drops

because the interface is destabilized by the overall electric field

and its local gradients [Fig. 1 (d)]. The latter interfere with the

wavelength selection in the linear phase of the surface instability

as well as with the coarsening process. Assuming that the lower

liquid has the higher relative dielectric constant, the qualitative

behavior in this phase of the cycle resembles dewetting of a single

film on a substrate with a chemical wettability pattern.44–46 After

transients have died out all the lower liquid is collected in drops

situated at the patches of maximal voltage [Fig. 1 (b)]. After

switching off the field at t ¼ t [defined in Fig. 1 (e)] the drops

spread [Fig. 1 (c)] until reaching again the homogeneous

two-layer situation [Fig. 1 (a)]. A new cycle restarts a t ¼ T by

switching on the field again. If a cycle is not long enough the

interface does not become entirely flat, a small modulation

remains as indicated in Fig. 1. Note that after initial transients

have died out the evolution of the film profile over one cycle is

exactly time-periodic. However, the liquid within the layers is

redistributed resulting in a mean transport. This is indicated by

the changing position of the particle in Fig. 1.

The present paper is structured as follows. In Section 2 we

sketch the derivation of the evolution equation for the profile

of the interface between two immiscible liquids in a capacitor.

Section 3 analyses the basic solution behavior for (i) the homo-

geneous autonomous system, i.e., the linear stability for a flat

interface in a homogeneous static electric field, and (ii) nontrivial

steady drop-like states in homogeneous and heterogenous static

fields. Section 4.1 simplifies the two-layer equations for the case

of a single liquid layer under (passive) air, and extends the corre-

sponding results given in a recent letter.27 The subsequent

Section 4.2 analyses the full two-layer case focusing on the

dependencies on experimentally important control parameters.

Sections 4.3 and 4.4 then discuss drop transport using two

shifted ratchets and transport in symmetric potentials, respec-

tively. The final Section 5 summarizes, compares to the literature

and gives an outlook on future work.
                                            



Fig. 2 Sketch of a two-layer film in a capacitor of gap width d and

voltageU(x). m1 (m2) and 31 (32) denote the viscosity and relative dielectric

constants of the bottom (top) fluid layer, respectively. The thickness of

the bottom fluid layer is denoted by h(x).

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
2 Model

2.1 Evolution equation

We consider two layers of immiscible dielectric fluids between

solid smooth walls as sketched in Fig. 2. The liquid–liquid inter-

face is free to move under the influence of capillarity, wettability

and an applied electrical field. We present the model for a two-

dimensional geometry corresponding to a shallow channel with

negligible influence of the lateral side walls.

For the small scale systems considered dominated by wetta-

bility and capillarity the dynamics is well described by an evolu-

tion equation for the film thickness profile h(x) derived using the

lubrication approximation.47,48 Note, that one can formally use

the lubrication approximation only for systems involving small

interface slopes. However, in many cases the lubrication approx-

imation predicts the correct qualitative behavior even for

partially wetting systems with large contact angles.47 The deriva-

tion from the basic transport equations and boundary conditions

performed in analogy to ref. 49 gives

vth ¼ �vx[Q(h){vx[P(h,x,t) + gvxxh] + fe(t)}]. (1)

The evolution equation (1) describes the change in time of

the interface profile as the negative divergence of the flux in

layer 1

j1 ¼ �Q(h)[vxp � fe(t)] (2)

expressed as the product of the mobility and a pressure gradient

and/or external force, where the pressure is given by

p ¼ �P � gvxxh. (3)

It contains the curvature pressure �gvxxh and the additional

disjoining pressure �P(h,x,t). Note that without external force

the flux in layer 2, j2, is given by j2 ¼ �j1, i.e., there is no net

flux through the combined system. The mobility Q is given by

Q ¼ h3ðd � hÞ3

3D
½hm2 þ ðd � hÞm1� (4)

with

D ¼ m1
2(d � h)4 + m2

2h4 + 2m1m2h(d � h)[2h2 + 3h(d � h) +

2(d � h)2]. (5)

The disjoining pressureP(h,x,t) comprises all effective interac-

tions between the liquid–liquid interface and the walls, i.e. the
                                            
wettability properties.47,50,51 Here we include the influence of

the electrical field obtaining

P(h,x,t) ¼ J(x,t)Pel + PvdW. (6)

For the van der Waals interactions we have

PvdW ¼ 1

6p

Al

h3
þ Au

ðd � hÞ3

!
(7)

Assuming that each liquid wets the adjacent wall better than

the other one, the Hamaker constants are Al > 0 and Au < 0.

Films of a dielectric liquid in a capacitor with an applied voltage

U0 are subject to the electric pressure28,30

Pel ¼ 1

2
303132U

2
0

ð31 � 32Þ
½32hþ ðd � hÞ31�2

(8)

For the considered ratchet the electric pressure is modulated in

space and time by the function J(x, t). Here, 30 is the absolute

dielectric constant, whereas 31 and 32 are defined in Fig. 2.

The external force fe(t) that depends on time acts parallel to

the walls. Simple mechanical realizations of fe are an inclined

system or centrifugal forces yielding an fe(t) independent of the

film thickness and the position x along the walls. Other realiza-

tions include thermal or wettability gradients.

For the time-dependence of J(x,t) we will only consider

instantaneous switches between two different space dependen-

cies, i.e., for one temporal (flashing) period T we impose

Jðx; tÞ ¼ F1ðxÞ; 0 # t\ t

F2ðxÞ; t # t\ T

�
(9)

The spatial dependencies Fi are assumed to be periodic in x,

but break the reflection symmetry in x. In particular, we take

the potentials in state 1 and 2 to be piecewise linear asymmetric

sawtooth potentials. For one spatial period L we have

FiðxÞ ¼
4i

2

�
1þ ji

a

�
x� a

2

��
; 0# x\a;

4i
2

�
1� ji

L� a

�
x� Lþ a

2

��
; a# x\L ;

8>>><
>>>:

(10)

where by substituting x¼ x0 �Dxi one can introduce a shift of the

ratchet potential by Dxi along the walls. This setup ensures

ð1=LÞ
Ð L
0
FiðxÞ dx ¼ 42

i . An example for Fi(x) is shown in Fig. 1

(d). In the present work we shall consider three simple settings:

(i) An on–off ratchet with a constant lateral force fe and f2 ¼
0, i.e., in phase 2 the electrical field is completely switched off and

only van der Waal forces govern the film evolution. In this case

one can write J(x,t) ¼ Q(t)F1(x) with the time-dependence [see

Fig. 1 (e)]

QðtÞ ¼ 1; 0 # t\ t

0; t # t\ T :

�
(11)

Furthermore, we choose in eqn (10) 41 ¼ 1, Dx1 ¼ 0 and j1 h
j s 0, i.e., the average voltage is given by U0t/T.

(ii) A switching between two potentials of the form of eqn (10)

that are translated in space with respect to each other by half

a period. We choose 41 ¼ 42 ¼ 1, Dx1 ¼ 0, Dx2 ¼ L/2 and j1

¼ j2 h j s 0. In consequence, the average voltage is U0. The

external force fe is constant.
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Fig. 3 Dependence of the mobility [eqn (4)] (a) on the film thickness for

various viscosity ratios (see legend), and (b) on the viscosity ratio for

various film thicknesses (see legend).

Fig. 4 Dependence of the electric disjoining pressure [eqn (18)] (a) on

the film thickness for various permittivity ratios (see legend), and (b)

on the permittivity ratio for various film thicknesses (see legend).

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
(iii) A time-independent symmetric periodic potential J(x)

combined with an external force that is switched periodically

in time. In particular, we choose in eqn (10) 41 ¼ 42 ¼ 1, Dx1
¼ Dx2 ¼ 0, a ¼ L/2 and j1 ¼ j2 ¼ 0. The temporal switching

of the external force is

fe ¼
�f e=

ffiffiffi
q

p
; 0 # t\ t

��f e
ffiffiffi
q

p
; t # t\ T

�
(12)

with q defined below in eqn (14) corresponding to a zero mean

force, i.e.,
Ð T
0
fedt ¼ 0. The measure �f e used in the following to

characterize the strength of the applied force denotes the root-

mean-square (RMS) average of the external force, i.e.,
�f e ¼ ½ð1=TÞ

Ð T
0
f 2e dt�

1=2

The ratchets are characterized by use of two measures, namely

the asymmetry ratio

f ¼ a

L� a
(13)

of the spatial variation Fi(x) and the flashing ratio

q ¼ t

T � t
(14)

of the temporal switching. In the absence of external forces in

each layer zero net transport is expected for a symmetrical ratchet,

i.e., for f¼ 1. For fs 1 the flashing ratchet generates a flow.We

quantify the resulting transport by the mean flow of liquid 1

�j1 ¼ ð1=TLÞ
ðT
0

dt

ðL
0

dx j1ðx; tÞ: (15)

To obtain a minimal set of parameters we introduce the scales

3gms/dk
2
el,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gd=kel

p
, and d for time t, lateral length x, and

vertical length h (and d), respectively. An electrostatic ‘spreading

coefficient’ is defined as kel ¼ 303sU0
2/2d2 and we introduce 3s ¼ 31

+ 32, ms ¼ m1 + m2, 3 ¼ 31/3s and m ¼ m1/ms. For simplicity we

assume Au ¼ �Al and obtain the dimensionless Hamaker

constant A ¼ Al/6pd
3kel. The scale for the external force isffiffiffiffiffiffiffiffiffiffiffiffiffi

gd=k3el

q
. Using identical symbols as before, the resulting dimen-

sionless evolution equation reads:

vth ¼ �vx[Q(h){vx[P(h,x,t) + vxxh] + fe(t)}] (16)

supplemented with eqn (6). The mobility Q is given by eqn (4)

and (5) replacing m1 / m, m2 / 1 � m and d / 1. The dimen-

sionless van der Waals disjoining pressure is

PvdW ¼ A

"
1

h3
� 1

ð1� hÞ3

#
(17)

whereas the dimensionless electric pressure is obtained by re-

placing 31 / 3, 32 / 1 � 3 and d / 1 in eqn (8) giving

Pel ¼
3ð1� 3Þð23� 1Þ

½3ð1� hÞ þ ð1� 3Þh�2
(18)

All results are given in dimensionless quantities. Note that the

chosen scaling keeps the ‘up–down’ symmetry of the system

under the transformation h / 1 � h, 3 / 1 � 3 and m / 1 �
m. This symmetry of the equations reflects the fact that an

exchange of the two fluids does not alter the dynamics of the

system. Note however, that an inclusion of gravity for thick films

would break the symmetry.
1186                             
2.2 Mobility

The mobility Q of a two-layer system differs from the simple h3

dependence known from a one-layer system.47 As shown in Fig. 3

(a) for true two-layer systems (0 < m < 1) the mobility depends

non-monotonically on the film thickness, approaching zero for

h / 0 and also for h / 1. As m approaches 0 or 1, the system

effectively becomes a one-layer system and correspondingly the

mobility takes the values (1� h)3 and h3, respectively. For a fixed

film thickness the viscosity ratio m influences the mobility and

therefore the time scale of the flow as indicated in Fig. 3 (b).

For intermediate values of m we observe a competition between

the influence of the film thickness and the viscosity ratio. For

a small film thickness h the effect of viscosity on mobility

becomes very strong for small m, whereas for large h this effect
                                            



Fig. 5 Linear and absolute stability of the flat liquid–liquid interface for

a two-layer system in a capacitor. The system is unstable with respect to

infinitely small (finite) perturbations in the regions labeled spinodal (bi-

nodal) and stable otherwise. The remaining free parameter is A ¼ 0.001.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
is observed for large m reflecting the above discussed ‘up-down’

symmetry.

2.3 Electric disjoining pressure

Fig. 4 depicts the dependence of the disjoining pressure on the

film thickness and the permittivity ratio. For 3 > 0.5 the disjoin-

ing pressure monotonically increases with increasing film

thickness. The dependence of Pel on the permittivity ratio for

a fixed film thickness is non-monotonic, possessing a maximum

and a minimum at 3 > 0.5 and 3 < 0.5, respectively. Furthermore

Pel switches sign at 3 ¼ 0.5.

2.4 Efficiency measure

To evaluate the feasibility of the ‘wettability ratchet’ for applica-

tions it is very important to determine its capacity to transport

liquid against an external force. In the absence of macroscopic

forces no work is performed and all energy is lost via viscous

dissipation. This is not the case for a thin film ratchet under

load, i.e. fe s 0 in eqn (16). Switching off the ratchet, fe <

0 induces a macroscopic film flow in negative direction.

We define an efficiency measure following the reasoning for

a ratchet in the overdamped regime given in ref. 9. In particular,

the transport under load is characterized by the (mechanical)

energy transport efficiency

neff ¼ �
_Wm

_W d

(19)

where

_Wm ¼ 1

TL

ðL
0

dx

ðT
0

dt ðj1 þ j2Þ fe (20)

and

_W d ¼ � 1

TL

ðL
0

dx

ðT
0

dt ðj1 � j2Þ vxp (21)

represent the mechanical work performed and the interaction

energy consumed per unit time, respectively.

Note that following ref. 52–54 one can define the alternative

efficiency measure:

~neff ¼ �
�j1 ð � vxpþ feÞ þ �j2 ðvxpþ feÞ

_W d

(22)

where _Wd denotes the total dissipation per unit time as before

and

vxp ¼ 1

TL

ðT
0

dt

ðL
0

dx vxp (23)

Performing the integration in eqn (23) using periodic boun-

daries in x, we obtain vxp ¼ 0 and the two definitions eqn (19)

and eqn (22) coincide. For the one-layer case we simply neglect

dissipation in the gas phase and set j2 ¼ 0.

3 Time-independent potentials

Before we embark on the analysis of the proposed electric wetta-

bility ratchets we present in Sections 3.1 and 3.2 basic results for
                                            
time-independent, spatially homogeneous and inhomogeneous

potentials, respectively. This will allow us to better understand

the conditions of maximal flux through the fluid ratchet.

Thereby, all steady state solutions are calculated using contin-

uation methods.55–57 The latter were recently applied to thin film

models, for instance, in the context of sliding drops,58,59 chemi-

cally driven running drops,60 depinning drops on heterogeneous

substrates,61 and open two-layer films.40,62

3.1 Homogeneous system

To study the film behavior for time-independent, spatially homo-

geneous potentials we fix J(x,t) h 1 and A ¼ 0.001. First, we

determine the stability of flat films, i.e. the spinodal and binodal

lines,63–65 in the parameter space spanned by the mean film thick-

ness �h and the permittivity 3. Both are given in Fig. 5 for the two

unstable regions found for 3 > 1/2 and 3 < 1/2, respectively. As

before, the ‘up–down’ symmetry is reflected by the invariance

under the transformation 3 / 1 � 3 and �h / 1 � �h. For 3 ¼
1/2 the system is stable, since the two fluids have identical electri-

cal properties and the resulting electrostatic force is zero. For 3¼
0 and 3 ¼ 1, the permittivity contrast of the two layers becomes

infinite, i.e., the limit does not correspond to a physical situation.

For values of 3 close to the stable configuration the destabilizing

electrostatic forces are very weak and the van der Waals interac-

tions stabilize even micrometric films. Note however, that for

macroscopic films, the stable region becomes very small. In the

spinodal region the film is linearly unstable, i.e. infinitely small

perturbations grow exponentially in time. The linear modes

can be determined by linearizing eqn (1) with respect to small

harmonic perturbations of a homogeneous flat film of thickness

h. One obtains the dispersion relation

b ¼ Q(h)k2(vhP � k2) (24)

where b and k are the growth rate and the wavenumber of the

harmonic perturbation, respectively. The maximum of the

dispersion relation at

km ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2
vhP

r
(25)

corresponds to the fastest growing unstable mode. Fig. 6(a) and

(b) give km and the corresponding growth rate bm ¼ Q(h)km
4/4,
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Fig. 6 Shown are (a) the wavenumber and (b) the growth rate of the

fastest growing linear mode as functions of the permittivity 3 for several

film thicknesses h as given in the legend. The film thickness in (b) is h ¼
0.4. The remaining parameter is A ¼ 0.001.

Fig. 7 Steady drop solutions in a capacitor with spatially homogeneous

voltage. Shown are the dependencies of (a) the amplitude Dh and (b) the

energy difference DF on the period l (i.e. a measure of droplet size) for

various �h as given in the legend. The remaining parameters are A ¼
0.001 and 3 ¼ 0.75.

Fig. 8 Dependencies of (a) amplitude Dh and (b) energy DF of the

steady solutions on the ratchet amplitude j. The remaining parameters

are �h ¼ 0.5, 3 ¼ 0.75, A ¼ 0.001, f ¼ 5, and L ¼ 32. The dashed and solid

lines denote linearly unstable and stable solutions, respectively.

Fig. 9 (a) Selected steady interface profiles and (b) the applied ratchet

potential corresponding to Fig. 8.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
respectively, for several choices of parameters indicating the

strong dependence of the spatial scale and growth rate on the

permittivity ratio and the film thickness. In contrast to the spino-

dal region, to ‘rupture’ a film in the binodal region requires finite

disturbances that exceed an unstable threshold or nucleation

solution. This region is not studied here (but see in this context

ref. 64,65).

In the spinodal region, as soon as the electrical field is applied,

all unstable harmonic modes start to grow exponentially; the one

with the fastest growth rate dominates. However, at larger

amplitudes the nonlinear terms of eqn (1) become important.

They might either accelerate or slow down the evolution in

time, depending on the specific parameter values. For van der

Waals forces as chosen here, the short-time evolution finally

saturates and the profile approaches steady state solutions. These

are, however, on a larger time scale unstable to coarsening. Fig. 7

(a) presents families of steady state solutions obtained by

continuation57 for a fixed permittivity contrast 3. The steady

state solutions can be further characterized by the difference

DF of their energy and the energy of the flat film, i.e.,

DF ¼ ð1=LÞ
Ð L
0
dx f ½hðxÞ� where the energy density f is given by
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f ¼ 1

2
ðvxhÞ2 �

ðh
h

PðhÞ dh (26)

It can be clearly seen in Fig. 7 (b) that the energy of the system

decreases with increasing period, due the reduced cost of the

gradient terms. Note that unstable nucleation solutions are

characterized by DF > 0. In the next section basic results are

given for steady drop solutions for a capacitor with a space-

dependent voltage.

3.2 Heterogeneous system

The solution behavior is strongly influenced by heterogeneous

walls as intensively studied for dewetting on substrates with

wettability patterns. Beside simulations of the time evolu-

tion45,46,66,67 detailed results are available for the steady

states.44,45,68

We apply the techniques used in ref. 45 to the two-layer system

with a heterogeneous voltage. Fig. 8 presents characteristics of

selected steady solutions versus the amplitude j of the heteroge-

neity. For small values of j we find at least three solutions for

a fixed heterogeneity period. The one with the lowest energy

corresponds to the equilibrium solution. Fig. 9 gives the form
                                            



  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
of the heterogeneity and the interface profiles for the three steady

state solutions existing for one set of parameter values. For 3 >

0.5, the liquid with higher permittivity is at the bottom (e.g.

silicon oil on water) and thus the equilibrium solution with the

lowest energy represents a drop of the lower liquid sitting at

the point of maximal voltage.
4 Results for ratchet systems

In the following we analyse the three proposed specific ratchet

types. Sections 4.1 and 4.2 focus on type (i) ratchets in one-layer

and two-layer settings, respectively. The alternative ratchet types

(ii) and (iii) are investigated in Sections 4.3 and 4.4, respectively.

To numerically study the time-dependent ratchet behavior

governed by the dimensionless equations given above in Section

2.1, we employ a Runge–Kutta scheme with adaptive stepsize

control and with periodic boundary conditions.69 Typically, the

system was initialized from a flat film solution with small ampli-

tude perturbations. Then the evolution is followed until initial

transients have decayed and the system has settled onto a time-

periodic cycle whose period corresponds to the switching period

T of the ratchet. Such an ‘equilibrated cycle’ is then used to

determine the mean flux per cycle. If not stated otherwise,

a unique value is obtained for each parameter set, independent

of the initialization of the ratchet and, indeed, the starting

configuration.
Fig. 10 Space–time plots for one temporal period of the evolution of the

film thickness profile for a one-layer film of dielectric liquid in a capacitor

[type (i) ratchet]. Shown is one spatial period during one ratchet cycle of

cycle length (a) T ¼ 1000, (b) T ¼ 3000, and (c) T ¼ 6000, and fixed

flashing ratio q ¼ 1. The remaining parameters are �h ¼ 0.5, j ¼ 0.5, L

¼ 32, f ¼ 5, A ¼ 0.001, 3 ¼ 0.75, m ¼ 1 and fe ¼ 0. The different phases

(1)–(4) indicated in the right of panel (c) are explained in the main text.

The starting time is well after initial transients have decayed.
4.1 One-layer type (i) ratchet

The two-layer model can be simplified assuming that the upper

fluid is a passive gas, i.e. m2 ¼ 0 and 32 ¼ 1, leading to m / 1

and 3 $ 1/2 in the non-dimensional form of the model. The

physical scales are adapted by letting ms / m1. The resulting

film evolution equation has an identical form to eqn (16) but

with Q(h) ¼ h3. The dimensionless pressures PvdW and Pel are

given by eqn (17) and (18), respectively. The system corresponds

to the one-layer ratchet model recently presented in ref. 27. In

one-layer systems one observes a true overall transport of fluid

characterized by the mean flux �j1.

Fig. 10 shows typical examples of the film evolution during

one ratchet cycle for different cycle lengths T and a fixed flashing

ratio q. With an interaction profile F(x) shaped like a sawtooth

skewed to the right [Fig. 1 (d)], each cycle transports liquid to the

right. With increasing T the evolution becomes more complex.

Fig. 10 (c) allows one to distinguish four phases: (1) when the

ratchet is switched on the film is nearly flat but rapidly evolves

a surface instability with a wavelength given approximately by

the corresponding spinodal length. (2) Next, the evolving profile

coarsens in two steps, accelerated by the gradients of the ratchet

potential. (3) In an ideal situation only one drop remains, corre-

sponding to the equilibrium structure of the heterogeneous

wettability pattern produced by the ratchet potential (cf.

Fig. 9). (4) Finally, after switching off the ratchet, the drop

spreads rapidly under the influence of van der Waals forces until

the next cycle starts.

For a shorter cycle length [Fig. 10 (b)] there is no time left for

the second coarsening step to occur as observed in Fig. 10 (c).

For an even shorter period [Fig. 10 (a)] the relaxation without

the electric field (spreading) is not fast enough to reach a nearly
                                            
flat film at the end of the cycle. In consequence, the evolution

does not start with the fastest flat film modes but already with

a mode of system size, i.e., no coarsening is necessary.

The competing influence of the various parameters allows one

to tune the transport properties by adjusting the relative impor-

tance of the phases (1) to (4). As indicated by Fig. 11 the trans-

port is strongest for intermediate film thicknesses. However,

a film of intermediate thickness in a homogeneous electric field

[F(x) ¼ Q(t) ¼ 1] dewets spinodally with a wavelength well

below the spatial period of the ratchet (cf. Fig. 6). Therefore,

the ongoing coarsening interacts with the flow induced by the

spatial asymmetry and leads to a nontrivial dependence of the

mean flux on the film thickness. For very small or large film

thicknesses the stabilizing van der Waals terms are dominating

and the mean flux thus rapidly approaches zero. Note also the

flow reversal, albeit with a small mean flux, for large �h a 0.85.

Further calculations (not shown) demonstrate the monotonic

increase of the mean flux with increasing asymmetry ratio f or
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Fig. 13 The influence of an external load, i.e., the lateral force fe on (a)

the mean flux j�1 and (b) the transport efficiency neff for various mean film

thicknesses �h as indicated in the legend [one-layer type (i) ratchet]. The

remaining parameters are as in Fig. 10 except for T ¼ 500.

Fig. 11 Dependence of the mean flux �j1 on the mean film thickness in the

capacitor for various flashing periods T as indicated in the legend [one-

layer type (i) ratchet]. The remaining parameters are as in Fig. 10.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
amplitude j of the ratchet potential, with other parameters held

constant.

The flashing characteristics of the ratchet have a very

pronounced effect on the transport. Fig. 12 (a) depicts the

non-monotonic dependence of the flow on the flashing ratio q

and period T, respectively. For small q the flow is practically

zero, since the time for dewetting is too short to trap a consider-

able amount of liquid at the spots of high wettability. Increasing

q increases the flux until it reaches a maximum at qz 1. Beyond

the maximum the flow decreases because less and less time

remains for the spreading.

The dependence of the flow on the flashing period T, shown in

Fig. 12 (b), gives a similar overall impression. However, around

the maximum of the flow one notes a particularly interesting

non-monotonic behavior that is related to coarsening. For small

periods the fluid has neither enough time to dewet nor to spread

and the resulting mean transport is small. For large periods both

processes reach the respective equilibrium structure well before

the next switching, i.e. most time is spend waiting and the

mean velocity decreases approximately as 1/T.
Fig. 12 Dependence of the mean flux �j1 on (a) the flashing ratio q (for T

¼ 2000) and (b, c) the flashing period T (for q ¼ 1) for various film thick-

nesses as given in the legend [one-layer type (i) ratchet]. Panel (c) gives the

ratio of the observed mean flux compared to the flux in an ideal ratchet as

explained in the main text. The remaining parameters are as in Fig. 10.
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The numerical results can be compared to estimates of the flux

assuming an idealized setting, i.e., an ideal combination of

ratchet properties and intrinsic length and time scales. Approxi-

mating the intermediate drops at the maximum of the electrical

field as point-like objects, in one cycle of length T all the liquid

moves by a � L/2. For a film of mean thickness �h this implies

a mean flow of �jid ¼ �h (a � L/2)/T, i.e., the mean velocity is y�id
¼ (a � L/2)/T. The maximal spatial asymmetry is given by a ¼
L, i.e. �jmax ¼ �hL/2T and y�max ¼ L/2T. In a real system, however,

several effects keep the mean velocity below the ideal value. As

a demonstration, Fig. 12 (c) shows the ratio of the numerically

determined flux through a realistic ratchet and the idealized

ratchet. For optimal parameters in simulations we reach about

30% of �jid for �h ¼ 0.5 and T z 10 000.

The mean flux and transport efficiency are shown in Fig. 13 (a)

and (b). To obtain an impression of the physical scale, note that

the force scale used for water is 1 � 107 N m�3. The transport

efficiency behaves non-monotonically. It increases for small

loads, reaches a maximum and decreases for larger loads. It

becomes negative when the flow reverses. In the latter case the

ratchet does not perform work against the external force.
4.2 Two-layer type (i) ratchet

Next we investigate the transport for the full two-layer system

with a non-vanishing viscosity in the top layer depending on

various parameters. To characterize the transport properties

we calculate the mean flux in layer 1 (positive when directed to

the right). In the absence of an external lateral force the net

transport summed over both layers is always zero. However,

the average flows in the individual layers are finite in an asym-

metric ratchet setup. They flow into opposite directions—an

ideal setting for applications involving mass transfer.

Fig. 14 shows the dependence of the flux on the mean interface

position, i.e., mean film thickness of the lower layer, for various

viscosity ratios and a fixed permittivity ratio. One finds a broad

optimum for the flux situated roughly between 0.4 < �h < 0.7. It

indicates that for a small viscosity contrast between the two
                                            



Fig. 15 The dependence of the mean flux on the permittivity ratio 3 for

different viscosity ratios as indicated in the legend [two-layer type (i)

ratchet]. The remaining parameters are as in Fig. 10 with T ¼ 2000.

Fig. 16 Transport of entire droplets using a type (ii) ratchet consisting

of two temporally and spatially shifted ratchet potentials. Different

flashing periods result in qualitatively different behavior. Shown are (a)

the ratchet potential and the film thickness for (b) T ¼ 6000, and (c) T

¼ 3000. The remaining parameters are L ¼ 32, m ¼ 1, 3 ¼ 0.75, A ¼
0.001, �h ¼ 0.3, j ¼ 0.5, Dx ¼ L/2, f ¼ 5, q ¼ 1, and fe ¼ 0.

Fig. 14 The dependence of the mean flux on the mean film thickness �h

for various viscosity ratios m as indicated in the legend [two-layer type

(i) ratchet]. The remaining parameters are as in Fig. 10 with T ¼ 2000.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
fluids (0.25 < m < 0.75) the flow is relatively independent of the

film thickness. For small m ¼ 0.1 the same holds true but with

a larger optimal flux. However for large m ¼ 0.9 (m1[m2) the

flux exhibits a pronounced maximum at �hz 0.7. This maximum

is a result of the competition between an increase in the mean

electric disjoining pressure for increasing �h and a parallel

decrease in the mobility. The latter results from filling up the

gap with the more viscous liquid.

Fig. 15 depicts the dependence of the flux on the permittivity

ratio 3 for the case where the capacitor is filled with the two

liquids in equal parts (�h ¼ 0.5). Direction and magnitude of

the flux strongly depends on 3. Keeping the sum of the relative

permittivity ratios, 3s, constant (corresponding to a fixed time

scale) flow extrema for flow in opposite directions are found at

about 3 ¼ 0.15 and 3 ¼ 0.85, respectively. For similar permittiv-

ities of the two liquids the flux approaches zero. The flux reversal

occurs precisely at 3 ¼ 0.5.

The dependence of the average flux on the viscosity ratio m

(not shown) does not exhibit any unexpected features. It essen-

tially follows the dependence of the mobility on m given above

in Fig. 4.

As for the one-layer system we also investigated the depen-

dence of the flow on the flashing period and the flashing ratio

(not shown). The behavior resembles that of the one-layer system

shown in Fig. 12. For a fixed flashing ratio q ¼ 1 the optimal flux

regime occurs at T z 103.104 depending on the particular

viscosity contrast. The optimal flux is lowest for a small viscosity

contrast (m z 1/2) and is also shifted towards larger flashing
                                            
periods. Accordingly, the flux depends non-monotonically on

the flashing ratio. For small q the magnitude of the mean flux

increases with increasing q until it goes through a maximum at

values 0.1 < q < 1 depending on the viscosity contrast and

then decreases with increasing q. The optimal flux for a small

viscosity contrast is shifted towards lower flashing ratios and

has a magnitude considerably lower than for a high viscosity

contrast.

4.3 Droplet transport in a type (ii) ratchet

The transport with a type (i) flashing ratchet discussed up to here

relies on a deterministic phase (ratchet on, dewetting) and

a subsequent diffusive phase (ratchet off, spreading). This setting

already guarantees a reliable transport with a relatively small

exposure of the liquid to the electric field, since the flux

maximum occurs at a flashing ratio where the ratchet is actually

off most of the time. However, if heating of the liquid does not

pose a problem, one might increase the transport efficiency by

switching between spatially shifted ratchet potentials [type (ii)

ratchet, cf. Section 2.1]. A further advantage of a type (ii) ratchet
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Fig. 17 Flux depending on the flashing period for two alternating

ratchet potentials [type (ii) ratchet] for various film thicknesses as indi-

cated in the legend. The transition from zero to high flux is accompanied

by a non-stationary flux regime marked by the shaded region between the

thin dashed lines. The parameters are as in Fig. 16.

Fig. 18 The dependence of the flux on the external force for a type (iii)

ratchet at the limit of large temporal periods, i.e., neglecting transients

during switching. Results are given for two flashing ratios (see legend).

The parameters are L ¼ 32, ji ¼ 0, 4i ¼ 1, m ¼ 1, 3 ¼ 0.75, A ¼ 0.001,
�h ¼ 0.5.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
lies in the possibility of transporting entire droplets using appro-

priate temporal and spatial shifts, like T/2 and L/2, respectively.

Fig. 16 gives two examples for such a transport. For sufficiently

long flashing periods the system closely approaches the equilib-

rium state. This implies that most liquid is gathered near the

point of highest wettability before the potential is switched.

This can result in a nearly continuous transport of the droplets

as in Fig. 16 (b). If, however, the flashing period is too short,

virtually no liquid is transported. As illustrated in Fig. 16 (c),

the droplets only slide back and forth in an oscillatory manner.

The transition between the continuous ‘sliding’ and ‘oscilla-

tory’ regime is quite dramatic. Fig. 17 shows the dependence of

the flux on the flashing period. One finds, for instance, that for

flashing periods T < 3000 transport is extremely small (essen-

tially only through the ultrathin wetting layer). However, it

increases with the flashing period. For T > 5000 where droplets

slide along as in Fig. 16 (b), transport is high but decreases with

the flashing period. In between the two regimes the ratchet

behavior is very complex. In the shaded region in Fig. 17 numer-

ical simulations over 400 flashing cycles do not converge to

a time-periodic behavior, indicating that the transition regime

is highly unpredictable. To identify the optimal flux regime for

practical applications will therefore require some fine-tuning.

Despite this considerable drawback, note that the height of the

flux maximum in dependence of the flashing period increases

about 10 fold for �h ¼ 0.5 [cf. Fig. 12 (b)]. For small and medium

film thickness the transport direction is, as expected from the

observations of the type (ii) ratchet, directed to the right.

However, for large film thicknesses one observes a flux reversal

and transport of liquid 1 is directed to the left (�h ¼ 0.7 in

Fig. 17). In this regime drops of liquid 1 are rather large and

reach the dimensions of the spatial ratchet period. We conjecture

that in this case it is the exact shape of the ratchet potential that

is decisive for the transport direction. This question requires

further studies.

4.4 Type (iii) ratchet—transport by a temporal asymmetry

It is known that even for systems with a reflection-symmetric

periodic potential, transport can be induced by an asymmetry

in the temporal driving (see ref. 70 and references therein).

This is possible if the (asymmetric) stochastic forces exceed the
1192                             
(symmetric) deterministic forces. Here, we investigate the possi-

bility of employing such a ‘temporal ratchet’ to transport fluid in

the Stokes limit. A homogeneous external force is used that

oscillates in time, but has a zero mean value. The exact definition

is given in Section 2.1 as type (iii) ratchet. The temporal asymme-

try is described by the flashing ratio q [eqn (14)]. For q ¼ 1 the

oscillations in fe are symmetric resulting in a zero mean flux.

In contrast to the type (i) and (ii) ratchets analysed up to here,

we choose the most simple setting of a spatially homogeneous

voltage, i.e., ji ¼ 0, and 4i ¼ 1. To gain some understanding

of this type of ratchet we first regard the limiting case of a large

flashing period for the external force as compared to the intrinsic

time scale of the film dynamics. Within this limit one may ignore

transients due to the switching and assume that switching the

force simply switches between two well known states of

stationary sliding drops, as analysed, for instance, in ref. 58,71.

Fig. 18 gives the corresponding dependence of the flux on the

magnitude of the external force. These results were obtained

using continuation methods.57 Obviously, for �f e ¼ 0 the flux is

zero. However, increasing the external force from zero results

in a non-zero flux. The flux is a direct consequence of the

nonlinear relation between the sliding velocity of the droplets

(or mean flow for a modulated film) and the external driving

force (e.g., cf. Fig. 7 in ref. 58). For large forces the flow

decreases because the stationary solutions do not correspond

to sliding drops anymore. A force dependent dynamic wetting

transition leads to film flow modulated by surface waves.58

Identical fluxes as in Fig. 18 should be obtained for systems

including transients, i.e., in time simulations for finite temporal

periods T, in the limit T / N. Evidence is given in Fig. 19

that shows the dependence of the flux on a small RMS external

force for various flashing periods. One can clearly see that the

curve for T ¼ 10 000 has well approached the limiting curve

that corresponds to T/N. For all curves of Fig. 19 the flashing

ratio is q ¼ 5, i.e., the absolute value of the external force is

smaller in the first part of the flashing cycle than in the second.

The force is positive in the first part of the cycle and negative

in the second one. Taking this into account, the positive direction

of the transport indicates that the slope of the curve y(fe) (mean

velocity on external forcing) decreases with increasing fe. This

agrees well with results obtained for the velocity of droplets

using, however, a different disjoining pressure (Fig. 7 in ref.
                                            



Fig. 20 The flux depending on the flashing period for different magni-

tudes of the external force as indicated in the legend [type (iii) ratchet].

Parameters are as in Fig. 18 with q ¼ 5.

Fig. 21 The flux depending on the mean film thickness for different

flashing periods as indicated in the legend [type (iii) ratchet]. The dashed

line represents the flux for T /N. Parameters are as in Fig. 18 with q ¼
5 and �f e ¼ 0.05.

Fig. 19 The flux depending on the external force for different flashing

periods as indicated in the legend [type (iii) ratchet]. The dashed line

represents the flux for T / N. Parameters are as in Fig. 18 with q ¼ 5.

  
  

   
  

  
  

  
  

  
   

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
                   
58). With increasing flashing period T the flux increases until it

approaches the limiting value for infinitely large periods.

Studying next the dependence of the flux on the flashing period

T we give in Fig. 20 corresponding curves for various values of

the external force. For small periods one finds a rather unpredict-

able behavior of the ratchet because the flux is governed by tran-

sients. However, we see indications for the existence of

a threshold value of T, that depends on the external force. Below

the threshold the flux is negligible. For example, at �f e ¼ 0.1 the

threshold is at T z 800.1000.

Above the threshold the flux increases strongly with T and is

clearly directed to the right. Curiously, results for the stationary

regimes shown can depend strongly on the method that is used to

arrive at the parameter values. Starting, for instance, at small

flashing periods T, increasing T results in a smaller flux than

starting with a stationary cycle with large T and decreasing T

gradually. We emphasize that the two approaches result in two

different stationary cycles beyond any transient. This intriguing

hysteresis between different space- and time-periodic solutions

for the same flashing ratchet system is related to the dynamic

wetting transition with hysteresis discussed in ref. 58.

As before one can understand the dependencies regarding the

limit T / N, i.e., ignoring transients due to switching: taking,

for instance, Fig. 11 in ref. 58 one notices at intermediate driving

forces a hysteresis between two stationary states corresponding

to sliding droplets and small amplitude surface waves. The

multi-valued stationary cycles found here can arise if one of

the ‘switching forces’ (�f e/Oq or �f eOq) lies in the hysteresis region

of the stationary states.
                                            
Both, the threshold behavior and the multi-valuedness can

also be appreciated in Fig. 21 giving the dependence of the flux

on the mean film thickness. Here, the threshold behavior is

very pronounced. For small film thicknesses below �h z 0.35

the flux is zero. The flat film is stable and the flux scales linearly

with the external force (Poiseuille flow). Without nonlinearity in

the force–velocity relation no transport can be generated.

However, for thicker films the homogeneous film becomes

unstable, the flux depends in a nontrivial nonlinear way on the

force and transport is generated. Similar but less pronounced

behavior is seen for thicker films at �h z 0.8. Note, finally, that

the multi-valuedness is most pronounced for T ¼ 2000 and could

not be found at large T. This agrees well with the results given in

Fig. 20 where one of the respective branches ends at some value

of T.
5 Conclusions

We have presented a thin film model that allows us to study the

behavior of a general class of ‘wettability ratchets’ in various

specific settings. The objective has been to investigate the

behavior of ratchets that can be used to transport a continuous

medium in contrast to normally investigated ratchets that can

be used to transport particles or molecules within a continuous

carrier fluid without transporting the fluid.

After proposing the general model we have focused on an elec-

trical dewetting mechanism based on the effective force a static

electric field exercises on a liquid–liquid interface between two

dielectric liquids. Out of the many ratchet types one can

construct on this basis we have focused on (i) an on–off ratchet

with a constant lateral force resulting in a dewetting–spreading

cycle, (ii) a ratchet switching between two shifted potentials

that shows a transition between oscillating and traveling drops,

and (iii) a flashing, external force ratchet. We have shown that

all of the proposed ratchet mechanisms can be used to produce

a macroscopic transport in a liquid film with a free surface or

in a two-layer system with a free interface. However, the charac-

teristics of the transport vary strongly.

For a simple type (i) ratchet with a flashing asymmetric poten-

tial, we have identified the regimes of maximum transport by

varying the spatial and temporal properties of the ratchet poten-

tial. It was found that transport can be generated with a high
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reliability. For a given spatial form of the ratchet potential and

combination of the liquid properties in the two layers the trans-

port direction does not change, independent of the temporal

switching of the ratchet or a variation in the proportions of

the two liquids. On the one hand, this seems disappointing, since

the direction of transport cannot be changed quickly, as required

for some applications. On the other hand, however, this highly

deterministic behavior does not require extensive fine-tuning to

generate controlled directed transport.

For aone-layer ratchet, it had alreadybeen shownbefore,27 that

5cS silicon oil is transported by the ratchet on time scales of 10 to 1

� 103 s, i.e., the process is rather slow. Water, however, can be

rapidly transported on time scales from 1 � 10�5 to 1 � 10�3 s.

The advantage of the two-layer ratchet lies in the fact that the

high permittivity and relatively low viscosity of water can be

used to drive a liquid with a permittivity close to 1 and a high

viscosity, as e.g. silicon oil. Re-visiting the time scales, one finds

t0 ¼
3gms

dkel
� ms

32s
(27)

The quadratic dependence of the time scale on 3s can be used

to drive liquids of high viscosity but low permittivity. The

increase of the effective viscosity ms is well compensated by the

influence of 3s. Note, that also very thin layers are effectively

driven by the other (thick) layer. In this sense, a two-layer system

is more versatile than a one-layer system.

An important advantage of the type (i) ratchet lies in the fact

that the potential is switched off most of the time, since maximal

transport was found for flashing ratios q < 1. This is an impor-

tant issue if heating of the sample or a long exposure to an elec-

tric fields cause problems. However, for samples where this is not

the case, transport can be sped up by utilizing a type (ii) ratchet,

which switches between two shifted ratchet potentials. The latter

permits transportation of entire droplets as individual entities

whereas for a type (i) ratchet the dewetting–spreading cycle

results in a flow of liquid through the droplets but not a motion

of droplets. However, the more complex setup of a type (ii)

ratchet, may also require a more extensive fine-tuning, because

the transport direction depends even on the layer thicknesses

in the capacitor.

In the last example we have explored a type (iii) ratchet that

generates transport by switching the zero mean external force

in an otherwise symmetric environment. Its working principle

is based on a nonlinear dependence of flow or sliding velocity

on the driving force, i.e., it does not work for flat films. Indeed,

it works very well in droplet or surface wave regimes. This effect

can be used to generate transport in a reliable way, where the

transport directions can be easily predicted. However, problems

with predictability may be caused by hysteresis effects in param-

eter regions where the system allows for several stationary states

like sliding drops and surface waves. In all cases studied, the

hysteresis only affects the magnitude of the flux, but not its direc-

tion. A physical realization of the external force could be a time-

dependent, macroscopic pressure gradient or a time-periodic

variation of the inclination angle of the substrate. In contrast,

droplets on substrates with a global wettability gradient move

under vibration16,17 not because of a ratchet effect, but because

the vibration facilitates depinning at local heterogeneities. In

other words, there the transport is induced directly by the
1194                             
substrate asymmetry, whereas the external force of the type

(iii) ratchet directly fuels the transport. No local or global

substrate asymmetry is necessary.

In conclusion, we have proposed a physical system that allows

to investigate an entire ‘toolbox’ of ratchets. All of them generate

transport of small liquid volumes on small scales on feasible time

scales.
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