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The reduced 1D Poisson–Nernst–Planck (PNP) model of artificial nano-
pores in the presence of a permanent charge on the channel wall is studied.
More specifically, we consider the limit where the channel length exceed
much the Debye screening length and channel’s charge is sufficiently small.
Ion transport is described by the nonequillibrium steady-state solution of
the PNP system within a singular perturbation treatment. The quantities,
1/λ — the ratio of the Debye length to a characteristic length scale and ǫ
— the scaled intrinsic charge density, serve as the singular and the regular
perturbation parameters, respectively. The role of the boundary conditions
is discussed. A comparison between numerics and the analytical results of
the singular perturbation theory is presented.

PACS numbers: 05.60.Cd, 05.40.Jc, 81.07.De

1. Introduction

In many physical situations an exact solution of the full problem could
not be obtained, so that various asymptotic and perturbative techniques
must be used. Moreover, in many cases, even regular perturbation analysis
is useless, and singular perturbation methods must be applied.

An example of such a case constitutes a boundary-layer problem. It is
a 1D differential-equation-boundary-value problem on the unit interval for
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which the highest derivative of the differential equation is multiplied by a
small parameter δ:

δy′′(x) + c(x)y′(x) + d(x)y(x) = f(x) , (1)

with the boundary conditions

y(0) = a, y(1) = b . (2)

This boundary-value problem is singular because in the limit δ → 0 one of
the solutions abruptly disappears and the limiting solution is not able to
satisfy the two boundary conditions in (2). This comes from the fact that
by setting δ = 0, the order of the differential equation is reduced by 1. One
of the method to solve the boundary-value problem (1) and (2) is to look
for solutions in the form of series expansion in powers of δ. In order to
construct an uniformly and globally valid solution, the interval 0 < x < 1 is
decomposed into two kinds of regions, an outer region, in which the solution
varies slowly as a function of x, and an inner region or boundary-layer region,
in which the solution varies rapidly as a function of x. A boundary-layer
region is a narrow region those thickness is typically of order δ or some
power of δ [1]. One of such boundary value problem is the 1D steady-state
PNP system with non-vanishing permanent surface charge on the walls of a
nanopore.

Siwy and co-workers reported [2,3] that ion transport in nanopores with
asymmetric fixed charge distributions is characterized by such interesting
phenomena as ion current fluctuations, rectification, and pumping. For
this reason, we analyse the boundary value problem of the one-dimensional
steady-state PNP system with non-vanishing permanent surface charge.
Since the conical geometry is experimentally relevant, we consider an uni-
formly charged conical pore.

The flow of ions through the nanopore caused by an externally applied
electric field is analyzed by means of the Nernst–Planck equations together
with the Poisson equation, in a self-consistent manner. We are interested in
ion transport phenomena occurring in a very long channel i.e. in the limit
where the channel length exceed much the channel radii. It justifies the
approximation of the channel as a one-dimensional object [4].

The aim of the paper is to show an application of the singular perturba-
tion theory to such one-dimensional PNP systems where the following quan-
tities — the ratio of the Debye length ξD to the channel length L, denoted as
1/λ ∼ ξD/L, and the channel surface charge σ — serve as the perturbation
parameters. The system can be viewed as a singularly perturbed problem
in 1/λ and a regularly perturbed in ǫ that denotes a dimensionless scaled
surface charge density. In the long channel limit, we analyzed the leading



A Singular Perturbation Approach to the Steady-State . . . 1139

term in 1/λ, while ǫ is considered as the regular expansion parameter. In
our approach, we make use of above-described method to construct an uni-
formly and globally valid solution by calculating separately the outer and
inner solutions and matching them then in a smooth manner.

2. Ion transport

2.1. One dimensional Poisson–Nernst–Planck (PNP)

In this paper we study ion transport through a long conical nanopore
of the length L = 1 (scaling of the z-coordinate by the channel length L,
whereas the radial coordinate r is scaled by the small opening radius R(0))
with uniformly charged wall, cf. Fig. 1. The ion flow through the charged
conical nanopore could be driven by the ion concentration gradients and by
the electric field modeled together by means of the electrodiffusion equation.
Diffusion in orthogonal direction of the pore is confined to a channel of
variable area of πR2(z) (see Fig. 1). The electric field inside the pore is in
turn governed by an applied field and by the ion concentrations through the
Poisson equation. We are interested in the non-equilibrium steady-state ion
flux and electrical current which can persist either due to applied voltage or
due to a concentration gradient.

σ

σ
z0

r

R(z)
1

Fig. 1. Schema of the section of the conical channel. The channel’s wall is uniformly

charged with surface charge density σ. The local radius of the cone R(z), is given

by Eq. (4).

One can reduce the problem from 3D to 1D assuming instantaneous
equilibration in the transverse direction

c̄(z, t) ≈ c(z, r, t)A(z) , Φ(z, t) ≈ Φ(z, r, t) , (3)

where
A(z) = πR2(z) , R(z) = (1 + γz) (4)

with γ = R(1) − 1 denoting a scaled slope of the cone’s radius, with the
scaling of the radial coordinate r by R(0).
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The 3D PNP equations for steady state ion currents IK+ and ICl− thus
become in the 1D approximation (cf. Ref. [4] and Appendix A):

−IK+ =
d
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cK+,L = cCl−,L = cL, and cK+,R = cCl−,R = cR. Furthermore, the differ-
ence of dimensionless potentials across the nanopore is related to the ap-
plied voltage U (in units of Volts) by Φ(0) − Φ(1) = eU/(kBT ), yielding
U = −kBTΦ(1)/e.

3. Singular perturbation study

3.1. Perturbation parameters

The corresponding system contains two small parameters. The first one
1/λ is related to the ratio of the Debye length to a characteristic length scale.
Assuming that λ → ∞ we search for an approximate solution of equations
(5) and (6) in the form

Φ(z) = Φ
(0)(z) +

1
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reflecting the charge neutrality in the interior, and

−I
(0)
K+ =

d
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3.3. The boundary layer solutions

Let δ(1/λ) be the width of the boundary layer which is a function of
1/λ. The problem is rescaled near z = 0 by setting ζ = z/δ(1/λ). It has
been found that δ(1/λ) = 1/λ and for z in the boundary layer, ζ = O(1).
Thus, we introduce the stretched coordinate

ζ = λz , (19)

where ζ ∈ [0,+∞) and express the concentrations and the electric potential
in terms of this coordinate as

cK+

(

ζ
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The upper indices correspond to the order of the expansion in 1/λ. The
limit expansions are obtained by holding ζ and χ fixed and letting 1/λ → 0.

In turn, each of the p(0)(ζ), n(0)(ζ), φ(0)(ζ) functions is written as an
asymptotic series in ǫ, namely,

p(0)(ζ) = p
(0)
(0)(ζ) − ǫp

(0)
(1)(ζ) + . . . , p̃(0)(χ) = p̃

(0)
(0)(χ) − ǫp̃

(0)
(1)(χ) + . . . ,

n(0)(ζ) = n
(0)
(0)(ζ) − ǫn

(0)
(1)(ζ) + . . . , ñ(0)(χ) = ñ

(0)
(0)(χ) − ǫñ

(0)
(1)(χ) + . . . ,

φ(0)(ζ) = φ
(0)
(0)(ζ) − ǫφ

(0)
(1)(ζ) + . . . , φ̃(0)(χ) = φ̃

(0)
(0)(χ) − ǫφ̃

(0)
(1)(χ) + . . . .

(25)
The lower indices refer to the order of the series expansion in ǫ. In the
leading order functions in 1/λ the transport equations read

0 =
d
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n(0)(ζ) = n
(0)
(0)(0)e

φ
(0)
(0)

(ζ)
{

1 − ǫφ
(0)
(1)(ζ) + ǫ2

(

φ
(0)
(2)(ζ) +

1
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where the upper sign refers to K+ ions and the lower one to Cl−. To find
the values of φ(0)(∞), we make use of

1
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4. The Donnan boundary conditions

Approximatively, one can impose the so-called Donnan equilibrium
boundary conditions at the channel ends [8], reading:

c̄Don
i (z{L,R}) =

103πR(z{L,R})
2
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when I
(0)
{p,n} → 0 (the equilibrium condition) tends to the Boltzmann distri-

bution:

p(0)(ζ) → p(0)(0)e−(φ(0)(ζ)−φ(0)(0)) , (43)

n(0)(ζ) → n(0)(0)e(φ(0)(ζ)−φ(0)(0)) . (44)

It gives us the Donnan equilibrium condition for a given potential drop.
On the other hand, it is known from the matching procedure that p(0)(ζ),

n(0)(ζ), φ(0)(ζ) when ζ → +∞ must tend to the outer expansions c̄
(0)
K+(z),

c̄
(0)

Cl−
(z), c

(0)

Cl−
(0), Φ

(0)(0). This means that for ζ → +∞ the condition of
local electroneutrality is fulfilled. And then we end up with series given by
Eqs. (40).

In turn, the outer solutions c̄
(0)
K+(z), c̄

(0)

Cl−
(z), Φ

(0)(z) (given by (37) and

(36)) tend to the Donnan asymptotic series (40) for z = z{L,R}. Thus, on
the basis of Theorem 1 and the matching procedure, one can formulate

Theorem 2 If 1/λ → 0, then the outer expansions c̄
(0)
K+(z), c̄

(0)

Cl−
(z),Φ(0)(z)

approximate the solutions of the 1D-PNP system (Eq. (6) and (5)) with
the Donnan boundary conditions satisfying the local electroneutrality at the
boundaries.

Proof:
The boundary layer solutions calculated with the Donnan boundary con-

ditions (40) (after inversion to normal coordinate z) are restricted to the
points at the boundaries approximated by these series (40).

The above-presented theorem was already demonstrated in [9], in which
a singular perturbation expansion was also used to derive the Donnan po-
tential. We recall this finding, however, in a different manner. One can
conclude that in the limit where the channel length exceeds much the De-
bye screening length, the Donnan jumps at the channel borders can be safely
used instead of the rigorous treatment of the boundary layers of finite width.

Moreover, on the basis of the matching conditions given by (32) and
Theorem 1, we notice that unknown constants (present in the outer approx-
imation), in particular, the total flux J (0) and the electric current I(0), in
both discussed cases of boundary conditions constitute the same series in ǫ.
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5. Results

5.1. Perturbation vs numerics

We shall present a comparison of the analytical results calculated by
the above-described singular perturbation method with numerical solutions.
The 1D PNP system (equations (5)–(6)), with boundary conditions (equa-
tions in (9)), is integrated numerically by making use of a collocating method
with adaptive meshing [10]. We choose the following set of parameters:
R(0) = 3 nm, R(1) = 6.616 nm, L = 200 nm, γ = 1.2055, the room tem-
perature (T = 298 K), the relative dielectric constant of water ǫw = 80,
and the diffusion coefficients of the ions DK+ = DCl− = 2 × 109 nm2/s [6].
For such a channel, the value of the first perturbation parameter 1/λ is
about 10−2. The square of this parameter is sufficiently small. However,
this is not enough to provide a good approximation to the PNP system with
a varying value of the surface charge density which is not that small in the
reality. To test the limits of regular perturbation method with respect to
the second expansion parameter ǫ, we consider the two different cases (a)
σ = −0.02 e/nm2, and (b) σ = −0.1 e/nm2. The first one corresponding to
ǫ = 0.12 is well within the perturbative treatment. For the second one with
ǫ = 0.6 the perturbative treatment is expected to fail, but it might work
occasionally.

5.1.1. Uniformly valid approximation

The electric potential and concentration profiles for both the perturba-
tion and the numerical solution are shown in Fig. 2, Fig. 3, and Fig. 4. It
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Fig. 2. (Color online) Potential profile Φ(z) for cL = cR = 0.1 M. Calculations are

done for Φ(0) = Φ(L) = 0 V (a) and Φ(0) = 0 V, Φ(L) = 1 V (b). Solid line and

squares: σ = −0.02 e/nm2, dashed line and circles: σ = −0.1 e/nm2. Symbols

in all cases stands for numerical solution, lines represent perturbation theory (first

order in ǫ). Insets depict closer look into left and right boundary layers.
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Fig. 3. (Color online) Concentration profile cK+(z) for cL = cR = 0.1 M. Calcula-

tions are done for Φ(0) = Φ(L) = 0 V (a) and Φ(0) = 0 V, Φ(L) = 1 V (b). Solid

line and squares: σ = −0.02 e/nm2, dashed line and circles: σ = −0.1 e/nm2. Sym-

bols in all cases stands for numerical solution, lines represent perturbation theory

(first order in ǫ). Insets depict closer look into left and right boundary layers.
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Fig. 4. (Color online) Concentration profile cCl−(z) for cL = cR = 0.1 M. Calcula-

tions are done for Φ(0) = Φ(L) = 0 V (a) and Φ(0) = 0 V, Φ(L) = 1 V (b). Solid

line and squares: σ = −0.02 e/nm2, dashed line and circles: σ = −0.1 e/nm2. Sym-

bols in all cases stands for numerical solution, lines represent perturbation theory

(first order in ǫ). Insets depict closer look into left and right boundary layers.

is clearly shown that the agreement with the analytical result (36), and (37)
is getting worser with the increasing value of σ. Moreover, the discrepan-
cies between theory and numerics are more significant for growing absolute
value of voltage. Figures 3–4 illustrate the situation in which the perturba-
tion approximation starts to miscarry for the charge density σ = −0.1 e/nm2

in the non-equilibrium situation when the transmembrane voltage reaches
the value of 1 V. Note, in that case the perturbation theory also provides
unphysical negative concentrations.
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However, to assess the accuracy of power series in ǫ, we shall systemati-
cally compare the approximations including higher orders of this parameter
with numerical solutions. Such a process for the uniformly valid solutions of
singular perturbation theory (including boundary layer solutions) is possible
only up to second order in ǫ. Nevertheless, on the basis of Theorem 2, one
can note that the outer expansions approximate well the solutions of the
1D-PNP problem with the Donnan boundary conditions. One can obtain
these perturbative expansions for any order in ǫ.

5.1.2. Outer approximation

In the non-equilibrium situation, we examine the electric potential profile
for ǫ = 0.6 (Fig. 2(b)), and the concentration profile for ǫ = 0.12 (Fig. 3(b)).
Both approximations (in the first order of ǫ) seem to show not too large dis-
crepancy from the numerical solution. However, if we plot the same expan-
sion in Eq. (36) with only one more term in the perturbation series, we notice
a considerable deviation from the numerical results when the transmembrane
voltage becomes sufficiently large: U = +1V, or U = −1V (Fig. 5). This
confirms that for the charge density σ = −0.1 the perturbation method fails
totally. However, for a smaller charge density σ = −0.02 the perturbation
theory works as demonstrated in Fig. 6, where the perturbation expansion
was calculated up to the fourth order in ǫ. One can notice that the agree-
ment with numerics is getting better with growing order of the perturbative
expansion. Then, it yields very accurate approximations in all aspects: the
potential and concentration profiles, the total flux, and the electric current
as well.
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Fig. 5. (Color online) Potential profile Φ(z) for cDon

K+, L
= 156 mM, cDon

K+, R
= 125

mM, cDon

Cl−, L
= 87.3 mM, cDon

Cl−, R
= 83.6 mM, σ = −0.1 e/nm2. Calculations are

done for Φ
Don(0) = −0.014 V, Φ

Don(L) = 0.994 V (a) and Φ
Don(0) = −0.014 V,

Φ
Don(L) = −1.006 V (b). We show the perturbation solution in first order (in ǫ):

dashed line and second order: dotted line. The numerical solution is represented

by symbols. Insets depict closer look into left and right boundary layers.
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Fig. 6. (Color online) In the left panel (a) we show the concentration profile cK+(z)

for σ = −0.02 e/nm2, and the Donnan b. c.: cDon

K+,L
= 112 mM, cDon

K+,R
= 105 mM,

cDon

Cl−, L
= 131.8 mM, cDon

Cl−, R
= 103.8 mM, Φ

Don(0) = −0.003 V, Φ
Don(L) =

0.999 V; and in the right panel (b) we show the I − U dependence. We show

the perturbation solution in first order (in ǫ): solid line, second order: dashed

line, third order: dotted line, and fourth order: dash-dotted line. The numerical

solution is represented by symbols.

5.2. Rigorous b. c. vs the Donnan b. c.

In Fig. 7, we compare the rigorous boundary layer solution with one
given by the Donnan potential jump approximation. The both agree well
except from the behavior in the boundary layer, where the “Donnan” solution
makes naturally a jump because it corresponds to the approximation of the
boundary layer of zero-width. Note the agreement with the Theorem 2: the
outer solutions agree very well.
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Fig. 7. (Color online) Potential profile Φ(z) for cL = cR = 0.1 M, σ = −0.02

e/nm2. Calculations are done for Φ(0) = Φ(L) = 0 V (solid line) and corresponding

Donnan b. c. Φ
Don(0) = −2.9 mV, ΦDon(L) = −1.3 mV (dashed line) (a); Φ(0) = 0

V, Φ(L) = 1 V (solid line) and corresponding Donnan b. c. Φ
Don(0) = −0.003

V, Φ
Don(L) = 0.999 V (dashed line) (b). We show the perturbation solution in

first order (in ǫ). Symbols in all cases stands for numerical solution, lines represent

perturbation theory.
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In Fig. 8, we also compare the numerical solutions for the electric current
in the case of the rigorous boundary conditions and in the case of the cor-
responding Donnan boundary condition approximation. The both solutions
agree very well.
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Fig. 8. (Color online) Numerically obtained current voltage (I −U) characteristics

for σ = −0.02 e/nm2. Calculation are done for: rigorous b. c. (solid line) cL =

cR = 0.1 M and corresponding Donnan b. c. (squares) cDon

K+,L
= 112 mM, cDon

K+,R
=

105 mM, cDon

Cl−, L
= 131.8 mM, cDon

Cl−, R
= 103.8 mM.

6. Discussion

The studied 1D PNP model describes ion flows in the conical geometry
in presence of a permanent charge on the channel wall. The dimensionality
reduction from 3D to 1D results in both an entropic potential asymmetry
and the appearance of an inhomogeneous, asymmetric 1D charge density. In
this paper, we presented the details of the singular perturbation approach to
the 1D PNP system including these profound effects. In another paper [4],
these results are used further to find an analytical expression for the electric
current and to quantify the rectification effect. When the surface charge
density is small enough, the obtained theoretical expressions are expected to
provide good approximations for the electric potential profile, concentrations
of ions, the total flux, as well as for the electric current.

Although such weakly charged channels seem to be less interesting from
the experimental point of view, they are important model systems [4]. In par-
ticular, based on our analytical solutions, complemented also by the numer-
ical analysis, we studied and compared two different boundary conditions:
the rigorous boundary conditions and the so-called Donnan boundary condi-
tion. The heuristic assumption of the Donnan equilibrium at the boundaries
of the channel [8] in a highly non-equilibrium situation (current rectification)
should and must be questioned. However, our analysis clearly showed that
when the channel length exceeds much the Debye screening length, i.e. in the
limit 1/λ → 0, the use of the Donnan boundary conditions is well justified.
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Appendix A

1D model reduction

Let us start from the 3D electro-diffusion equation

∂ci(~r, t)
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Appendix B

The divergence theorem

The definition of the divergence of a vector ~u is

∇ · ~u = lim
V→0

1
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Appendix C

The outer solutions — general expressions

Zeroth order in ǫ

In zeroth order in ǫ, the solution reads

c
(0)
(0),Σ (z) =





−J
(0)
(0)
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And the equation for the potential has the form

Φ
(0)
(1)(z) =

∫

dz
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with

Bm(z) = J
(0)
(m) −

d



A Singular Perturbation Approach to the Steady-State . . . 1159

• I(0)
(0) (z) = πI

(0)
(0)

∫

dz/
(

R(z)c
(0)
(0),Σ (z)

)

• J
(0)
(1)

= (1 + γ)
(

I(0)
(0)

(0) − I(0)
(0)

(1)
)

• C
(0)
(1) = J

(0)
(1) /γ − I(0)

(0)(0)

• c
(0)
(1),Σ (z) =

(

I(0)
(0)(z) − J

(0)
(1) / (γR(z)) + C

(0)
(1)

)

R2(z)

• Φ
(0)
(1)(z) (Eq. (C.7))

• I
(0)
(1) = solve

(

Φ
(0)
(1)(0) − Φ

(0)
(1)(1) + φ̃

(0)
(1)(−∞) − φ

(0)
(1)(∞), I

(0)
(1)

)

• E
(0)
(1) = solve

(

Φ
(0)
(1)(0) − φ

(0)
(1)(∞),E

(0)
(1)

)

• I(0)
{(0),...,n−1}(z)

— for n = 2: Eq. (C.9)

— for n ≥ 3: Eqs. (C.12) and (C.13)

•

J
(0)
(n) = (1 + γ)

(

I(0)
{0,...,n−1}(0) − I(0)

{0,...,n−1}(1)

+
2



1160 I.D. Kosińska et al.

we make use of the series expansion of the Donnan equilibrium conditions
(40) at zL and zR, respectively (see Theorem 1 in Sec. 4).
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