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We consider the deterministic escape of a chain of harmonically coupled
units from a metastable state over a cubic potential barrier. The under-
lying dynamics is conservative and noise-free. The supply of a sufficient
total energy transforms the chain into the nonlinear regime from which
an initially, nearly uniform lattice configuration becomes unstable, yielding
a redistribution of energy. In an early stage of the dynamics, we estimate
the degree of energy exchange enabling the coupled system to form strongly
localized modes which eventually grow into a critical nucleus. Upon passing
this transition state, the nonlinear chain performs a collective, determinis-
tic escape. We analyze the associated nonlinear dynamics in phase space
and relate the escape to diffusion in a separatrix layer.

PACS numbers: 05.40.–a, 05.45.–a, 63.20.Ry

1. Introduction

Ever since the benchmark work by Kramers [1] (for a comprehensive re-
view see in Ref. [2]) there is a continued and growing interest in the dynamics
of escape processes of single particles and of coupled degrees of freedom out
of metastable states. Escape is realized by the passage of the considered ob-
jects over an energetic barrier which separates the local potential minimum
from a neighboring attracting domain.
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There is implied that the system is in contact with an external heat
bath serving as a permanent source of energy, causing dissipation and local
energy fluctuations which successfully enable the escapes. Many general-
izations of Kramers escape theory in over- and underdamped versions have
been widely exploited [2]. Nowadays, this approach is commonly utilized in
biophysical contexts and for a great many applications occurring in physics
and chemistry [3–14].

The noise-free microcanonical situation has been studied less intensely.
Then, the system cannot feed on an external energy source but rather a fixed
amount of energy has to suffice to perform a barrier crossing.

Such deterministic escape process of an one-dimensional coupled oscil-
lator chain has been presented as robust — and purely self-organized —
barrier crossing mechanism [15–17]. The absolutely necessary ingredients
in the physics of these deterministic barrier crossings are nonlinear poten-
tials wherein the chain moves and the discreteness of the chain units. Both
avert the chain to relax to states with equipartition of energy among its
constituents. In contrast they allow localization of a sufficient amount of
energy on a few oscillators forming a critical state.

An escape is related with a crossing of a saddle point in the configuration
space, corresponding to bottlenecks [2]. We shall assign a critical energy to
this transition state Ecrit which has to be concentrated at the critical mode.
It was shown [15–17] that the latter can be reached in the microcanonical sit-
uation spontaneously. In particular, it was found that intrinsic nonlinear ef-
fects on a long discrete chain of N units induce a transition over an energetic
barrier by enhancing one, or several localized breather states [18–26]. With
this mechanism an initially almost uniformly distributed energy can become
dynamically concentrated by internal redistribution without the need of an
assistance of energy supply of a thermal bath.

The present work aims to gain further insight into the self-organized
deterministic escape processes presented in [15–17]. In the next section we
introduce the model of the coupled oscillator chain. We focus our interest on
low-energy modes corresponding to nearly equilibrium states of the lattice
chain. The properties of localization induced by the dynamical formation of
breather arrays are explored in Sec. 3. Finally in Sec. 4 the escape process
is characterized as diffusion in an associated stochastic separatrix layer in
phase space.

2. Coupled oscillator chain model

We study a one-dimensional lattice of coupled nonlinear oscillators. The
coordinate q of each individual oscillator evolves in a cubic single well po-
tential of the form

U(q) =
ω2

0
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This potential possesses a metastable equilibrium at qmin = 0 corresponding
to the rest energy Emin = 0 and the maximum is located at qmax = ω2

0/a with
energy Emax ≡ ∆E = ω6

0/(6a
2). The Hamiltonian of the one-dimensional

coupled nonlinear oscillator chain is given by

H =

N
∑

n=1

{

p2
n
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nonlinear, cooperative excitations of the chain. Thus, the chain possesses
a total energy Etotal =

∑

N

n=1 En = NE0. For an escape to take place we
must require that Etotal > Ecrit > ∆E. These inequalities convey the fact
that more than just one unit governs the escape mechanism. The initial
energy E0 is supplied as follows: (i) First, the whole chain is placed at a
fixed position qn(0) = q0 ,∀n , near the bottom of the potential well. (ii)
Then, the position of all units are iso-energetically randomized while keeping
the total energy a constant — i.e., Etotal = NE0 = const.

The random position values are uniformly distributed in an interval
|qn(0) − q0| 6 ∆q. The initial momenta are zero, i.e., pn(0) = 0. The
mean values of q0 are taken in such a way that the average excitation energy
of a single oscillator, E0, is small compared to the depth, ∆E, of the po-
tential well. Due to the choice of sufficiently small detunings ∆q the initial
lattice state, qn(0) = q0 + ∆qn, is close to an almost homogeneous state
and yet such disturbed that there result very small — but non-vanishing —
initial interaction terms. More precisely, Eq. (4) determines the energy of
a particle

En =
p2

n
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Passing to action-angle variables

pn =
√
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The actions stay close to their initial values if

〈|δJ |〉
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Fig. 2. (Color online) Spatio-temporal evolution of the energy density En(t). The

initial average energy per oscillator is only E0/∆E = 0.028. The parameter values

are a = 1, ω2

0
= 2, κ = 0.2, and N = 100.

4. Escape as the result of diffusion in a separatrix layer

In the last section we found that arrays of breathers form on the lattice.
At least one of the breathers can be very strongly localized on segments
of the lattice (single-site breathers) and the associated maximal amplitudes
grow to the proximity of the barrier level. Moreover, in [15–17] it was shown
that such a localized state might adopt the hairpin shape of the critical
localized mode and if the involved amplitudes become overcritical escape is
realized. However, for this to happen at first one unit has to absorb sufficient
energy to completely surmount the barrier.

The escape process is based on energy redistribution produced by chaotic
motion in the vicinity of a separatrix. To gain insight into the related energy
diffusion process, we regard a segment of the lattice of odd numbers of
sites Ns that sustains a single-site breather as decoupled from the rest of
the lattice. The dynamics on the segment can be approximated by the
motion of one of the oscillators with large amplitude near the separatrix.
This oscillator is supposed to be situated at the central site of the segment
denoted by nc. The remaining (Ns − 1)/2 units on either side of it perform
oscillations near the bottom of the potential well, representing thus phonons.
The corresponding Hamiltonian is expressed as

H = H0 + H1 , (14)

with

H0 =
p2

nc
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H1 =

Ns
∑

n=1

n6=nc

(

p2
n
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Evaluating the integral one gets finally

∆H0 =
6π
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Fig. 3. Escape dynamics in the p–q-phase plane. Assignment of the line types

as follows: solid gray line, unperturbed separatrix; solid black line, unit n = nc;

dashed line, unit n = nc − 1; and dashed dotted line, unit n = nc + 1. Average

initial energy per unit E0/∆E = 0.156. The parameter values are a = 1, ω2

0
= 2,

κ = 0.2, and N = 100. The coordinates are chosen such that the position of the

saddle point comes to lie at the origin of the phase plane.

5. Summary

In this paper we have considered the conservative and deterministic dy-
namics of a one-dimensional chain consisting of linearly coupled anharmonic
oscillators. Each oscillator evolves in a single well potential. Initially the
system is in a metastable state for which all units are trapped near the bot-
tom of the potential. Then overcoming of the barrier of the whole chain at
once is prevented because of the too high net barrier height. In [15–17] it
has been demonstrated, that the spontaneous formation of localized modes
serves to enrich energetically a segment on the chain such advantageously
that it adopts the transition state given in the form of a hairpin. Within
this work we estimated the degree of energy exchange in an early stage of
the dynamics. It turns out that the rate of energy exchange is crucially af-
fected by the degree of detuning of the initial virtually homogeneous lattice
state. Related to barrier crossing we presented the escape of the chain as
the outcome of the diffusion process of a strongly localized breather am-
plitude in a separatrix layer. In particular it is shown that proper phase
relations between the oscillators of the “phonon bath”, driving the diffusion,
play a crucial role for enhanced escape.

This research has been supported by the SFB-555 (L.S.-G, S.F.) and by
the Volkswagen Foundation Projects No. I/80424 (P.H.) and No. I/80425
(L.S.-G).
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