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A two-mode Bose-Einstein condensate coupled by a high-frequency modulation field is found to display rich
features. An effective stationary Hamiltonian approach reveals the emergence of additional degenerate eigen-
states as well as additional topological structures of the spectrum. Possible applications, such as the suppres-
sion of nonlinear Landau-Zener tunneling, are discussed. An interesting phenomenon, which we call “deter-
ministic symmetry-breaking trapping” associated with separatrix crossing, is also found in an adiabatic process.
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I. INTRODUCTION

Significant research efforts have been devoted to the non-
linear dynamics of interacting cold atoms, e.g., a Bose-
Einstein condensate �BEC� in an external driving field. One
main motivation is to understand how we can actively con-
trol the nonlinear dynamics and how the self-interaction of
cold atoms can be used to simulate fundamental models �1�.
Examples include the control of the BEC self-trapping �2–4�,
effective turning off of the self-interaction �5�, controlled
Mott-insulator transitions associated with a BEC in an opti-
cal lattice �6�, stabilization of bright BEC solitons by an
oscillating magnetic field tuned close to the Feshbach reso-
nance �7�, as well as production of ultracold molecules using
stimulated Raman adiabatic passage �8,9�. On a deeper level,
BEC systems offer a useful tool to explore more aspects of
many-body systems. In particular, the dynamics of a BEC in
the large-particle-number limit is described by a mean-field
nonlinear Schrödinger equation �Gross-Pitaeviskii equation�.
The resulting nonlinearity often challenges existing theories
for linear systems. For example, the adiabatic following of a
two-mode nonlinear system with an external field may nec-
essarily break down �10�.

Here we aim to examine how an adiabatic Landau-Zener
�LZ� tunneling process of a BEC may be manipulated by an
external driving field, thus extending an earlier study for lin-
ear systems �11�. As a second motivation on a more funda-
mental level, we shall expose some nonlinear dynamics phe-
nomena that do not exist in the mean-field dynamics of a
BEC under field-free conditions. Specifically, we consider a
two-mode BEC under a high-frequency field that directly
couples the two modes �hence called “off-diagonal” driving
below�. A biased static field is also considered for LZ pro-
cesses.

It is well-known that a high-frequency “diagonal modula-
tion” �e.g., high-frequency tilting of a double-well potential�
can only rescale the natural two-mode coupling strength
�6,12–14�. However, our findings below for a different type

of high-frequency modulation are different. In particular, we
show �i� that a high-frequency off-diagonal driving field can
induce, in effect, additional nonlinear terms in the mean-field
equations of motion, thus offering a control “knob” to tune
different nonlinear terms and simulate some systems not con-
sidered before; �ii� that different topological structures of the
eigenspectrum of the system can be generated and tuned by
the driving field, also leading to additional degenerate eigen-
states. We then suggest using a high-frequency driving field
to realize the complete suppression of nonlinear LZ tunnel-
ing. In analyzing the adiabatic dynamics of a driven nonlin-
ear system, we also find and qualitatively explain a phenom-
enon, called “deterministic symmetry-breaking trapping”
associated with separatrix crossing.

II. TWO-MODE SYSTEM UNDER
OFF-DIAGONAL MODULATION

The nonlinear two-mode system under off-diagonal
modulation is described by

H�t� =
1

2
�� + c��b�2 − �a�2� �0 + A sin��t�

�0 + A sin��t� − � − c��b�2 − �a�2�
� , �1�

where � denotes an external energy bias, �a�2 and �b�2 repre-
sent occupation probabilities for the two modes, c character-
izes the nonlinear atom-atom interaction, and �0 denotes the
static coupling between the two modes. We put �=1
throughout this work. There are a number of possibilities to
experimentally realize this Hamiltonian. For example, one
may consider a BEC in a double-well potential, with the
height of the potential barrier periodically modulated, or a
BEC in an optical lattice occupying two bands, with the well
depth of the optical lattice periodically modulated. In prin-
ciple, these procedures should be achievable, considering
previous experiments on two-mode BEC’s �16,18�. What
might be even more feasible in realizing this two-mode sys-
tem under off-diagonal modulation is to consider the internal
states of a BEC, such as 87Rb �17�, where there exist two
internal states separated by a relatively large hyperfine en-
ergy. Then, the energy bias � can be effectively realized by*phygj@nus.edu.sg
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the detuning of the coupling field from the resonance and the
off-diagonal modulation may be achieved by modulating the
intensity of the coupling field. Considering recent studies of
two-mode nonlinear Schrödinger equations using nonlinear
optical waveguides �for example, see Ref. �4��, it might also
be possible to realize our system in nonlinear optics.

Consider first the nondriven case, i.e., A=0. Then H�t�
reduces to the standard model of nonlinear LZ tunneling
�10�. Therein the eigenspectrum diagram as a function of � is
known to display a loop structure at the tip of the lower
�upper� level for c��0 �c�−�0�. Such a loop structure,
absent in linear systems, directly leads to a nonzero LZ tran-
sition probability even when � changes adiabatically. As
shown below, different system properties emerge if the driv-
ing field is turned on. Without loss of generality we will
restrict ourselves to the c�0 case, which requires an attrac-
tive interaction for bosons in a double-well potential or a
repulsive interaction for bosons in two energy bands of an
optical lattice.

In the general case of A�0 with ��� ,c ,�0, it is found
that �a�2 �=1− �b�2� also oscillates at the frequency �. To ex-
pose possibly new physics hidden in the oscillations, another
pair of wave function parameters �a� ,b�� are found to be
very useful, i.e.,

a� =
a + b

2
e−i�A/2��cos��t� +

a − b

2
ei�A/2��cos��t�,

b� =
a + b

2
e−i�A/2��cos��t� −

a − b

2
ei�A/2��cos��t�. �2�

Their equations of motion are given by

i
da�

dt
=

1

2
��cos��� + ccos2�����b��2 − �a��2� − icsin���cos���

	�a��b� − a�b����a� +
1

2
��0 + i�sin��� + csin2���

	�a��b� − a�b����− icsin���cos�����a��2 − �b��2��b�� ,

i
db�

dt
=

1

2
��0 − i�sin��� − csin2����a��b� − a�b���

+ icsin���cos�����a��2 − �b��2��a�

+
1

2
�− �cos��� − ccos2�����b��2 − �a��2�

+ icsin���cos����a��b� − a�b����b�, �3�

where �� A
�cos��t�. Along with previous studies that fo-

cused on high-frequency driving fields �6,12–14�, we con-
sider now sufficiently large � such that the oscillation in � is
much faster than the natural time scale of the system as char-
acterized by �0, �, and c �numerically, we find that the re-
gime of ��10�0, ��10c, and ��10�0, where �0 is the
initial value of ��� that is sufficiently large to ensure LZ
dynamics, can be safely regarded as a high-frequency re-
gime; experimentally, a high-frequency driving field should
not interfere with the two-mode descriptions�. Then Eq. �3�

can be significantly reduced by considering the averages of
�a� ,b�� over 2
 /�. Speaking more rigorously, with the
large-frequency condition, a zeroth-order approximation of a
“1 /�” expansion can be used to yield

i
da�

dt
=

1

2
��� + cZ��b��2 − �a��2��a�

+
1

2
��0 + cY�a��b� − a�b����b�,

i
db�

dt
=

1

2
��0 − cY�a��b� − a�b����a�

+
1

2
�− �� − cZ��b��2 − �a��2��b�, �4�

where ��=�	cos���
T=�J0�A /�� �13�, cZ=c	cos2���
T

=c�
1+J0�2A/��

2 �, and cY =c	sin2���
T=c�
1−J0�2A/��

2 � �J0 is the
zeroth-order Bessel function of the first kind�. Evidently,
these newly defined parameters reflect the action of the high-
frequency driving field. We stress that the validity of this
kind of high-frequency approximation has been checked nu-
merically and has been used in many situations.

Equation �4� no longer explicitly contains a time-
dependent field. We can then define an effective static Hamil-
tonian Heff that generates Eq. �4�. That is,

Heff =
1

2
� � + cZ��b�2 − �a�2� �0 + cY�a�b − ab��

�0 − cY�a�b − ab�� − � − cZ��b�2 − �a�2�
� , �5�

where, for simplicity, we have replaced a� by a, b� by b, and
so on. If we compare Heff with the original Hamiltonian in
Eq. �1� for A=0, we see that the nonlinear parameter cZ can
be regarded as a rescaled parameter c, and the nonlinear term
containing cY is new. In addition, the ratio of cZ and cY is
given by �1+J0�2A /��� / �1−J0�2A /���, easily adjustable by
choosing different � and A.

The effective Hamiltonian in Eq. �5� can be recognized as
the one describing a single spin in a biaxial crystal field, with
the cY �cZ� term describing the anisotropy in the Y �Z� direc-
tion. Indeed, Heff can also be written as Hspin=�SZ+�0SX

−cZSZ
2 −cYSY

2 , where SZ= �a�2−�b�2
2 , SX= a�b+b�a

2 , and SY = a�b−b�a
2i .

The corresponding second-quantization Hamiltonian exactly
describing the quantum system with N bosons on the two
modes is given by

ĤQ = �
�â†â − b̂†b̂�

2
+ �0

�â†b̂ + âb̂†�
2

−
cZ

N
� â†â − b̂†b̂

2
�2

+
cY

N
� â†b̂ − b̂†â

2
�2

. �6�

III. DETAILED RESULTS

We now present in Fig. 1 the eigenspectrum of Heff as a
function of �. Evidently, the typical level structures �such as
the loop structure� for a nonlinear LZ tunneling model �10�
are also possessed by our system. On top of that, additional
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mean-field eigenstates �dashed lines� that are absent in a non-
driven case also emerge through level bifurcations. The new
eigenstates are directly caused by the cY term induced by the
driving field. In particular, if a loop structure exists and if
cY �cZ, then the additional level lies inside the loop, as
shown in Fig. 1�b�; and if cY �cZ and cY ��0, then level
bifurcation takes place on the lowest branch and the addi-
tional level can be below the loop structure, as shown in Fig.
1�a�. Figure 1�c� shows that the additional level may also
exist in the absence of a loop structure. In the bottom panels
of Fig. 1, we also show fully quantum mechanical levels
calculated from Eq. �6� for N=20. The results confirm that
the additional eigenstates we obtain on the mean-field level
do have physical implications for fully quantum levels, even
in the cases with a not very large N.

Let us now examine Eq. �4� from a phase space perspec-
tive, by mapping the mean-field trajectory of Eq. �4� to that
of a well-defined classical Hamiltonian system. The associ-
ated phase space can be defined in terms of s and �, where
�=�b−�a �14,15�, s= �b�2− �a�2, with a= �a�ei�a and b
= �b�ei�b. Using this pair of canonical variables, the classical
Hamiltonian involved is

Hc =
1

2
�− �s −

cZ

2
s2 + �0

�1 − s2cos��� −
cY

2
�1 − s2�sin2���� .

�7�

The nonlinear eigenstates of Heff now become fixed points in
the phase space of Hc. Figure 2 displays phase space portraits
of Hc for the parameters used in Fig. 1�a�, for several values
of � covering the regime of level bifurcation. In particular,
the lower parts of Figs. 2�b�–2�d� near �=
 clearly show the
splitting of one fixed point into three fixed points, thus asso-
ciating the level bifurcation in Fig. 1 with the splitting of a
fixed point. Because both the elliptic �stable� fixed points
�marked by DR and DL in Fig. 2� yield the dashed line in Fig.

1�a�, the additional level shown in Fig. 1 in fact denotes
twofold-degenerate eigenstates. By contrast, the hyperbolic
�unstable� fixed point marked by T in Fig. 2�d� yields the
level right above the degenerate eigenstates �also marked by
T in Fig. 1�a��. In Figs. 2�f� and 2�g�, the above-mentioned
three fixed points start to merge back to one fixed point, in
parallel with the level merging seen in Fig. 1�a� as � in-
creases further. On examining the phase space globally, it is
also clear that the number of the fixed points and hence the
number of the nonlinear eigenstates of Heff can vary from
two to six, a clear sign that the nonlinear dynamics of a
driven BEC can be very rich.

It should also be noted that the above-mentioned twofold
degeneracy occurs in a high-dimensional parameter space. In
particular, for fixed nonlinear parameter c and fixed field
parameters A and �, the degeneracy can still occur in a two-
parameter space of �0 and �. This is in contrast to the well-
studied nondriven model of a two-mode BEC where degen-
eracy occurs only along a line for fixed c, A, and �.

So, how does the additional eigenstate shown in Fig. 1�a�
�the cases in Figs. 1�b� and 1�c� are physically less appeal-
ing� affect the adiabatic dynamics? To answer this question
we numerically solve Eq. �4� for the parameters used in Fig.
1�a�, with the initial state put on the lowest level. As � in-
creases very slowly, the system’s state is found to follow the
nondegenerate lowest level up to the bifurcation point. When
� increases beyond the “phase transition” point where the
new twofold-degenerate level emerges, the twofold-
degenerate level becomes the lowest and the system is found
to move along the new level. As � increases further, the
twofold degenerate level finally disappears and the system
reaches the nondegenerate lowest level again, thus complet-
ing the LZ process. During the entire process, the system
remains at the lowest level available and no transitions to
any upper levels are found. Hence, the new twofold-
degenerate level induced by the driving field offers a means
to circumvent the loop structure and hence totally suppress
the nonlinear LZ transition that is doomed to happen if the

FIG. 1. �Color online� Upper panels: Level structures of the
stationary effective Hamiltonian Heff �see Eq. �5��, as a function of
�. The dashed lines denote the new mean-field levels that are absent
in a nondriven two-mode BEC. The symbols T, DR, and DL indicate
how the involved levels are connected with the phase space struc-
tures shown in Fig. 2. Bottom panels: Parallel results in a fully
quantum treatment for N=20.

FIG. 2. Phase space structures of Hc defined in Eq. �7�, for �0

=0.2, cZ=0.4, and cY =0.6 �or equivalently, c=1, A /�=1.42�. T
denotes an unstable fixed point with �=
. DR and DL denote two
stable fixed points one on the right and one on the left.
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twofold-degenerate state is not there. To connect this obser-
vation of totally suppressed LZ tunneling in the �a� ,b�� rep-
resentation �see Eq. �2�� with the direct observable �a ,b� in
experiments, note that �i� initially if A=0 then a=a� and b
=b�, and �ii� if A is switched on slowly enough as compared
with � but fast enough as compared with the change rate of
�a� ,b�� �characterized by �, �0, and c�, then the initial values
of �a ,b� are passed to �a� ,b��.

One more aspect of the above nonlinear LZ process re-
mains to be examined. Because the dashed line in Fig. 1�a�
denotes a twofold-degenerate eigenstate, we should study
which state the system will reside in when it slowly pass the
level bifurcation point with an increasing �. Since the phase
space structure shown in Fig. 2 always possesses a mirror
symmetry with respect to �=
, one may intuitively expect
that during the LZ process the system is trapped by either of
the two stable points DR or DL in a random fashion, with
equal probability. However, we find that this picture is incor-
rect here. Instead, the system is found to be deterministically
trapped by DR �see Fig. 2�d��. Physically, this deterministic
trapping means that the relative phase between a� and b� is
not random during the LZ process, i.e., it is robust to small
fluctuations in the initial state. A careful analysis enables us
to explain this intriguing observation qualitatively. As � in-
creases, the fixed point with �=
 �see the lower parts of
Figs. 2�c� and 2�d�� moves upward in the phase space. When
this fixed point becomes unstable �denoted T in Fig. 2�d��,
the adiabatic following must break down and hence the ac-
tual trajectory will find itself slightly below the up-moving
fixed point. As such, the trajectory starts to slowly move
counterclockwise around a separatrix, or from left to right, as
illustrated in Fig. 3. At the same time, because � is increas-
ing, the separatrix deforms and swells, and as a result the
trajectory necessarily crosses the separatrix on the right and
hence gets trapped by DR. Indeed, if we reverse the adiabatic
process, i.e., pass the bifurcation point with a decreasing �,
then one can predict that the system will be trapped by DL, a
prediction confirmed numerically. This counterintuitive de-
terministic symmetry-breaking trapping is complementary to
a well-known separatrix-crossing-induced phenomenon, i.e.,
quasirandom trapping in classical mechanics �which has
been systematically applied to a few BEC systems �9��. En-
couraged by the finding here and in efforts to confirm its
generality, we also studied the adiabatic following dynamics
of a modified rotating pendulum system whose fixed point
moves with an external parameter. Analogous results are also

found in this pendulum case. Hence, it should be of some
interest to carry out an experimental BEC study of the
symmetry-breaking separatrix crossing observed here. This
kind of experiment might also offer additional insights into
the validity of the mean-field description of a BEC.

IV. CONCLUSION

To conclude, we have theoretically examined the dynam-
ics of a two-mode BEC driven by a high-frequency driving
field that directly couples the two modes. Based on our re-
sults here we expect rich phenomena in general for a multi-
mode BEC under a high-frequency driving field. Though our
results are purely theoretical, it is our hope that the results
here will stimulate future experiments on the dynamics of a
BEC in high-frequency driving fields and on the control of
nonlinear LZ tunneling dynamics.
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