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Previously derived expressions for the characteristic function of work performed on a quantum system by a
classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians
with degenerate spectra. In the particular case of microcanonical initial states, explicit expressions for the
characteristic function and the corresponding probability density of work are formulated. Their classical limit
as well as their relations to the corresponding canonical expressions are discussed. A fluctuation theorem is
derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of
densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians.
From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived
which does not involve the time-reversed process. This entropy-from-work theorem provides an experimentally
accessible way to measure entropies.
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I. INTRODUCTION

During the last decade various fluctuation and work theo-
rems �1–4� have been formulated and discussed. They pro-
vide information about the fully nonlinear response of a sys-
tem under the action of a time-dependent force �5–8�, in
contrast to linear response theories in which the response is
expressed in terms of correlation functions of the unper-
turbed system �9–13�. Moreover, these theorems were used
to establish the second law of thermodynamics and to
sharpen its formulation �14–16�. Fluctuation and work theo-
rems have primarily been derived, numerically tested, and
experimentally confirmed for classical systems which ini-
tially or permanently are in contact with a heat bath �17–19�.
The system then initially stays in a state described by a ca-
nonical �Maxwell-Boltzmann� distribution at the temperature
of the heat bath. Classical isolated systems which initially
are in a microcanonical state were investigated in Ref. �20�.
Quantum mechanical generalizations were proposed recently
�21–26�, but only for canonical initial states. The equivalence
of canonical and microcanonical initial states was demon-
strated for classical systems in the thermodynamic limit �27�.
Little emphasis has been given to the impact of general ini-
tial conditions on the work performed on a quantum system
by a classical force �28�.

In the present paper we investigate the work performed by
an external force acting on an otherwise isolated quantum
system. The characteristic function of the work is shown to
always assume the form of a correlation function of the ex-
ponentiated system Hamiltonians at the initial and final
times, regardless of how the system was initially prepared.
This characteristic function comprises all aspects of the sta-
tistics of the work. In the special case of a microcanonical
initial state, the inverse Fourier transform leads to an expres-
sion for the probability density of performed work which
directly leads to a quantum generalization of the microca-
nonical version of the Crooks theorem. This theorem relates
the probability densities of work of the processes and its

time-reversed partner process to the difference of entropies
of the equilibrium states that correspond to the initial and
final Hamiltonians. Such relations have been confirmed for
classical systems by computer experiments �20�. In real ex-
periments an active time reversal is not feasible. We yet
present an “entropy-from-work” theorem that does not con-
tain the time-reversed process and still allows one to obtain
the entropy of the equilibrium system for the system with the
final Hamiltonian, provided the entropy of the system with
the initial Hamiltonian is known.

Apart from its use in numerical investigations such as
molecular dynamics �29,30� or microcanonical Monte Carlo
simulations �31�, the microcanonical ensemble is known to
provide the valid description of isolated systems in equilib-
rium �32�. It presents the proper statistical mechanical frame-
work for the description of isolated systems of finite size,
such as clusters of atoms �33�, atomic nuclei �34�, or Bose
Einstein condensates �35�, and even allows for phase transi-
tions in finite systems �36–38�.

The paper is organized as follows. In Sec. II the charac-
teristic function of work is expressed as a correlation func-
tion of exponentiated Hamiltonians. The density matrix that
enters this expression is given by the initial density matrix of
the system projected onto the diagonal elements with respect
to the eigenbasis of the initial Hamiltonian. In the special
case of a canonical density matrix the known form of the
canonical characteristic function is recovered. In Sec. III we
consider a microcanonical initial state, and derive microca-
nonical quantum fluctuation and work theorems. Moreover,
the probability densities and characteristic functions for ca-
nonical initial states are shown to be related to the corre-
sponding microcanonical quantities by properly weighted
Laplace transforms. Conclusions are presented in the final
section.

II. CHARACTERISTIC FUNCTIONS OF WORK

The response of a quantum system to a perturbation by a
classical, external force can be characterized by the change
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of energy contained in the total system. The energy of the
total system is determined by its Hamiltonian H�t�. It in-
cludes the external, time-varying force and therefore depends
on time. We will consider the dynamics of the system only
within a finite window of time �t0 , t f� during which the force
is acting in a prescribed way, resulting in a protocol of
Hamiltonians, which we denote by �H�t��tf,t0

. A measurement
of the Hamiltonian H�t� at a time t will result in an energy
which is an eigenvalue ek�t� of the Hamiltonian, i.e.,

H�t��k,��t� = ek�t��k,��t� , �1�

where � is a quantum number that labels a possible degen-
eracy of the eigenvalue ek�t�. The eigenfunctions �k,��t� can
be chosen as normalized and pairwise orthogonal. They span
the eigenspace of H�t� belonging to ek�t�. The projection op-
erator on this eigenspace becomes

Pk�t� = �
�

��k,��t�	
�k,��t�� . �2�

Measuring the Hamiltonian at the times of measurement t0
and t f, one obtains as results eigenvalues en�t0� and em�t f� of
the Hamiltonian H�t�. The work w performed on the system
is given by the difference of the measured energies, i.e., by

w = em�t f� − en�t0� . �3�

The energy values en and em arising from the measurements
are random quantities. Consequently, the observed value of
work, w, too is a random quantity. The probability pn with
which the particular eigenvalue en�t0� is observed in the first
measurement depends on the density matrix ��t0� that de-
scribes the state of the total system at time t0. According to
the laws of quantum mechanics, this probability is given by
the expectation value of the projection operator Pn�t0� onto
the subspace of eigenstates of the Hamiltonian H�t0� with
energy en�t0�, i.e., by

pn = Tr Pn�t0���t0� . �4�

Immediately after this measurement the system is found in
the corresponding state with properly normalized density
matrix

�n =
Pn�t0���t0�Pn�t0�

pn
�5�

and then evolves in time according to

�n�t� = Ut,t0
�nUt,t0

† , �6�

where the unitary time evolution operator Utf,t0
obeys the

Schrödinger equation

i� � Ut,t0
/�t = H�t�Ut,t0

, Ut0,t0
= 1. �7�

Note that in general the time-evolved states �n,��t�
=Ut,t0

�n,��t0� are not eigenfunctions of H�t�. Exceptions are
quasistatic changes of the Hamiltonian for which the adia-
batic theorem holds �39� The second measurement, at time t f,
produces an eigenvalue em�t f� of H�t f� which occurs with
probability

p��m�n� = Tr Pm�t f��n�t f� = Tr Pm�t f�Utf,t0
�nUtf,t0

† . �8�

The probability density of work, ptf,t0
�w�, can then be ex-

pressed as

ptf,t0
�w� = �

m,n
�„w − �em�t f� − en�t0��…p��m�n�pn. �9�

For the characteristic function of the work,

Gtf,t0
�u� =� dw eiuwptf,t0

�w� , �10�

which is the Fourier transform of the probability density of
work �see, e.g., �13,40��, we find

Gtf,t0
�u� = �

m,n
eiuem�tf�e−iuen�t0�p��m�n�pn

= �
m,n

eiuem�tf�e−iuen�t0�Tr Pm�t f�Utf,t0
�nUtf,t0

† pn

= �
m,n

Tr eiuH�tf�Pm�t f�Utf,t0
e−iuH�t0��nUtf,t0

† pn

= Tr eiuH�tf�Utf,t0
e−iuH�t0��̄�t0�Utf,t0

†

= Tr eiuHH�tf�e−iuH�t0��̄�t0� � 
eiuH�tf�e−iuH�t0�	t0
,

�11�

where

HH�t f� = Utf,t0
† H�t f�Utf,t0

�12�

denotes the Hamiltonian in the Heisenberg picture. Further,
we used the completeness relation �mPm�t f�=1 and intro-
duced the density matrix

�̄�t0� = � pn�n = � Pn��t0�Pn �13�

with respect to which the average of the correlation function

eiuH�tf�e−iuH�t0�	t0

is performed. This density matrix describes
the state of the system projected onto the eigenbasis of the
Hamiltonian at time t= t0. It coincides with the initial density
matrix ��t0� only if ��t0� commutes with the Hamiltonian
H�t0�, i.e.,

�̄�t0� = ��t0� ⇔ ���t0�,H�t0�� = 0. �14�

In particular, if the system is initially in a canonical state the
known form of the canonical characteristic function results
�25�. From this very result the Tasaki-Crooks fluctuation
theorem and the Jarzynski work theorem follow readily
�25,26�. Notably, the characteristic function �11� assumes the
form of a two-point quantum correlation as is the case in
linear response theory, despite the fact that it embraces the
full nonlinear response to the perturbation by the applied
force.

III. FLUCTUATION THEOREMS FOR
MICROCANONICAL INITIAL STATES

A microcanonical initial state is characterized by an en-
semble that consists of all eigenstates of H�t0� with eigenval-
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ues in a narrow band around an energy E. All contributing
states have equal weights. In the ideal case of an arbitrarily
narrow energy range around E, the state of the system is
given by the following density matrix:

�E�t0� = �E
−1�t0��„H�t0� − E… = �E

−1�t0��
k

�„ek�t0� − E…Pk�t0� ,

�15�

where

�E�t0� = Tr �„H�t0� − E… = �
k

gk�„ek�t0� − E… �16�

denotes the density of states of the system described by the
Hamiltonian H�t0�, and gk=Tr Pk�t0� the degeneracy of the
energy ek�t0�. Equation �15� presents a rather formal expres-
sion for the density matrix. It can be regularized in the stan-
dard way by replacing the � function by any smooth function
�	(H�t0�−E) which approaches the � function in the limit 	
→0. The value of 	 may be chosen such that the width of
�	(H�t0�−E) is of the order of the accepted uncertainty in the
energy. It is also convenient to take an approximating � func-
tion with infinite support such as a Gaussian function in or-
der to have a well-defined density matrix for all energies E,
even if E falls in a gap of the spectrum. Since the width 	 is
always assumed to be much smaller than all other relevant
energies in all following expressions, the formal manipula-
tions with � functions also apply for the corresponding ex-
pressions containing the regularized � functions. Combining
Eqs. �11� and �15�, we find the following expression for the
characteristic function of work:

Gtf,t0
�E,u� = �E

−1�t0�Tr eiuHH�tf�e−iuH�t0��„E − H�t0�…

= �E
−1�t0�Tr eiuHH�tf�−E�„H�t0� − E… . �17�

The inverse Fourier transform is readily performed to yield
the probability density of work,

ptf,t0
�E,w� =� du

2

e−iuwGtf,to

�E,u�

= �E
−1�t0�Tr �„HH�t f� − E − w…�„H�t0� − E… .

�18�

From this expression one may formally obtain the corre-
sponding classical result by replacing the Hamilton operators
by the corresponding Hamilton functions and the trace by an
integral over all possible initial states. Thereby, the Hamil-
tonian at the final time, HH�t f�, must be replaced by the
Hamilton function depending on the initial phase space vari-
ables z0 via the solutions z�z0 , t f� of Hamilton’s equations of
motion at the final time. This results in the expression

ptf,t0
cl �E,w� = �E

−1�t0�� dz0��H„z�z0,t f�,t f… − E − w�

��„H�z0,t0� − E… , �19�

which agrees with the result obtained on the basis of classical
statistical mechanics in Ref. �20�. In the classical formulation
it is of course correct to replace the energy E in the first �

function by the Hamilton function at the initial time as dic-
tated by the second � function. This transformation is not
possible in the quantum expression, confirming the recent
observation that work is not a quantum mechanical observ-
able �25�.

A. Microcanonical quantum Crooks theorem

The dependence on the work w can be shifted in Eq. �18�
from the first to the second � function by introducing the
final energy E f =E+w. For the product of the density of
states �E�t0� and the probability density ptf,t0

�E ,w�, one ob-
tains

�E�t0�ptf,t0
�E,w� = Tr �„HH�t f� − E f…�„H�t0� − E f + w…

= Tr �„H�t f� − E f…�„H̄H�t0� − E f + w…

= �E+w�t f�pt0,tf
�E + w,− w� , �20�

where, in going to the second equality, we used the cyclic
invariance of the trace and the unitarity of the time evolution
in order to transfer the time dependence from the first to the

second � function. Here the operator H̄H�t0� denotes the
Hamiltonian in the Heisenberg picture for the time evolution
running in reversed order with a backward protocol from the
final to the initial time, i.e.,

H̄H�t0� = Ut0,tf

† H�t0�Ut0,tf
. �21�

In the third equality of Eq. �20� the result was again written
in terms of the probability density of work as a function of
the initial energy E. This relation can be formulated as the
microcanonical quantum version of Crooks’ theorem
�4,20,26� saying that

ptf,t0
�E,w�

pt0,tf
�E + w,− w�

= e�S��E+w,tf�−S��E,t0��/kB. �22�

It relates the ratio between the probability densities of work
for a process and for the corresponding time-reversed pro-
cess to the difference of the entropies that belong to micro-
canonical equilibrium systems with Hamiltonians H�t0� and
H�t f�. The entropies are defined in terms of the correspond-
ing densities of states via the standard statistical mechanical
relation

S��E,t� = kB ln �E�t� , �23�

where kB denotes the Boltzmann constant. Note that the simi-
lar looking canonical Crooks’ theorem �4� contains a non-
equilibrium entropy production �Crooks which is given by
T�Crooks=TSCrooks−Q=w−�F where SCrooks denotes the non-
equilibrium entropy, Q the heat, �F the thermodynamic free
energy, and w the nonequilibrium work. This entropy pro-
duction is distinctly different from the statistical mechanical
expression �23� for the microcanonical entropy entering Eq.
�22�.

Actually, a yet different statistical mechanical entropy can
be defined. It is proportional to the logarithm of the number
of states below the energy E rather than that of the density of
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states at the energy E �41�. This entropy then takes the form

S�E,t� = kB ln E�t� �24�

where

�E,t� = �
−�

E

dE���E�,t� �25�

denotes the number of states below E. For systems with
short-ranged interactions the two definitions are known to
coincide in the thermodynamic limit, i.e., in the limit of in-
finite systems. For small systems though, S�E� has been
proved to be more advantageous as it is an increasing func-
tion of energy by definition �29,42�.

We note that, for an ensemble of initial states with ener-
gies uniformly distributed up to the energy E, a fluctuation
theorem of the form of Eq. �22� can be derived, in which the
difference of the entropies S� is replaced by the correspond-
ing difference of S, i.e.,

ptf,t0
� �E,w�

pt0,tf

� �E + w,− w�
= e�S�E+w,tf�−S�E,t0��/kB. �26�

This follows along the same line of arguments leading to the
relation �22� for the uniform initial density matrix ���t0�,
which is given by

���t0� = E�t0��„E − H�t0�… �27�

and which was introduced by Ruelle �43� in the context of
the microcanonical ensemble. The probability of work
ptf,t0

� �E ,w� for this ensemble is obtained from the corre-
sponding microcanonical probability by an integration over
the energy, i.e.,

ptf,t0
� �E,w� = −1�E,t0��

−�

E

dE���E�,t0�ptf,t0
�E�,w� .

�28�

The fact that the microcanonical quantum Crooks theorem
�22� depends on the time-reversed process seemingly re-
stricts its practical usefulness. As opposed to computer ex-
periments, it is impossible to perform an active reversal of
time, i.e., to let time run backward, in real experiments.

B. Entropy-from-work theorem

The experimentally inaccessible probability density of the
time-reversed process though can be eliminated by first ex-
pressing the initial energy in terms of the final energy and the
performed work, and next by integrating Eq. �20� over all
possible values of the work. In this way, the density of states
at the later time can be expressed by an integral of the initial
density of states, weighted by ptf,t0

�E f −w ,w�, i.e.,

� dw�Ef−w�t0�ptf,t0
�E f − w,w� =� dw �Ef

�t f�pt0,tf�Ef,−w�

= �Ef
�t f� . �29�

With the definition �23� the following relation between the

entropy of the initial system and the unknown entropy of the
final system can be established:

� dw eS��Ef−w�t0��ptf,t0
�E f − w,w� = eS��Ef��tf�. �30�

Note that for a fixed final energy the weighting function
ptf,t0

�E f −w ,w� is not a probability density of the performed
work. In the following we demonstrate that the left-hand side
of Eq. �29� can be written in terms of a properly defined
average of the exponentiated entropy conditioned on the final
energy.

In general, from a single initial energy not all relevant
final energies are likely to be reached; they may even be
impossible to reach. Therefore, in an experiment the initial
energies have to be scanned over a sufficiently large range of
values. For each initial energy, a sufficient number of experi-
ments has to be performed in order that a reliable statistics of
work can be compiled for conveniently binned final energies.
Based on such statistics, the probability density of initial
energies E conditioned on the final energy E f, �tf,t0

��E�E f�,
can be inferred. If the initial energies E are uniformly
sampled in a range of energies of size ER, the joint probabil-
ity of initial and final energies is given by ��E ,E f�
= ptf,t0

�E ,E f −E� /ER. According to the Bayes theorem, the
conditional probability density �tf,t0

��E�E f� becomes

�tf,t0
��E�E f� =

��E,E f�

� dE ��E,E f�

=
ptf,t0

�E,E f − E�

� dE ptf,t0
�E,E f − E�

. �31�

Consequently, the integral over the density of states can be
formulated as an average over initial energies conditioned on
the final energy, yielding


�E�t0�	Ef
�� dE �E�t0��tf,t0

��E�E f�

= N�E f�−1� dw �Ef−w�t0�ptf,t0
�E f − w,w� ,

�32�

where

N�E f� =� dE ptf,t0
�E,E f − E� �33�

guarantees the normalization of the conditional average. Us-
ing Eq. �29� one finds the density of states �Ef

�t f� of a mi-
crocanonical system with the Hamiltonian H�t f� represented
by the average of the density of states �E�t0� with respect to
the conditional probability �tf,t0

��E�E f�, reading

�Ef
�t f� = N�E f�
�E�t0�	Ef

. �34�

Expressing the density of states in terms of the entropy �23�,
one obtains
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eS��Ef,tf�/kB = N�E f�
eS��E�/kB	Ef
. �35�

We call Eq. �35� the “entropy-from-work” theorem. In anal-
ogy to the Jarzynski relation, it allows one to extract equi-
librium properties from nonequilibrium experiments, which
are, in the case of the Jarzynski relation, the free energy and,
in the present context, the entropy S��E�.

Based on the relation �26� an entropy-from-work theorem
for S�E� follows in close analogy to the corresponding re-
lations �34� and �35�, reading

Ef
�t f� = N��E f�
E�t0�	Ef

� �36�

and

eS�Ef,tf�/kB = N��E f�
eS�E�	Ef/kB

� , �37�

where the average 
·	Ef

� is performed with respect to the con-
ditional probability density

�tf,t0
� ��E�E f� = N��E f�−1ptf,t0

� �E,E f − E� �38�

and where

N��E f� =� dE ptf,t0
� �E,E f − E� . �39�

C. Interrelations with the characteristic function
of work for canonical initial states

To establish a relation between the microcanonical and
canonical work distributions we multiply the expression �17�
by the product of the density of states and a Boltzmann fac-
tor exp�−�E� with inverse temperature � and finally inte-
grate over all values of the energy E. Performing this inte-
gration under the trace we obtain

� dE �E�t0�e−�EGtf,t0
�E,u� = Tr eiuHH�tf�e−iuH�t0�e−�H�t0�

= Z�t0�Gtf,t0
� �u� , �40�

where

Gtf,t0
� �u� = Z��t0�−1Tr eiuHH�tf�e−iuH�t0�e−�H�t0� �41�

denotes the characteristic function of work for a process
starting from a canonical density matrix �25� and

Z��t0� = Tr e−�H�t0� �42�

the corresponding partition function. Hence, the canonical
characteristic function of work is related to the microcanoni-
cal one by a Laplace transform. The reverse relation is
readily obtained by the following inverse Lapace transform:

Gtf,t0
�E,u� = �E�t0�−1�

C

d�

2
i
Z��t0�e�EGtf,t0

� �u� , �43�

where C is an inverse Laplace contour in the complex �
plane from −i�+c to i�+c. The real constant c must be
chosen such that all singularities of the integrand lie to its
left side. The density of states is related to the partion func-
tion by the standard relation

�E�t0� = �
C

d�

2
i
Z��t0�e�E. �44�

Accordingly, the probability densities of work for microca-
nonical and canonical initial states are also related by a
Laplace transform, yielding

ptf,t0
� �w� = Z��t0�−1� dE �E�t0�e−�Eptf,t0

�E,w� , �45�

ptf,t0
�E,w� = �E�t0�−1�

C

d�

2
i
Z��t0�e�Eptf,t0

� �w� . �46�

Finally we note that the Jarzinski relation can be obtained
from the microcanonical Crooks theorem. For this purpose
one considers the left-hand side of the first equality and the
right-hand side of the third equality of Eq. �20�, multiplies
both sides with exp�−��E+w��, and integrates over all val-
ues of E and w. For the left-hand side one then finds

� dE� dw e−��E+w��E�t0�ptf,t0
�E,w�

=� dw e−�wZ��t0�ptf,t0
� �w� = Z��t0�
e−�w	 , �47�

while the right-hand side yields

� dE� dw e−��E+w��E+w�t f�pt0,tf
�E + w,− w�

=� dE fe
−��Ef��Ef

�t f�� dw pt0,tf
�E f,− w� = Z��t f� ,

�48�

where we substituted the integration variable E by E f =E
+w. A comparison of the last two equations immediately
yields the Jarzynski relation �3,25�.

IV. CONCLUSIONS

The expression for the characteristic function of work per-
formed on an isolated quantum system by an external force
was generalized for arbitrary initial states. The general struc-
ture of the characteristic function is given by a correlation
function of the exponentiated system Hamiltonians at the
first and second measurement times. The quantum expecta-
tion and ensemble average are jointly taken with respect to a
density matrix which results from the actual initial state im-
mediately before the first measurement by means of a state
reduction with respect to the energy eigenbasis of the then
measured Hamiltonian. Initial states that commute with the
Hamiltonian at the initial time consequently are not modi-
fied. This form of the characteristic function holds irrespec-
tive of a possible degeneracy of the spectrum of the system’s
Hamiltonian.

For a microcanonical initial state, expressions for the
characteristic function of work and the corresponding prob-
ability density were established. In the classical limit, known
expressions were recovered, and the validity of the microca-
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nonical Crooks fluctuation theorem was demonstrated for
quantum systems. Moreover, we formulated an entropy-
from-work theorem which allows one to infer the unknown
entropy of a system from a reference system with known
entropy by means of a nonequilibrium experiment. In such
an experiment the initial system with known entropy is de-
formed into the final system within finite time according to a
prescibed protocol of Hamiltonians. In this context, we want
to emphasize that the entropy following from this theorem is
based on either of the statistical mechanical definitions �23�
or �24�, which agree with each other for sufficiently large
systems with short-range interactions. In contrast, the ca-
nonical Crooks theorem contains a nonequilibrium entropy
production that emerges from a relation involving free en-
ergy, heat, and nonequilibrium work.

We further note that the microcanonical distribution pro-
vides the appropriate description of an isolated system if no
further information about its state is available even if the
energy of the considered system is a priori unknown. By
registering the result of the first energy measurement, this
ignorance is removed and the available information about the

initial state is expressed without any bias by the microca-
nonical density matrix corresponding to the measured en-
ergy. However, if the unforced dynamics not only leaves in-
variant the energy but also other quantities such as the linear
or angular total momentum, then the adequate constrained
microcanonical ensemble has to be considered as the proper
initial state. Finally, by means of properly weighted Laplace
transforms, relations between microcanonical and canonical
characteristic functions and probability densities of work
were established.
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