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Various aspects of the statistics of work performed by an external classical force on a quantum mechanical
system are elucidated for a driven harmonic oscillator. In this special case two parameters are introduced that
are sufficient to completely characterize the force protocol. Explicit results for the characteristic function of
work and the corresponding probability distribution are provided and discussed for three different types of
initial states of the oscillator: microcanonical, canonical, and coherent states. Depending on the choice of the
initial state the probability distributions of the performed work may greatly differ. This result in particular also
holds true for identical force protocols. General fluctuation and work theorems holding for microcanonical and
canonical initial states are confirmed.
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I. INTRODUCTION

During the last decade various fluctuation and work theo-
rems �1,2� have been formulated and discussed. They char-
acterize among other things the full nonlinear response of a
system under the action of a time-dependent force �3,4�.
These theorems have been derived and experimentally con-
firmed primarily for classical systems �5–7�. Quantum me-
chanical generalizations were proposed recently �8–15�.

Conceptual problems arise, though, in the context of
quantum mechanics if one tries to generalize those classical
relations that require, for example, the specification of a sys-
tem’s trajectory extending over some interval of time, or the
simultaneous measurement of noncommuting observables.
For example, the measurement of work performed by an ex-
ternal force on an otherwise isolated system may be accom-
plished in the framework of classical physics in principle in
two different ways. The first method is based on two mea-
surements of the energy, one at the beginning and the second
at the end of the considered process. This method becomes
unreliable in practice if the system is large and the work
performed on the system is negligibly small compared to the
total energy of the system. Such a situation typically arises if
the system of interest, on which the force exclusively acts,
interacts with its environment. In order to retain an isolated
system, the large system made of the open system and its
environment must be considered. Again, the work performed
on the system results as the difference of the energies of the
total system, which may both be very large.

For classical systems, this unfortunate situation can be
circumvented by a second method, by monitoring the state of
the relevant small system during the time when the force is
acting. Having this information at hand, one can determine
the work by integrating the power supplied to the system at
each instant of time. The respective power can be inferred
from the registered state of the system and the known force
protocol. In a quantum system, a continuous measurement of
even a single observable would strongly influence and pos-
sibly manifestly distort the system’s dynamics. Clearly, only
the first of the two methods of energy measurement is fea-
sible, at least in principle, in the quantum context.

An alternative method based on continuous monitoring
has recently been suggested by Esposito and Mukamel �11�

for open quantum systems described by Markovian quantum
master equations. There the dynamics of the density matrix is
mapped onto a classical rate process for which known fluc-
tuation theorems can be applied �16�. This provides an inter-
esting formal approach but its physical meaning has re-
mained unclear �11�. Moreover, this approach is restricted to
open systems that only weakly interact with their respective
environments.

In the present paper, the distribution of work is discussed
for the exactly solvable system of a driven harmonic oscilla-
tor �15,17�. In this case, the distribution of work is discrete.
We provide formal expressions for this distribution and its
corresponding characteristic function which are valid for all
initial states of the system as well as for all possible kinds of
force protocols. In particular, we determine the characteristic
functions and distributions of the work for microcanonical,
canonical, and coherent initial states which lead to qualita-
tively different work distributions.

The paper is organized as follows. In Sec. II we review
the general form of the characteristic function of work per-
formed on a system in terms of a correlation function of the
exponentiated Hamiltonians at the initial and final times of
the force protocol. We prove that this particular expression
indeed always represents a characteristic function, i.e., the
Fourier transform of a probability density. Section III pre-
sents various fluctuation and work theorems for canonical
and microcanonical initial states. In Sec. IV general expres-
sions for the characteristic function and the corresponding
probability distribution of work are derived for a driven har-
monic oscillator. Moreover, the expressions for the first four
cumulants are derived. The dependence of the work distribu-
tion on the force protocol for microcanonical, canonical, and
coherent initial states as well as its dependence on the spe-
cific parameters of these initial states are investigated.

II. CHARACTERISTIC FUNCTION OF WORK

The response of a quantum system on a perturbation by a
classical, external force can be characterized by the change
of energies contained in the total system. The energy as an
observable coincides with the Hamiltonian H�t� of the total
system. It includes the external force and therefore depends
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on time. We will consider the dynamics of the system only
within a finite window of time �t0 , t f� during which the force
is acting in a prescribed way, resulting in a protocol of
Hamiltonians which is denoted by �H�t��tf,t0

. Apart from the
action of the external force the system is assumed to be
closed. Its dynamics is consequently governed by a unitary
time evolution Ut,t0

, which is the solution of the Schrödinger
equation

i� � Ut,t0
/�t = H�t�Ut,t0

, Ut0,t0
= 1. �1�

As explained in the Introduction, the work w is measured as
the difference between the energies of the system at the final
and initial times t f and t0. In a single measurement the work
is given by the difference of two eigenvalues en�t f� and
em�t0� of the Hamiltonians H�t� at the respective times t f and
t0, i.e., by w=en�t f�−em�t0�. The inherent randomness of the
outcome of a quantum measurement in general leads to a
measured work that is random. A complete description of the
statistical properties of the work performed on the system
is provided by the characteristic function Gtf,t0

�u� which pre-
sents the Fourier transform of the probability density of the
work ptf,t0

�w�, i.e.,

Gtf,t0
�u� =� dw eiuwptf,t0

�w� . �2�

It can be expressed as a quantum correlation function of the
exponentiated Hamiltonian at the initial and the final times
�14�, i.e.,

Gtf,t0
�u� = �eiuH�tf�e−iuH�t0�	 
 Tr eiuHH�tf�e−iuH�t0��̄�t0� , �3�

where

HH�t f� = Utf,t0
† H�t f�Utf,t0

�4�

denotes the Hamiltonian in the Heisenberg picture. The den-
sity matrix �̄�t0� follows from the initial density matrix ��t0�
as a result of the measurement of the Hamiltonian H�t0�. It is
given by

�̄�t0� = �
n

Pn�t0���t0�Pn�t0� , �5�

where the operators Pn�t0� denote the eigenprojection opera-
tors of the Hamiltonian at time t0, which present a partition
of unity:

�
n

Pn�t0� = 1. �6�

Before we apply the general expression �3� to a particular
system and investigate its dependence on the initial state
��t0�, we discuss three general properties of the correlation
expression �3� which guarantee that the resulting function
Gtf,t0

�u� indeed always presents a proper characteristic func-
tion of a classical random variable w.

�i� Gtf,t0
�u� is a continuous function of u.

�ii� Gtf,t0
�u� is a positive definite function of u, i.e., for all

integer numbers n, all real sequences u1 ,u2 , . . . ,un, and all
complex numbers zi, i=1,2 , . . . ,n,

�
i,i�

n

Gtf,t0
�ui − ui��zi

�zi� � 0 �7�

holds. Here, the asterisk zi
� denotes the complex conjugate of

zi.
�iii� Gtf,t0

�0�=1.
According to a theorem by Bochner �18� the properties

�i�–�iii� are necessary and sufficient conditions for the func-
tion Gtf,t0

�u� to be the Fourier transform of the probability
measure of a random variable. In short, the first condition
ensures that, strictly speaking, the function Gtf,t0

�u� is the
Fourier transform of a measure, the second condition assures
that this measure is positive, and the third condition that it is
normalized. Hence the correlation expression Eq. �3� always
defines a proper characteristic function. A proof of the prop-
erties �i�–�iii� can be found in Appendix A.

III. CANONICAL AND MICROCANONICAL INITIAL
STATES

In experiments an external force is often applied on a
system that initially is found in a thermodynamic equilibrium
state. Depending on whether the system was in weak contact
with a heat bath or was totally isolated from its environment,
the initial state of the system is described by either a canoni-
cal or a microcanonical density matrix. For both situations
fluctuation and work theorems are known. We will briefly
review these relations.

A. Work and fluctuation theorems for canonical initial states

If the initial density matrix is canonical, i.e., if

��t0� = Z−1�t0�exp�− �H�t0�� , �8�

where

Z�t0� = Tr exp�− �H�t0�� = e−�F�t0� �9�

denotes the partition function and F�t0� the free energy, then
�H�t0� ,��t0��=0 and the first measurement of the energy
leaves the density matrix unchanged, such that �̄�t0�=��t0�.
With Eq. �3� this leads to the characteristic function of work
for a canonical initial state that was derived in Ref. �12�. In
this case, Gtf,t0

�u� can be continued to an analytical function
of u for all 0�Iu�� �13�, where Iu denotes the imaginary
part of u. For the particular value u= i� the characteristic
function yields the mean value of the exponentiated work,
�exp�−�w�	 and the correlation function expression �3� sim-
plifies to the ratio of the partition functions at the times t f and
t0, resulting in the Jarzynski work theorem

�e−�w	 = Z�t f�/Z�t0� = exp�− ��F�t f� − F�t0��� , �10�

where Z�t f�=Tr exp�−�H�t f��=exp�−�F�t f��.
Within the domain of analyticity S= ��u�0�Iu��� the

characteristic functions for the original and the time-reversed
protocol are related to each other by the following formula
�cf. �13��:
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Gtf,t0
�u� =

Z�t f�
Z�t0�

Gt0,tf
�− u + i�� , �11�

where Gt0,tf
�u� refers to processes under the time-reversed

protocol �H�t��to,tf
starting from the canonical state

Z−1�t f�exp�−�H�t f��. An inverse Fourier transform leads to
the Tasaki-Crooks fluctuation theorem, which relates the
probability densities of work ptf,t0

�w� for a given protocol to
the density of the work pt0,tf

�w� for the time-reversed proto-
col. This theorem explicitly reads �13�

ptf,t0
�w�

pt0,tf
�− w�

=
Z�t f�
Z�t0�

e�w = e−��F�tf�−F�t0�−w�. �12�

B. Fluctuation theorems for microcanonical initial states

A system in a microcanonical state is described by the
density matrix

��t0� = �E
−1�t0��„H�t0� − E… , �13�

where

�E�t0� = Tr �„H�t0� − E… = exp�S�E,t0�/kB� �14�

denotes the density of states as a function of the energy E of
the system. The density of states can be expressed in terms of
the entropy of the system SE�t0� provided the spectrum of the
system Hamiltonian is sufficiently dense such that the den-
sity of states becomes a smooth function on a coarsened
energy scale. The microcanonical density matrix commutes
with the Hamiltonian H�t0�. Consequently, �̄�t0� and ��t0�
coincide.

The microcanonical quantum Crooks theorem assumes
the form �14�

ptf,t0
�E,w�

pt0,tf
�E + w,− w�

=
�E+w�t f�
�E�t0�

= expS�E + w,t f� − S�E,t0�
kB

� .

�15�

Analogous to the canonical case, it relates the probability
density pt0,t0

�E ,w� of work w, for a system starting in a mi-
crocanonical state with energy E, to the respective quantity
for the time-reversed process starting at energy E+w. This
quantum theorem is formally identical to the corresponding
classical theorem �19�.

From the microcanonical Crooks theorem the probability
density of the time-reversed process can be eliminated to
yield the so-called entropy-from-work theorem �14�, reading

�Ef
�t f� =� dw �Ef−w�t0�ptf,t0

�E f − w,w� . �16�

This theorem allows one to determine the unknown density
of states of a system with Hamiltonian H�t f� from the known
density of states of a reference system H�t0� by means of the
statistics of the work that is performed on the system in a
process that leads from the reference system to the final sys-
tem with unknown density of states. In the case of systems
with a sufficiently smooth density of states the corresponding

entropy can be determined. For further details see Ref. �14�.

IV. DRIVEN HARMONIC OSCILLATOR

To illustrate these concepts we consider an example that
allows the analytical construction of the probability of work.
Specifically, we consider a harmonic oscillator on which a
time-dependent force acts during a finite interval of time. Its
time evolution is governed by the Hamiltonian

H�t� = �	a†a + f��t�a + f�t�a†, �17�

where 	 denotes the angular frequency, and a† and a creation
and annihilation operators, respectively, which obey the
usual commutation relation, i.e., �a ,a†�=1. The complex
driving force f�t� allows for a coupling to position and/or
momentum of the oscillator. We assume that f�t� vanishes for
times t� t0=0. It is our aim to study the influence of the
initial state ��t0� on the statistics of work performed on the
oscillator. The measurement of H�t0�=�	a†a at time t0=0
then yields the result �	n with probability

pn = �n���t0��n	 . �18�

Accordingly, the oscillator is found in the state

�̄�t0� = �
n

pn�n	�n� �19�

immediately after this measurement. Substituting this density
matrix in the general expression for the characteristic func-
tion, Eq. �3�, one obtains

Gtf,t0
�u� = �

n

pne−iu�	n�n�eiuHH�tf��n	 . �20�

For the driven harmonic oscillator the diagonal matrix ele-
ment of the exponentiated Hamiltonian HH�t f� can be deter-
mined �17�. For details see Appendix B. With the expression
�B14� for the matrix element �n�exp�iHH�t f���n	 we find

Gtf,t0
�u� = eiu�f�tf��

2/��	� exp��eiu�	 − 1��z�2�


�
n=0

�

�
k=0

n

pnn

k
� �z�2�n−k�

�n − k�!
e−iu�	�n−k��eiu�	 − 1�2�n−k�

= eiu�f�tf��
2/��	� exp��eiu�	 − 1��z�2�


�
n=0

�

pnLn4�z�2sin2�	u

2
� , �21�

where �f�t f��2 / ��	� denotes a uniform shift of the spectrum
of the harmonic oscillator due to the presence of the external
force �cf. Eq. �B9�� and

z =
1

�	
�

0

tf

ds ḟ�s�exp�i	s� �22�

is a dimensionless functional of the driving force f�t� �cf. Eq.
�B7��. This dimensionless quantity vanishes in particular for
all-quasistatic forcings, i.e., if the force changes only very
slowly with f�t�=g�t / t f� for t f →�, where g��� is a continu-
ously differentiable function of �� �0,1�. We hence call z�t�
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the rapidity parameter of the force protocol. Finally, Ln�x�
=�k=0

n � n
k ��−x�k /k! denotes the Laguerre polynomial of order

n �21�.
Introducing the cumulant generating function K�u�

=ln G�u�, one obtains the cumulants of work kn as the nth
derivatives of K�u� with respect to u taken at u=0 �22�, i.e.,
kn= �−i�ndnK�0� /dun. The first four cumulants become

k1 = �w	 =
�f�t f��2

�	
+ �	�z�2, �23�

k2 = �w2	 − �w	2 = 2��	�2�z�2�a†a	0 +
1

2
� , �24�

k3 = �w3	 − 3�w2	�w	 + 2�w	3 = ��	�3�z�2, �25�

k4 = �w4	 − 4�w3	�w	 − 3�w2	2 + 12�w2	�w	2 − 6�w	4

= ��	�4�z�2�1 + 4�a†a	0 + 6��a†a�a†a − 1�	0 − 2�a†a	0��z�2� .

�26�

The odd cumulants of the work are independent of the initial
preparation. The even cumulants depend on the factorial mo-
ments of the number operator a†a with respect to the initial
state �̄�t0� such as �a†a	0=�nnpn and �a†a�a†a−1�	0
=�nn�n−1�pn, where pn is defined in Eq. �18�. Moreover, all
cumulants apart from the first one vanish for forcings with
z=0. This holds true in particular for all quasistatic force
characteristics. The underlying work probability density then
shrinks to a � function at w= �f�t f��2 / ��	�.

In general, the work probability density follows from the
characteristic function by means of an inverse Fourier trans-
formation. Rather than the characteristic function itself, we
first consider the function G�u�
exp�−iu�f�t f��2 / ��	��

Gtf,t0

�u�. Upon expanding exp��z�2exp�iu�	�� into a series
of powers of �z�2, we obtain for G�u� a Laurent series in the
variable exp�iu�	�. The inverse Fourier transformation is
given by a series of � functions ��w−�	r�, with r�Z, with
weights

qr = e−�z�2 �
m,n=0

�

�
k=0

n

�
l=0

2k

�− 1�2k−lpn

�z�2�k+m�

m ! k!
n

k
�2k

l
��l+m,k+r

= e−�z�2�
n=0

�

�
k=0

n

�
l=0

min�k+r,2k�

�− 1�2k−lpn

�z�2�2k+r−l�

�k + r − l� ! k!
n

k
�2k

l
� .

�27�

The factor exp�−iu�f�t f��2 / ��	��, by which G�u� has to be
multiplied to yield Gtf,t0

�u�, gives rise to a constant shift such
that the probability density of work performed on a harmonic
oscillator becomes

ptf,t0
�w� = �

r

qr��w − �	r +
�f�t f��2

�	
�� . �28�

In the next section we will investigate the influence of the
initial state on the statistics of the work.

A. Distributions of work for different initial states

As particular examples of initial states we will discuss
microcanonical, canonical, and coherent states.

1. Microcanonical initial state

For a microcanonical initial state with energy �	n0 the
density matrix becomes

��t0� = �̄�t0� = �n0	�n0� . �29�

The characteristic function then reads

Gtf,t0
mc �n0,u� = eiu�f�tf��

2/��	� exp��eiu�	 − 1��z�2�


Ln0
4�z�2sin2�	u

2
� �30�

and, accordingly, the probability qr
mc�n0� to find a change of

energy by w=�	r+ �f�t f��2 / ��	� emerges as

qr
mc�n0� = e−�z�2�

k=0

n0

�
l=0

min�k+r,2k�
�− 1�2k−l

�k + r − l� ! k!
n

k
�2k

l
��z�2�2k+r−l�.

�31�

As expected from the behavior of the moments, all probabili-
ties qr

mc�n0� with r�0 vanish for quasistatic forcing, i.e., if
z→0. The dependence of qr

mc�n0� on the parameter z is dis-
played in Fig. 1 for n0=0 and 3 as well as for the eight
lowest values of r. With increasing values of the rapidity
parameter z the distribution is becoming broader.

For the fixed value of �z�=2 the distribution qr
mc�n0� is

compared for the three initial states with n0=0, 10, and 30 in
Fig. 2. With increasing value of n0 the distributions become
broader. They develop a slightly asymmetric shape with
higher peaks at negative values of r compared to those at
positive r values. Between these dominant peaks the prob-
ability still displays pronounced variations.

For a harmonic oscillator, the microcanonical Crooks
theorem reduces to the relation qr

mc�n�=q−r
mc�n+r�. One can

prove that this symmetry is satisfied by the probabilities
qr

mc�n� given by Eq. �31�. As a consequence, the ratio
qr

mc�n� /q−r
mc�n+r� is unity independently of the actual values

of the initial energy, the work, and the force protocol as
given by n, r, and z, respectively.

2. Canonical initial state

For a canonical density matrix

��t0� = �1 − e−��	�e−��	a†a �32�

the initial states are distributed according to pn=e−��	n�1
−e−��	�. This allows one to write the sum over n in the
characteristic function �21� in terms of the generating func-
tion of the Laguerre polynomials �cf. �21�� yielding the ex-
pression
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Gtf,t0
c ��,u� = exp iu�f�t f��2

�	
+ �eiu�	 − 1��z�2

− 4�z�2
sin2��	u/2�

e��	 − 1
� . �33�

Putting u= i�, one finds that the two terms in the exponent
that are proportional to �z�2 cancel each other, such that one
obtains

�e−�w	 = Gtf,t0
c ��,i�� = exp�− ��f�t f��2/��	�� . �34�

The free energy difference of two oscillators with Hamilto-
nians H�t0�=�	a†a and H�t f�=�	a†a+ f��t f�a+ f�t�a†, each
one staying in a canonical state at the temperature �, is given
by F=F�t f�−F�t0�= �f�t f��2 / ��	�. Hence, Eq. �34� agrees
with Jarzynski’s work theorem.

The probability qr
c��̃� to find the work w=�	r

+ �f�t f��2 / ��	� if the system starts in a canonical state be-
comes

qr
c��̃� = e−�z�2�1 − e−�̃��

n=0

�

�
k=0

n

�
l=0

min�k+r,2k�

�− 1�le−�̃n



�z�2�2k+r−l�

�k + r − l� ! k!
n

k
�2k

l
� , �35�

where �̃=��	 denotes the inverse dimensionless tempera-

ture of the initial state. The expression for qr
c��̃� can be fur-

ther simplified to read

qr
c��̃� = e−�z�2coth��̃/2�e�̃r/2Ir �z�2

sinh �̃/2
� , �36�

where I��x� denotes the modified Bessel function of the first
kind of order � �21�. For details of the derivation see Appen-
dix C.

Note that the following detailed-balance-like symmetry
relation exists:

q−r
c ��̃� = e−�̃rqr

c��̃� , �37�

relating the occurrence of positive and negative work. Figure
3 illustrates this relation, which is closely connected to the
Tasaki-Crooks theorem �12�, as demonstrated at the end of

this section. In Fig. 4 the z dependence of qr
c��̃� for �̃

=ln�4 /3� is compared for a few small values of r. One finds
that, because of the average over the canonical initial distri-
bution, the multipeaked structure of the microcanonical dis-
tribution as a function of the rapidity parameter �z� disap-
pears, and only a single peak remains for each value of r.
The temperature dependence of the work distribution is illus-
trated in Fig. 5.

Finally, we verify the validity of the Tasaki-Crooks theo-
rem �12� for a driven oscillator. For this purpose we consider
the probability density pt0,tf

�−w� for the time-reversed proto-
col. Since the absolute values of the rapidity parameters co-
incide for the original and the time-reversed protocols, the
probability density of work for the reversed protocols be-
comes

0 1 2 3 4 5 6z

−3−2−10
1

2
3

4

r

1.0

0.5
qmc
r (0)

0 1 2 3 4 5 6z

−3−2−10
1

2
3

4

r

1.0

0.5
qmc
r (3)

(b)

(a)

FIG. 1. Probabilities qr
mc�n0� for two microcanonical initial

states with n0=0 �a� and 3 �b� are depicted for r=−3, . . . ,4, as
functions of the rapidity parameter z defined in Eq. �B7�. In both
cases the distribution collapses at r=0 for qausi—static forcing,
corresponding to �z�=0, and broadens with increasing �z�. Obvi-
ously, when starting in the ground state the oscillator cannot deliver
work, whence the probability for negative r strictly vanishes.
“Stimulated emission” becomes possible from an excited state at
finite driving rapidity z, leading to nonzero probabilities qr

mc�n0� at
negative values of r in �b�.

0

0.05

0.1

0.15

0.2

qm
c

r
(n

0)

−20 −10 0 10 20 30

r

n0 = 0
n0 = 10
n0 = 30

FIG. 2. �Color online� Probabilities qr
mc�n0� for a microcanonical

initial state with n0=0 �circles�, 10 �diamonds�, and 30 �triangles�
are compared for a fixed rapidity parameter �z�=2 and r=
−22, . . . ,30. The lines serve as a guide for the eye.
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pt0,tf
�− w� = �

r=−�

�

qr
c�����− w − �	r −

�f�t f��2

�	
�� , �38�

where we took into account the overall shift of the
spectrum by the reversed protocol as −�f�t f�� / ��	�. Multi-
plying both sides of Eq. �38� with exp�−��F−w��
=exp�−���f�t f��2 / ��	�−w�� and using the symmetry �37�,
one obtains

e−��F−w�pt0,tf
�− w� = �

r

e−���f�tf��
2/��	�−w�qr

c��̃�


��− w − �	r −
�f�t f��2

�	
��

= �
r

e�̃rqr
c��̃���w + �	r −

�f�t f��2

�	
��

= ptf,t0
�w� , �39�

in accordance with the Tasaki-Crooks theorem �12�. Con-
versely, if the Tasaki-Crooks theorem holds for a discrete
work distribution of the form �28�, then the detailed-balance-

like relation �37� follows for the probabilities qr
c��̃�.

3. Coherent initial state

An oscillator prepared in a coherent state ��	 is described
by the density matrix

��t0� = ��	��� , �40�

where

��	 = e�a†+�*a�0	 , �41�

and �0	 is the normalized ground state of the oscillator satis-
fying a�0	=0. Note that the coherent state density matrix
does not commute with the Hamiltonian H�t0�. The measure-
ment of H�t0� modifies the coherent state �40� by projecting
it onto the eigenstates �n	= �a†�n /�n!�0	 of this Hamiltonian,
leading to

�̄�t0� = e−���2�
n

���2n

n!
�n	�n� . �42�

This implies a Poissonian distribution of the respective en-
ergy eigenvalues �	n,

pn
cs =

���2n

n!
e−���2, �43�

which yields for the characteristic function of work �21� a
closed expression of the form

Gtf,t0
cs ��,u� = exp iu�f�t f��2

�	
+ �z�2�ei�	u − 1��


J04��z sin
�	u

2
�� , �44�

where J0�x� is the Bessel function of order zero �cf. Ref
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FIG. 3. �Color online� Natural logarithm of the probability ratio
of positive and negative transferred work resulting from Eq. �36� as

a function of r for different dimensionless temperatures �̃=� /�	
=0.5,1 ,2 �circles, squares, lozenges� and different rapidity param-
eters z=1,2 �large open, small filled symbols�. The symmetry rela-

tion �37� implies a linear law with inclination �̃ �thin straight bro-
ken lines� which is independent of the rapidity parameter. The
agreement is perfect.
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FIG. 4. Probabilities qr
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comparability, the dimensionless inverse temperature is chosen such
that the average energy in the initial state coincides with the energy
3�	 of the microcanonical state in Fig. 1�b�.
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�21��. For the probability qr
cs��� of work one obtains with Eq.

�27�

qr
cs��� = e−�z�2 �

m=0

� �z�2m��z�2�m−r�

m ! ��m − r�!�2 1F2�m − r� +
1

2
; �m − r�

+ 1,2�m − r� + 1;− 4��z�2� , �45�

where 1F2�a ;b ,x ;x� denotes a generalized hypergeometric
function �21�. For details of the derivation, see Appendix D.

The dependence of the probabilities qr
cs��� on the rapidity

parameter �z� is illustrated in Fig. 6 for r values ranging from
−10 to 20. Increasing values of z lead to a broadening of the
distribution and also to a shift toward larger values of r; see
also Fig. 7�b�. This broadening and shift is in accordance
with Eq. �23� and �24� for the first two cumulants of the
work, which both increase with �z�2. Figure 7�a� shows the
dependence of the probabilities qr

cs��� on the parameter �.
Increasing � also leads to a broadening of the work distribu-
tion without influencing its mean value �cf. also Eq. �23��. In
Fig. 8 the probabilities qr are depicted for different initial
states. In one case the oscillator is initially prepared in a

canonical state at inverse dimensionless temperature �̃
=��	=0.1. In the other case, the oscillator stays in a coher-
ent state ��	, where the absolute value of � is chosen such
that the mean excitation number is the same for both states,
i.e., ���2=exp�−��	� / �1−exp�−��	��. For ��	=0.1 one
finds ���2�9.51. The two oscillators then are subjected to
protocols with the same rapidity parameter �z�=2. According
to Eqs. �23� and �24� the first two moments of the work
performed on the oscillators coincide. Yet the distribution of

weight factors qr
c��̃� and qr

cs��� distinctly differ. Whereas the
distribution is pronouncedly bimodal in the case of the co-
herent state, it is unimodal for the canonical state. The

weight factors qr
c��̃� almost perfectly fall onto a Gaussian

probability density which has the same first two moments as
the discrete distribution given by qr.

V. CONCLUSIONS

In this work we studied the statistics of work performed
on an externally driven quantum mechanical oscillator by

means of a correlation function expression for the character-
istic function of the work. We demonstrated that this particu-
lar expression indeed always represents a proper characteris-
tic function of a random variable, which is the performed
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FIG. 6. Probabilities qr
cs��� for a coherent state with parameter

���=3 for r=−10, . . . ,20 as functions of z.

0

0.05

0.1

0.15

0.2

qc
s r
(α

)
qc

s r
(α

)

−10 0 10 20

rr

|α|2 = 0.1
|α|2 = 1
|α|2 = 10

0

0.05

0.1

0.15

0.2

0.25

qc
s r
(α

)

0 10 20 30
r

|z| = 1
|z| = 2
|z| = 4

(b)

(a)

FIG. 7. �Color online� Distribution of work performed on an
oscillator which initially is prepared in a coherent state ��	 for dif-
ferent values of � in �a� and of the rapidity parameter z in �b�. In �a�
the rapidity parameter has the value �z�=2. In �b� the coherent state
parameter has the value ���2=1.
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FIG. 8. �Color online� Distribution of work compared for a ca-
nonical and a coherent initial state subject to the same force proto-
col with rapidity parameter z=2. With ��	=0.1 and ���2�9.51, the
expectation values of the energies agree in the two initial states such
that according to Eqs. �23� and �24� the first and second moments of
the work also coincide. Still the distributions of work greatly differ
from each other.
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work in the present context. The proof given here is based on
Bochner’s theorem. Note that it holds for general quantum
mechanical systems, not only for harmonic oscillators.

The considered force linearly couples to the position and
momentum of the oscillator. It may describe the influence of
an electric field on charged particles in a parabolic trap or the
external forcing of a single electromagnetic cavity mode. For
this type of additive forcing, the frequency of the oscillator
remains unchanged and therefore the level spacing of the
eigenvalues of the Hamiltonian is not influenced by the
force. The spectrum is only shifted as a whole. As a conse-
quence the work performed on the oscillator is, as a positive
or negative integer multiple of the level spacing, a discrete
random variable. We determined the first few cumulants of
the work for arbitrary force protocols and initial states. A
complementary study for a parametrically forced oscillator
was recently performed by Deffner and Lutz �15�.

It turns out that for the harmonic oscillator the statistics of
work depends on the force protocol �f�t��tf,t0

only through
two real parameters, which are �i� the shift of the spectrum,
given by L�t f�= �f�t f��2 / ��	�, and �ii� the absolute value of

the dimensionless quantity z=�t0
tf ḟ�s�exp�i	s�. This param-

eter vanishes for all quasistatic processes and therefore pre-
sents a measure of the rapidity of the force protocol. While
the presence of L�t f� only causes an overall shift of the pos-
sible values of the work, the rapidity parameter �z� also in-
fluences its distribution. Typically, the distributions move to-
ward larger values of work w and become broader with
increasing rapidity �z�, indicating a more violent impact on
the oscillator.

We also demonstrated that different initial states of the
system such as microcanonical, canonical, or coherent states
have a large influence on the work statistics. We further note
that two different initial density matrices with the same di-
agonal elements with respect to the energy eigenbasis of the
Hamiltonian H�t0� lead to identical work distributions even
though the two density matrices may be very different in
other respects. For example, the coherent pure state ��	���
and the mixed state exp�−���2n��n���2 /n ! �n	�n� cannot be
distinguished by means of their respective work statistics.
This statistics is also insensitive to the phase of a coherent
state.
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APPENDIX A: PROOF OF THE PROPERTIES OF Gtf,t0
(u ,v)

We prove that the conditions of Bochner’s theorem are
satisfied, and consequently Gtf,t0

�u� is a proper characteristic
function.

Proof of property (i): Gtf,t0
�u� is a continuous function of

u. The Hamiltonian operators at the two times of measure-
ment t0 and t f are self-adjoint operators. According to the

theorem of Stone �20�, each of the exponential operators
exp�−iuH�t0�� and exp�iuHH�t f�� forms a strongly continuous
one-parameter group of unitary operators with parameter u.
As the trace of a product of two strongly continuous operator
valued functions of u with the density operator �̄�t0�, which
is a trace class operator and independent of u, the character-
istic function �3� is a continuous function of u.

Proof of property (ii): Gtf,t0
�u� is a positive definite func-

tion of u. Using the cyclic invariance of the trace and the fact
that H�t0� and �̄�t0� commute with each other, we can rewrite
the left-hand side of the inequality �7� as

�
i,j

n

Gtf,t0
�ui − u j�zi

�z j = �
i,j

n

Tr ei�ui−uj�HH�tf�e−i�ui−uj�H�t0��̄�t0�zi
�z j

= Tr A†A�̄�t0� � 0, �A1�

where

A = �
i

zi
ne−iuiHH�tf�eiuiH�t0� �A2�

is a bounded operator and A† its adjoint. The last inequality
in �A1� immediately follows from the positivity of A†A and
of the density matrix �̄�t0�.

Proof of property (iii): Gtf,t0
�0�=1. For u=0 the exponen-

tial operators exp�−iuH�t0�� and exp�iuHH�t f�� become unity.
By means of Eqs. �5� and �6� the trace over the density
matrix �̄�t0� reduces to the trace of the initial density matrix
��t0�, which is 1.

APPENDIX B: THE MATRIX ELEMENT Šn�exp[iuHH(tf)]�n‹

The total time rate of change of the Hamiltonian HH�t�
coincides with its partial derivative with respect to time.
Hence, we obtain with Eq. �17� for the driven oscillator

dHH�t�
dt

= ḟ��t�aH�t� − ḟ�t�aH
† �t� , �B1�

where aH�t� and aH
† �t� denote annihilation and creation op-

erators, respectively, in the Heisenberg picture, which are
given by

aH�t� = e−i	ta −
i

�
�

0

t

ds e−i	�t−s�f�s� �B2�

and

aH
† �t� = ei	ta† +

i

�
�

0

t

ds ei	�t−s�f��s� . �B3�

This yields for HH�t f�

HH�t f� = �	a†a + B��t f�a + B�t f�a† + C�t� , �B4�

where

B�t f� = �
0

tf

ds ḟ�s�ei	s,
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C�t f� =
i

�
�

0

tf

ds�
0

s

ds�� ḟ�s�f��s��ei	�s−s��

− ḟ ��s�f�s��e−i	�s−s��� . �B5�

The unitary operator

V = eza†−z�a �B6�

with

z =
B�t f�
�	

�B7�

transforms HH�t� into

VHH�t f�V† = �	a†a + L�t f� , �B8�

where

L�t f� = C�t f� −
�B�t f��2

�	
=

�f�t f��2

�	
. �B9�

Note that V induces a shift of the creation and annihilation
operators,

VaV† = a − z, Va†V† = a† − z�, �B10�

and further note that, when acting on the ground state �0	
with a�0	=0, the operator V yields the coherent state �z	, i.e.,

V�0	 = �z	 . �B11�

One finds with these properties

�n�eiuHH�tf��n	 =
1

n!
�z��a − z�neiu�	a†a+iuL�tf��a† − z��n�z	

=
1

n!
eiuL�tf�

�2n

�xn � yn


��z�ex�a−z�eiu�	a+aey�a+−z���z	�x=y=0. �B12�

Here we have introduced the auxiliary variables x and y

which allow us to represent the nth powers of shifted cre-
ation and annihilation operators by derivatives of the corre-
sponding order. The scalar function e−i�xz+yz�� can be taken
out of the scalar product and the remaining operator can be
brought into normal order. It then becomes �23�

exaeiu�	a†aeya†
= N�exp��eiu�	 − 1�a†a

+ eiu�	�xa + ya† + xy��� , �B13�

where under the normal ordering operator N all creation op-
erators stand left of the annihilation operators. The matrix
element with respect to the coherent state �z	 can be read off,
yielding

�n�eiuHH�tf��n	 =
1

n!
eiuL�tf� exp��eiu�	 − 1��z�2�

�2n

�xn � yn


exp���eiu�	 − 1��xz + yz�� + eiu�	xy��x=y=0

=
1

n!
eiuL�tf� exp��eiu�	 − 1��z�2�

�n

�yn


 ��eiu�	 − 1�z + eiu�	y�nexp���eiu�	 − 1�


��z�2 + yz����y=0

= eiu�f�tf��
2/��	� exp��eiu�	 − 1��z�2�


�
k=0

n n

k
� �z�2�n−k�

�n − k�!
eiu�	k�eiu�	 − 1�2�n−k�.

�B14�

APPENDIX C: WORK DISTRIBUTION
FOR A CANONICAL INITIAL STATE

To determine the expression �36� for the work distribution

qc��̃�, we start from the general expression given in the first
equality of Eq. �27�. Interchanging the summation over the
indices n and k, we obtain

qr
c��̃� = e−�z�2 �

m,k=0

�

�
l=0

2k

�− 1�l �z�2�k+m�

m ! k!
2k

l
��l+m,k+r�

n=k

�
e−�̃n

1 − e−�̃
n

k
�

=
�1�

e−�z�2 �
m,k=0

�

�
l=0

2k

�− 1�l �z�2�k+m�

m ! k! 2k

l � 1

e�̃ − 1
�k

�l+m,k+r

=
�2�

�− 1�re−�z�2 �
m=0

� �− �z�2�m

m! �
k=�m−r�

� �− �z�2/�e�̃ − 1��k

k!
 2k

k + r − m
�
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=
�3�

�− 1�re−�z�2 �
m=0

� �− �z�2�m

m!
e−2�z�2/�e�̃−1�I�m−r�−

2�z�2

e�̃ − 1
�

=
�4�

e−�z�2coth��̃/2��
m=0

� �z�2m

m!
I�m−r� 2�z�2

e�̃ − 1
�

=
�5�

e−�z�2coth��̃/2���
m=0

� �z�2

m!
Ir−m 2�z�2

e�̃ − 1
� + �

m=r+1

� �z�2

m!�Im−r 2�z�2

e�̃ − 1
� − Ir−m 2�z�2

e�̃ − 1
���

= e−�z�2coth��̃/2�e�̃r/2Ir �z�2

sinh��̃/2�
� . �C1�

In the first step � =
�1�

� we performed the sum on n according to

�
n=k

�
xk

1 − x
n

k
� =  x

1 − x
�k

�C2�

�cf. Ref. �24�, formula 5.2.11.3�. In the second step � =
�2�

� the
Kronecker � is used to perform the sum over k. The third

step � =
�3�

� is based on the relation

�
k=�l�

�
xk

k!
 2k

k + l
� = e2xI�l��2x� �C3�

valid for integer l. Here I��x� denotes the modified Bessel
function of the first kind of order �. With I��−x�
= �−1��I��x�, where � is an integer, we come to the right-hand

side of the equality � =
�4�

�. In the next step the sum on m is
rewritten. The term in the square brackets vanishes because
I��x� is an even function of order �. The remaining sum can
be performed by means of the identity

�
k=0

�
tk

k!
I�−k�x� = 2t

x
+ 1��/2

I���x2 + 2tx� �C4�

�cf. �24� 5.8.3.1�. This leads to the final result given in Eq.
�36�.

APPENDIX D: WORK DISTRIBUTION FOR A COHERENT
INITIAL STATE EQ. (45)

Starting from Eq. �27�,we may proceed in an analogous
way as in the case of a canonical initial state; cf. Appendix
C. According to Eq. �43� a Poissonian average over the bi-
nomial � n

k � has to be performed instead of the geometric
average in the first step of Eq. �C1�. This yields

�
n=k

� ���2n

n!
e−���2n

k
� =

���2k

k!
. �D1�

Next the Kronnecker � is used to perform the sum over l,
leaving one with two sums of which the inner one over k can
be expressed in terms of a generalized hypergeometric func-
tion �21�, to become

�
k=�m−r�

� �− ��z�2�k

�k!�2  2k

k + r − m
�

=
�− ��z�2��m−r�

��m − r�!�2 1F2�m − r�

+
1

2
; �m − r� + 1,2�m − r� + 1;− 4��z�2� . �D2�

This immediately leads to the expression in Eq. �45�.
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