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Glossary24

Correlation A correlation describes the degree of rela-25

tionship between two or more variables. The correla-26

tions are viewed due to the impact of random factors27

and can be characterized by the methods of probability28

theory.29

Correlation function The correlation function (abbrevi-30

ated, as CF) represents the quantitativemeasure for the31

compact description of the wide classes of correlation32

in the complex systems (CS). The correlation func-33

tion of two variables in statistical mechanics provides34

a measure of the mutual order existing between them.35

It quantifies the way random variables at different po-36

sitions are correlated. For example in a spin system, it37

is the thermal average of the scalar product of the spins38

at two lattice points over all possible orderings.39

Memory effects in stochastic processes through correla-40

tions Memory effects (abbreviated, as ME) appear at41

a more detailed level of statistical description of cor-42

relation in the hierarchical manner. ME reflect the43

complicated or hidden character of creation, the prop-44

agation and the decay of correlation. ME are produced45

by inherent interactions and statistical after-effects 46

in CS. For the statistical systems ME are induced by 47

contracted description of the evolution of the dynamic 48

variables of a CS. 49

Memory functions Memory functions describe mutual 50

interrelations between the rates of change of random 51

variables on different levels of the statistical descrip- 52

tion. The role of memory has its roots in the natural 53

sciences since 1906 when the famous Russian mathe- 54

matician Markov wrote his first paper in the theory of 55

Markov Random Processes. The theory is based on the 56

notion of the instant loss of memory from the prehis- 57

tory (memoryless property) of random processes. 58

Information measures of statistical memory in complex 59

systems From the physical point of view time scales of 60

correlation and memory cannot be treated as arbi- 61

trary. Therefore, one can introduce some statistical 62

quantifiers for the quantitative comparison of these 63

time scales. They are dimensionless and possess the 64

statistical spectra on the different levels of the statisti- 65

cal description. 66

Definition of the Subject 67

As commonly used in probability theory and statistics, 68

a correlation (also so called correlation coefficient), mea- 69

sures the strength and direction of a linear relationship 70

between two random variables. In a more general sense, 71

a correlation or co-relation reflects the deviation of two (or 72

more) variables from mutual independence, although cor- 73

relation does not imply causation. In this broad sense there 74

are some quantifiers which measures the degree of correla- 75

tion, suited to the nature of data. Increasing attention has 76

been paid recently to the study of statistical memory effects 77

in random processes that originate from nature by means 78

of non-equilibrium statistical physics. The role of memory 79

has its roots in natural sciences since 1906 when the fa- 80

mous RussianmathematicianMarkov wrote his first paper 81

on the theory of Markov Random Processes (MRP) [1]. 82

His theory is based on the notion of an instant loss of 83

memory from the prehistory (memoryless property) of 84

random processes. In contrast, there are an abundance 85

of physical phenomena and processes which can be char- 86

acterized by statistical memory effects: kinetic and relax- 87

ation processes in gases [2] and plasma [3], condensed 88

matter physics (liquids [4], solids [5], and superconductiv- 89

ity [6]) astrophysics [7], nuclear physics [8], quantum [9] 90

and classical [9] physics, to name only a few. At present, we 91

have a whole toolbox available of statistical methods which 92

can be efficiently used for the analysis of the memory ef- 93

fects occurring in diverse physical systems. Typical such 94
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schemes are Zwanzig–Mori’s kinetic equations [10,11],95

generalized master equations and corresponding statisti-96

cal quantifiers [12,13,14,15,16,17,18], Lee’s recurrence re-97

lation method [19,20,21,22,23], the generalized Langevin98

equation (GLE) [24,25,26,27,28,29], etc.99

Here we shall demonstrate that the presence of statis-100

tical memory effects is of salient importance for the func-101

tioning of the diverse natural complex systems. Particu-102

larly, it can imply that the presence of large memory times103

scales in the stochastic dynamics of discrete time series can104

characterize catastrophical (or pathological for live sys-105

tems) violation of salutary dynamic states of CS. As an106

example, we will demonstrate here that the emergence of107

strongmemory time scales in the chaotic behavior of com-108

plex systems (CS) is accompanied by the likely initiation109

and the existence of catastrophes and crises (Earthquakes,110

financial crises, cardiac and brain attack, etc.) in many CS111

and especially by the existence of pathological states (dis-112

eases and illness) in living systems.113

Introduction114

A common definition [30] of a correlation measure115

�(X;Y) between two random variables X and Y with the116

mean values E(X) and E(Y), and fluctuations ıX D X117

�E(X) and ıY D Y � E(Y), dispersions �2
X D E(ıX2)118

D E(X2) � E(X)2 and �2
Y D E(ıY2) D E(Y2) � E(Y)2 is119

defined by:120

�(X;Y) D E(ıX ıY)
�X �Y

;121

where E is the expected value of the variable. Therefore we122

can write123

�(X;Y) D [E(XY) � E(X) E(Y)]
(E(X2) � E(X)2)1/2 (E(Y2) � E(Y)2)1/2

:124

Here, a correlation can be defined only if both of the125

dispersions are finite and both of them are nonzero. Due to126

the Cauchy–Schwarz inequality, a correlation cannot ex-127

ceed 1 in absolute value. Consequently, a correlation as-128

sumes it maximum at 1 in the case of an increasing linear129

relationship, or �1 in the case of a decreasing linear re-130

lationship, and some value in between in all other cases,131

indicating the degree of linear dependence between the132

variables. The closer the coefficient is either to �1 or 1,133

the stronger is the correlation between the variables. If the134

variables are independent then the correlation equals 0,135

but the converse is not true because the correlation coef-136

ficient detects only linear dependencies between two vari-137

ables.138

Since the absolute value of the sample correlation must 139

be less than or equal to 1 the simple formula conveniently 140

suggests a single-pass algorithm for calculating sample 141

correlations. The square of the sample correlation coeffi- 142

cient, which is also known as the coefficient of determina- 143

tion, is the fraction of the variance in �x that is accounted 144

for by a linear fit of xi to � y. This is written 145

R2
x y D 1 �

�2
yjx
�2
y

; 146

where �2
yjx denotes the square of the error of a linear re- 147

gression of xi on yi in the equation y D a C bx , 148

�2
yjx D 1

n

nX

iD1

(y i � a � bxi )2 149

and �2
y denotes just the dispersion of y. 150

Note that since the sample correlation coefficient is 151

symmetric in xi and yi , we will obtain the same value for 152

a fit to yi: 153

R2
x y D 1 �

�2
xjy
�2
x

: 154

This equation also gives an intuitive idea of the corre- 155

lation coefficient for random (vector) variables of higher 156

dimension. Just as the above described sample correlation 157

coefficient is the fraction of variance accounted for by the 158

fit of a 1-dimensional linear submanifold to a set of 2-di- 159

mensional vectors (xi ; y i), so we can define a correlation 160

coefficient for a fit of an m-dimensional linear submani- 161

fold to a set of n-dimensional vectors. For example, if we 162

fit a plane z D a C bx C cy to a set of data (xi ; y i ; zi ) then 163

the correlation coefficient of z to x and y is 164

R2 D 1 �
�2
zjx y
�2
z

: 165

Correlation andMemory 166

in Discrete Non-Markov Stochastic Processes 167

Here we present a non-Markov approach [31,32] for the 168

study of long-time correlations in chaotic long-time dy- 169

namics of CS. For example, let the variable xi be defined 170

as the R-R interval or the time distance between near- 171

est, so called R peaks occurring in a human electrocar- 172

diogram (ECG). The generalization will consist in taking 173

into account non-stationarity of stochastic processes and 174

its further applications to the analysis of the heart-rate- 175

variability. 176
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We should bear in mind, that one of the key moments177

of the spectral approach in the analysis of stochastic pro-178

cesses consists in the use of normalized time correlation179

function (TCF)180

a0(t) D hhA(T)A(T C t)ii
hA(T)2i : (1)181

Here the time T indicates the beginning of a time se-182

rial, A(t) is a state vector of a complex system as defined183

below in Eq. (5) at t, jA(t)j is the length of vector A(t), the184

double angular brackets indicate a scalar product of vec-185

tors and an ensemble averaging. The ensemble averaging186

is, of course needed in Eq. (1) when correlation and other187

characteristic functions are constructed. The average and188

scalar product becomes equivalent when a vector is com-189

posed of elements from a discrete-time sampling, as done190

later. Here a continuous formalism is discussed for con-191

venience. However further, since Sect. “Correlation and192

Memory in Discrete Non-Markov Stochastic Processes”193

we shall consider only a case of discrete processes.194

The above-stated designation is true only for station-195

ary systems. In a non-stationary case Eq. (1) is not true and196

should be changed. The concept of TCF can be generalized197

in case of discrete non-stationary sequence of signals. For198

this purpose the standard definition of the correlation co-199

efficient in probability theory for the two random signalsX200

and Y must be taken into account201

� D hhXYii
�X �Y

; �X D hjXji ; �Y D hjYji : (2)202

In Eq. (2) the multi-component vectors X, Y are de-203

termined by fluctuations of signals x and y accordingly,204

�2
X ; �2

Y represent the dispersions of signals x and y, and205

values jXj; jYj represent the lengths of vectors X, Y, corre-206

spondingly. Therefore, the function207

a(T; t) D hhA(T)A(T C t)ii
hjA(T)ji hjA(T C t)ji (3)208

can serve as the generalization of the concept of TCF (1)209

for non-stationary processes A(T C t). The non-station-210

ary TCF (3) obeys the conditions of the normalization and211

attenuation of correlation212

a(T; 0) D 1 ; lim
t!1 a(T; t) D 0 :213

Let us note, that in a real CS the second limit, typically,214

is not carried out due possible occurrence nonergodocity215

(meaning that a time average does not equal its ensemble216

average). According to the Eqs. (1) and (3) for the quan-217

titative description of non-stationarity it is convenient to218

introduce a function of non-stationarity 219

� (T; t) D hjA(T C t)ji
hjA(T)ji D

�
�2(T C t)

�2(T)

� 1/2

: (4) 220

One can see that this function equals the ratio of the 221

lengths of vectors of final and initial states. In case of sta- 222

tionary process the dispersion does not vary with the time 223

(or its variation is very weak). Therefore the following re- 224

lations 225

�(T C t) D �(T) ; � (T; t) D 1 (5) 226

hold true for the stationary process. 227

Due to the condition (5) the following function 228

� (T; t) D 1 � � (T; t) (6) 229

is suitable in providing a dynamic parameter of non-sta- 230

tionarity. This dynamic parameter can serve as a quantita- 231

tive measure of non-stationarity of the process under in- 232

vestigation. According to Eqs. (4)–(6) it is reasonable to 233

suggest the existence of three different elementary classes 234

of non-stationarity 235

j� (T; t)j D j1 � � (T; t)j

D
8
<

:

� 1; weak non-stationarity
� 1; intermediate non-stationarity
� 1; strong non-stationarity

9
=

; :

(7) 236

The existence of dynamic parameter of non-station- 237

arity makes it possible to determine , on-principle, the 238

type of non-stationarity of the underlying process and to 239

find its spectral characteristics from the experimental data 240

base. We intend to use Eqs. (4), (6), (7) for the quantita- 241

tive description of effects of non-stationarity in the inves- 242

tigated temporary series of R-R intervals of human ECG’s 243

for healthy people and patients after myocardial infarc- 244

tion (MI). 245

Statistical Theory of Non-Stationary Discrete 246

Non-Markov Processes in Complex Systems TS2 247

Here we shall extend the original results of the statistical 248

theory of discrete non-Markov processes in complex sys- 249

tems, developed recently in [31], for the case of non-sta- 250

tionary processes. The theory [31] is developed on the ba- 251

sis of first principles and represents a discrete finite-differ- 252

ence analogy for complex systems of well known Zwanzig– 253

Mori’s kinetic equations [10,11,12,13,14,15,16,17,18] used 254

in the statistical physics of condensed matter. 255

                                                                                   

                                                                   

hanggi
Sticky Note
Yes, this is a new section.



  
                                                                                      

  

    

4                             

We examine a discrete stochastic process X(T C t),256

where t D m�257

258

X D fx(T); x(T C �); x(T C 2�); : : : ; x(T C k�);259

: : : ; x(T C (N � 1)�)g ; (8)260
261

where T is the beginning of the time and � is a discretiza-262

tion time. The normalized time correlation function (TCF)263

a(t) D 1
(N � m) �2

N�1�mX

jD0

ıx(TC j�) ıx(T C ( jCm) �)

(9)264

yields a convenient measure to analyze the dynamic prop-265

erties of complex systems. Herein, we used the variance266

�2, the fluctuation ıx(T C j�), which in terms of the the267

mean value hxi reads:268

ıx j D ıx(T C j�) D x(T C j�) � hxi ;

�2 D 1
(N � m)

N�1�mX

jD0

fıx(T C j�)g2 ;
(10)269

hxi D 1
(N � m)

N�1�mX

jD0

x(T C j�) : (11)270

The discrete time t is given as t D m� .271

In general, the mean value, the variance and TCF272

in (9), (10) and (11) is dependent on the numbers m273

andN . All indicated values cease to depend on numbersm274

and N for stationary processes when m � N . The defini-275

tion of TCF in Eq. (9) is true only for stationary processes.276

Next, we shall try to take into account this impor-277

tant dependence. With this purpose we shall form two k-278

dimensional vectors of state by the process (8):279

A0
k D (ıx0; ıx1; ıx2; : : : ; ıxk�1) ;

Am
mCk D (ıxm ; ıxmC1; ıxmC2; : : : ; ıxmCk�1) :

(12)280

When a vector of a state is composed of elements from281

a discrete-time sampling, the average and scalar product282

in Eq. (1) become equivalent. In an Euclidean space of vec-283

tors of state (12) TCF a(t)284

a(t) D hA0
N�1�m Am

N�1i
(N � m)f�(N � m)g2 D hA0

N�1�m Am
N�1i

jA0
N�1�mj2 (13)285

describes the correlation of two different states of the sys-286

tem (t D m�). Here the brackets h: : :i indicate the scalar287

product of the two vectors. The dimension dependence288

of the corresponding vectors is also taken into account289

in the variance � D �(N � m). As a matter of fact TCF 290

a(t) D cos # , where # is the angle between the two vectors 291

from Eq. (12). Let’s introduce a unit vector of dimension 292

(N � m) in the following way: 293

n D A0
N�1�mp

(N � m)�2
: (14) 294

Then, the TCF a(t) (9) is given by 295

a(t) D hn(0)n(t)i : (15) 296

From the above discussion it is evident that Eqs. (13)– 297

(15) are true for the stationary processes only. In case of 298

non-stationary processes it is necessary to redefine TCF, 299

taking into account the non-stationarity in the variance �2
300

in a line with Eqs.(2)–(7). For this purpose we shall rede- 301

fine a unit vector of the final state as following 302

n(t) D Am
N�1(t)

jAm
N�1(t)j

: (16) 303

For non-stationary processes it is convenient to write 304

the TCF as the scalar product of the two unit vectors of the 305

initial and final states 306

a(t) D hn(0)n(t)i D hA0
N�1�m(0)A

m
N�1(t)i

jA0
N�1�m(0)j jAm

N�1(t)j
: (17) 307

Now we shall turn to the the dynamics of a non-sta- 308

tionary stochastic process. The equation of motion of a the 309

random process xj can be written in a finite-difference 310

form for 0 � j � N � 1 [15] TS3 in the following way 311

dx j
dt

) �ıx j
�t

D ıx j(t C �) � ıx j(t)
�

: (18) 312

Then it is convenient to define the discrete evolution 313

single step operator Û as following: 314

x(TC( jC1) �) D Û(TC( jC1) �; TC j�) x(TC j�): (19) 315

In the case of stationary process we can rewrite the 316

equation of motion (18) in a more simple form 317

�ıx j
�t

D ��1˚Û(�) � 1
�

ıx j : (20) 318

The invariance of the mean value hxi is taken into ac- 319

count in an Eq. (20) 320

hxi D Û(�)hxi ;
˚
Û(�) � 1

�hxi D 0 : (21) 321

In case of a non-stationary process it is necessary to 322

turn to the equation of motion for vector of the final state 323

Am
mCk(t) (k D N � 1 � m) 324

�Am
mCk (t)
�t

D iL̂(t; �)Am
mCk(t) ; (22) 325
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where Liouville’s quasioperator is326

L̂(t; �) D (i�)�1˚Û(t C �; t) � 1
�

: (23)327

It is well known that, in general, a stochastic trajec-328

tory does not obey a linear equation, so the general evolu-329

tion operator and Liouville’s quasioperator should prob-330

ably be non-linear. Furthermore, in statistical physics the331

Liouville’s operator acts upon the probability densities of332

dynamical variables, as well upon the variables itself like333

in Mori’s paper [12]. The evolution of the density would334

be indeed linear. But Mori used the Liouville operator335

in the quantum equation of motion in [12]. In line with336

Mori [12] Eqs. (20), (22) can be considered as formal and337

exact equations of the motion of a complex system.338

Thus, due to the Eqs. (17), (22) and (23) we may take339

into account the non-stationarity of the stochastic process.340

Towards this goal let’s introduce the linear projection op-341

erator in Euclidean space of the state vectors342

˘A(t) D A(0)ihA(0)A(t)i
jA(0)j2 ; ˘ D A(0)ihA(0)

hA(0)A(0)i ; (24)343

where angular brackets in numerator present the bound-344

aries of action for the scalar product.345

For the analyzing the dynamics TS4 of the stochastic346

process A(t) the vector A0
k(0) from (12) can be considered347

as a vector of the initial state A(0), and vector Am
mCk(t)348

from (12) at value m C k D N � 1 can be considered as349

the vector of the final state A(t).350

It is necessary to note that the projection operator (24)351

has the required property of idem-potency ˘ 2 D ˘ . The352

presence of operator ˘ allows one to introduce the mutu-353

ally supplementary projection operator P:354

P D 1 � ˘ ; P2 D P ; ˘P D P˘ D 0 : (25)355

It is necessary to remark, that both projectors ˘ and P are356

linear and can be recorded for the fulfillment of operations357

in the particular Euclidean space. Due to the property (17)358

and Eq. (4) it is easy to obtain the required TCF:359

˘A(t) D ˘Am
mCk(t)

D A0
k(0)hn0k(0)nm

kCm(t)i�1(t)
D A0

k(0) a(t) �1(t) ;

�1(t) D jAm
mCk(t)j

jA0
m(0)j

:

(26)360

Therefore the projector ˘ generates a unit vector along361

the vector of the final state A(t) and makes its projection362

onto the initial state vector A(0).363

The existence of a pair of two mutually supplementary364

projection operators ˘ and P allows one to carry out the365

splitting of Euclidean space of vectors A(A(0), A(t) 2 A) 366

into a straight sum of two mutually supplementary sub- 367

spaces in the following way 368

A D A0 �C A00 ; A0 D ˘A ; A00 D PA : (27) 369

Substituting Eq. (27) in Eq. (23) we find Liouville’s 370

quasioperator L̂ in a matrix form 371

L̂ D L̂11 C L̂12 C L̂21 C L̂22 ; (28) 372

where the matrix elements are introduced 373

L̂11 D ˘ L̂˘ ; L̂12 D ˘ L̂P ;

L̂21 D PL̂˘ ; L̂22 D PL̂P :
(29) 374

The Euclidean space of values of Liouville’s quasiop- 375

erator W D L̂A will be generated by the vectors W of di- 376

mension k � 1 377

(W(0) 2 W ; W(t) 2 W)

W D W 0 �C W 00 ; W 0 D ˘W ; W 00 D PW :
(30) 378

Matrix elements L̂i j of the contracted description 379

L̂ D
�

L̂11 L̂12
L̂21 L̂22

�
(31) 380

are acting in the following way: 381

L̂11– from a subspace A0 to subspace W 0 ;

L̂12– from A00 to W 0 ;

L̂21– from W 0 toW 00 and
L̂22– from A00 to W 00 :

382

The projection operators ˘ and P provide the con- 383

tracted description of the stochastic process. Splitting the 384

dynamic Eq. (22) into two equations in the two mutually 385

supplementary Euclidean subspaces (see, for example [11] 386

TS5 , we find 387

�A0(t)
�t

D iL̂11 A0(t) C iL̂12 A00(t) ; (32) 388

�A00(t)
�t

D iL̂21 A0(t) C iL̂22 A00(t) : (33) 389

Following [31,32] it is necessary to eliminate first 390

the irrelevant part A00(t) in order to simplify Liouville’s 391

Eq. (22) and then to write a closed equation for relevant 392

part A0(t). According to [32] that can be achieved by a se- 393

ries of successive steps (for example, see Eqs. (32)–(36) 394
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in [32]). First a solution to Eq. (33) for the first step can395

be obtained in a form396

�A00(t)
�t

D A00(t C �) � A00(t)
�

D iL̂21 A0(t) C iL̂22A00(t) ;

A00(t C �) D A00(t) C i� L̂21 A0(t) C i� L̂22 A00(t)
D f1 C i� L̂22gA00(t) C i� L̂21 A0(t)
D U22(t C �; t)A00(t) C i� L̂21(t C �; t)A0(t) :

(34)397

We next can derive a finite-difference kinetic equation398

of a non-Markov type for TCF a(t D m�)399

�a(t)
�t

D �1a(t) � ��1

m�1X

jD0

M1(t � j�) a( j�) : (35)400

Here, �1 is a eigenvalue, �1 is a relaxation parameter401

of Liouville’s quasioperator L̂402

�1 D i
hA0

k(0) L̂A
0
k(0)i

jA0
k(0)j2

;

�1 D hA0
k(0) L̂12 L̂21 A

0
k(0)i

jA0
k(0)j2

D hA0
k(0) L̂

2 A0
k(0)i

jA0
k(0)j2

;

(36)403

The angular brackets indicate here a scalar product of404

new state vectors. FunctionM1(t � j�) on the right side of405

Eq. (35) represents a modified memory function (MF) of406

the first order407

M1(t � j�) D �1(t � j�)
�1(t)

m1(t � j�) : (37)408

For stationary processes the function �1(t) approaches409

unity. Then the memory functions M1(t) and m1(t) co-410

incide with each other. The latter equation is the first ki-411

netic finite-difference equation for TCF. It is remarkable,412

that the non-Markovity, discretization and non-stationar-413

ity of stochastic process can be considered explicitly. Due414

to the presence of non-stationarity both in TCF and in the415

first memory function this equation generalizes our results416

recently obtained in [31].417

Following the projection technique described above,418

we arrive at a chain of connected kinetic finite-difference419

equations of a non-Markov type for the normalized short420

memory functions mn(t) in Euclidean space of state vec-421

tors of dimension (k � n) (t D m� , n � 1) 422

�mn(t)
�t

D �nC1 mn(t) � ��nC1

�
m�1X

jD0

mnC1( j�)mn(t � j�)

�
�

�nC1( j�)�nC1(t � j�)
�n(t)

�
;

mnC1(t) D hWnC1(0)WnC1(t)i
jWnC1(0)jjWnC1(t)j ;

(38) 423

�n( j�) D
� jWn( j�)j

jWn(0)j
�

: (39) 424

Here, �n( j�) is the nth order of the non-stationarity func- 425

tion. 426

The set of allmemory functionsm1(t);m2(t);m3(t); : : : 427

allows one to describe non-Markov processes and statis- 428

tical memory effects in the considered non-stationary 429

system. For the particular case we obtain a more sim- 430

ple form for the set of equations for the first three short 431

memory functions, namely (t D m�): 432

�a(t)
�t

D ���1

m�1X

jD0

m1( j�)
�

�1( j�)�1(t � j�)
�1(t)

�

� a(t � j�) C �1a(t) ;

�m1(t)
�t

D ���2

m�1X

jD0

m2( j�)
�

�2( j�)�2(t � j�)
�2(t)

�

� m1(t � j�) C �2m1(t) ;

�m2(t)
�t

D ���3

m�1X

jD0

m3( j�)
�

�3( j�)�3(t � j�)
�3(t)

�

� m2(t � j�) C �3m2(t) :

(40) 433

Here the relaxation parameters�1,�2 and�3 have al- 434

ready been determined and the non-stationarity functions 435

�n(t) have been introduced earlier. By analogy with Eq. (6) 436

we can introduce a set of dynamic parameters of non-sta- 437

tionarity (PNS) for the arbitrary nth relaxation level 438

�n(T; t) D 1 � �n(t) D 1 � �n(T; t) : (41) 439

The whole set of values of dynamic PNS �n(t) determines 440

the broad spectrum of non-stationarity effects of the con- 441

sidered process. 442

The obtained equations are similar to the well known 443

Zwanzig–Mori’s kinetic equations [10,11,12,13,14,15,16, 444

17,18] used in non-equilibrium statistical physics of con- 445

densed matters. Let us point out three essential distinc- 446

tions of our Eqs. (40) from the results in [10,11,12]. In 447
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Zwanzig–Mori’s theory the key moment in the analysis of448

considered physical systems is the presence of a Hamil-449

tonian and an operation of a statistical averaging carried450

out with the help of quantum density operator or classic451

Gibbs distribution function [33]. In our examined case,452

both theHamiltonian and the distribution function are ab-453

sent. There are exact classic or quantum equations of mo-454

tion in physics; so Liouville’s equation and Liouville’s op-455

erator are useful in many applications. Themotion of indi-456

vidual particles and whole statistic system is described by457

variables varying in continuous time. Therefore, for phys-458

ical systems it is possible to use effectively the methods of459

integro-differential calculus, based on the mathematically460

accustomed (but from the physical point of view difficult461

for understanding) representation of infinitesimal varia-462

tions of values of coordinates and time. By nature, the463

monitored time evolution of most complex systems is dis-464

crete. As well known, discretization is inherent in a wide465

variety both of classical and quantum complex systems.466

This forces us to abandon the concept of an infinite small467

values and continuity and instead turn to discrete-differ-468

ence schemes. And, at last, the third feature is connected469

with incorporating the issue of non-stationary processes470

into our theory. The Zwanzig–Mori theory is typically ap-471

plied only for stationary processes. Due to the introduc-472

tion of normalized vectors of states and the use of the ap-473

propriate projection technique [13] our theory allows to474

take into account non-stationary processes as well. The lat-475

ter ones can be described by the non-Markov kinetic equa-476

tions together with the introduction of the set of non-sta-477

tionarity functions.478

The non-stationary theory [32] put forward here dif-479

fers from the stationary case [31]. The external structure of480

the kinetic equations remains invariant; they represent the481

kinetic equations with memory. However, the functions482

and the parameters, which are included in these equa-483

tions, appreciably differ from each other. As we already484

remarked above, non-stationarity effects enter both, in the485

functions �n(t) and in spectral and kinetic parameters.486

Correlation andMemory in Discrete Non-Markov487

Stochastic Processes Generated by Random Events488

Here we shall find a chain of the kinetic interconnected489

finite-difference equations for a discrete correlation func-490

tion a(n) and memory functions Ms(n) in the linear scale491

of events E D f	1; 	2; 	3; : : : ; 	Ng.492

The Basic Assumptions and Concepts of the Theory 493

of Discrete Non-Markov Stochastic Processes 494

of the Events Correlations 495

As an example we shall consider the time variations of the 496

total X-ray flux of an astrophysical object at a succession 497

of events: 498

E D f	1; 	2; 	3; : : : ; 	k ; : : : ; 	Ng ; (42) 499

where 	 i is an event, which occurs at time instant ti, where 500

i D 1; : : : ; N counts the event number. 501

The average value hEi, fluctuations ı	 and disper- 502

sion �2 for the set of N events are obtained as: 503

hEi D 1
N

NX

iD1

	i ; ı	i D 	i � hEi ;

�2 D 1
N

NX

iD1

ı	2i D 1
N

NX

iD1

f	i � hEig2 :

(43) 504

According to [35,36,37,38], for the description of the 505

dynamical properties of the studied system we introduce 506

the correlation dependence of the discrete set of events 507

(see Eq. (42)) using the CF: 508

a(n) D 1
(N � m) �2

N�mX

iD1

ı	i ı	iCm : (44) 509

Here n D m
n,
n D 1 is the discretization step. The 510

function a(n), which emerges in this way, is the “event” 511

correlation function (ECF). The normalized ECF must 512

obey the conditions of normalization and of the attenu- 513

ation of correlation, i. e.: limn!1 a(n) D 1, limn!1 a(n) 514

D 0. We remark, however, that the second condition for 515

the case the physical complex systems is typically not ob- 516

served (at N � 0). It is necessary to note that in [18] the 517

correlation function for the aftershock events has been in- 518

troduced: 519

C(n C nW ; nW ) D [htnCnW tnW i � htnCnW ihtnW i]
�
�2
nCnW

�2
nW

�1/2 ; 520

where the averages and the variance are given by 521

htmi D 1
N

N�1X

kDo

tmCk ;

htm t0mi D 1
N

N�1X

kDo

tmCk t0mCk ; and

�2
m D ht2mi � htmi2 ;

522

respectively. 523
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By the direct analogy of [31,32,35] we use the fi-524

nite-difference Liouville’s equation of motion in the event525

scale for describing the evolution of discrete set of events526

Eq. (11), (13):527


	i (n)

n

D ibL(n; 1) 	i (n) : (45)528

Here 	i(n C 1) D U(n C 1; n) 	i (n), U(n C 1; n) is the529

“event” evolution operator. It determines the shift in530

linear event scale to one step 
n. The evolution op-531

erator U(n C 1; n) and Liouville’s quasioperator bL(n; 1)532

can be made explicit by writing: bL(n; 1) D (i
n)�1 (U(n533

C1; n) � 1).534

Let’s represent the set of values of the dynamical vari-535

able ı	 j D ı	( j
n), j D 1; : : : ; N as the k-component536

vector of system state in linear Euclidean space:537

a) the vector of initial state of studied complex system:538

A1
k D fı	1; ı	2; ı	3; : : : ; ı	kg ; (46)539

b) the vector of final system’s state, which is shifted on540

them events along the event scale:541

Am
mCk D fı	mC1; ı	mC2; ı	mC3; : : : ; ı	mCkg ; (47)542

where 1 � k � N. The vectors of initial and final states,543

which are submitted in a similar way, are very conve-544

nient for analyzing the dynamics of the observed dis-545

crete stochastic processes with the help of discrete non-546

Markov processes.547

To represent the ECF in a more compact form, we548

use the expression for the scalar product of vectors549

hA1
k � Am

mCki D Pk
jD1 A

1
j A

m
mC j , and the Eqs. (62), (64)550

and (65) TS6 :551

a(n) D hA1
k(1)A

m
kCm(n)i

hjA1
k(1)j2i

: (48)552

Construction of Chain of Finite-Difference Non-553

Markov Kinetic Equations for the Events Correlation554

Let us consider the finite-difference Liouville’s equation555

(Eq. (44)) for the vector of final system states:556


Am
mCk (n)

n

D ibL(n; 1)Am
mCk (n) : (49)557

We introduce the projection operator ˘ , which558

projects the final vector Am
mCk(n) on the direction of ini-559

tial vector, and also the orthogonal operator P. The op-560

erators ˘ and P possess the following properties: ˘ D561

jA1
k(1)ihA1

k(1)j/hjA1
k(1)j2i, ˘ 2 D ˘ , P D 1 � ˘ , P2 D P,562

˘P D P˘ D 0. They are idempotent and mutually com- 563

plementary. 564

The initial ECF a(n) (Eq. (48)) can be derived bymeans 565

of projecting the vector of final statesAm
mCk(n) on the vec- 566

tor of initial state A1
k(1): 567

˘Am
mCk(n) D A1

k(1)hA1
k(1)A

m
mCk (n)i

hjA0
kj2i

D A1
k(1) a(n) :

(50) 568

The operators ˘ and P split Euclidean vector space 569

A(k) into two mutually orthogonal subspaces: 570

A(k) D A0(k) C A00(k) ; A0(k) D ˘A(k) ;

A00(k) D PA(k) ; Am
mCk 2 A(k) :

(51) 571

As a result the finite-difference Liouville’s Eq. (67) TS6 572

can be represented as a system of 2 equations intomutually 573

orthogonal linear subspaces: 574


A0(n)

n

D ibL11 A0(n) C ibL12 A00(n) ; (52) 575


A00(n)

n

D ibL21 A0(n) C ibL22 A00(n) : (53) 576

Here bLi j D ˘i bL˘ j are the matrix elements of Liou- 577

ville’s quasioperator: 578

bL D bL11 C bL12 C bL21 C bL22 ;

bL11 D ˘bL˘ ; bL12 D ˘bLP ;

bL21 D PbL˘ ; bL22 D PbLP :

(54) 579

To solve the system of Eqs. (70), (71) TS6 we eliminate 580

the non-reducible part, which contains A00(n) and derive 581

the self-contained equation for the reducible partA0(n). In 582

doing so we solve the Eq. (52) step-by-step and shall sub- 583

stitute the obtained solution into the Eq. (53). As a result 584

we arrive at the closed kinetic equation: 585


A0(n C m
n)

n

D ibL11 A0(n C m
n)

C ibL12
˚
1 C i
nbL22

�m A00(n)

�bL12
mX

jD1

˚
1 C i
nbL22

� j

n

�bL21 A0(n C [m � j]
n) :

(55) 586

587
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By use of projection operators ˘ and P we found the588

closed finite-difference kinetic equation of non-Markov589

type for the initial ECF:590


a(n)

n

D i�1 a(n)� 
n�1

mX

jD1

M1( j
n) a(n � j
n) :

(56)591

As 
n D 1, solution of the last equation must be fol-592

lowing:593

a(nC1) D fi�1C1g a(n)��1

mX

jD1

M1( j) a(n� j) : (57)594

Here �1 is the proper value of Liouville’s quasiopera-595

torbL, �1 is the relaxation parameter, which dimension is596

square of frequency, M1( j
n) is the normalized memory597

function of the first order:598

�1 D hA1
k(1)bL A

1
k(1)i

hjA1
k(1)j2i

;

�1 D hA1
k
bL12bL21 A1

k(1)i
jA1

k(1)j2i
;

M1( j
n) D hA1
k(1)bL12(1 C i
nbL22) j bL21 A1

k(1)i
hA1

k(1)bL12bL21 A1
k(1)i

:

599

To obtain the finite-difference kinetic equation for the600

normalized event memory function of first order and, fur-601

ther, for the higher (s � 1)th orders as well, we have to re-602

peat the foregoing procedure step-by-step. However, we603

shall make use of the Gram–Schmidt orthogonalization604

procedure [16]:605

hWsWpi D ıs p hjWs j2i : (58)606

Where ıs p is a Kronecker’s symbol. Now we shall de-607

rive the recurrence formula Ws D Ws(n) for defining the608

set of the orthogonal dynamic variables:609

W0 D A1
k ;

W1 D fibL � �1gW0 ;

W2 D fibL � �2gW1 � �1W0; : : :

(59)610

According to the foregoing formulas we can introduce611

the succession of projection operators ˘s D ˘
(s)
1 and the612

set of mutually complementary projectors Ps D 1 � ˘s ,613

which possess the following properties:614

˘s D jWsihWs j
hjWs j2i ;

P2s D Ps ;

˘s ˘p D ıs p ˘s ;

˘ 2
s D ˘s ;

˘s Ps D Ps ˘s D 0 ;

Ps Pp D ıs p Ps :

615

Each of these operators pairs ˘s , Ps splits the corre- 616

sponding Euclidean vector space Ws into the two mutual 617

complementary subspaces:Ws D W 0
s C W 0

s ,W 0
s D ˘sWs, 618

W 00
s D PsWs. Using the projection operator technique for 619

the next orthogonal variablesWs , we shall obtain the chain 620

of interconnected kinetic finite-difference equations of the 621

non-Markov type for the normalized correlation functions 622

of the (s � 1)th order: 623


M1(n)

n

D i �2 M1(n) � �2

mX

jD1

M2( j)M1(n � j) ;

: : : ;


Ms�1(n)

n

D i �s Ms�1(n) � �s

mX

jD1

Ms�1( j)Ms(n � j) :

(60) 624

In these equations the normalized events memory func- 625

tion of the first order: M1(n) D hW1(1 C i
nbL)mW1i/ 626

hjW1j2i, memory function of the (s � 1)th order:Ms�1(n) 627

D hWs�1(1 C i
nbL)mWs�1i/hjWs�1j2i, the proper value 628

of the Liouville’s quasioperatorbL: �s D hWsbLWsi/hjWs j2i 629

and the relaxation parameter �s D hjWs j2i/hjWs�1j2i are 630

introduced. 631

The foregoing finite-difference kinetic Eqs. (60) pre- 632

sent the generalization of the statistical theory [31,32,35] 633

for the case of event correlations in discrete stochastic evo- 634

lution of non-Hamilton complex systems. 635

InformationMeasures of Memory 636

in Complex Systems 637

As an information measures of memory it is useful to ap- 638

ply different dimensionless quantifiers. As a first measure 639

we use the frequency dependence of non-Markovity pa- 640

rameter. This measure was introduced in [31] and it is de- 641

fined as: 642

"i(�) D
�

�i�1(�)
�i (�)

� 1/2
: (61) 643

Here, �i (�) denotes the frequency power spectrum 644

of memory function of the ist order M i(n): �i (�) D 645

j
n
PN

nD1 M i(n) cos(2n�)j2. The non-Markovity pa- 646

rameter "i(�) along with the memory functions enables 647

us to characterize quantitatively the statistical memory ef- 648

fects in discrete complex systems of various nature. Be- 649

cause the functions �i (�) exist for each of the ith levels 650

of relaxation, we obtain the statistical spectrum of param- 651

eters: "i(�), i D 1; 2; 3; : : :. 652
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Alternatively, a study of ‘memory’ in physiolog-653

ical time series for electroencephalographic (EEG)654

and magnetoencephalographic (MEG) signals, both of655

healthy subjects and patients (including epilepsy patients)656

has been based on the detrended-fluctuation analysis657

(DFA) [39,40].658

The characterization of memory per se is based on a set659

of dimensionless statistical quantifiers which are capable660

for measuring the memory strength which is inherent to661

the complex dynamics.662

According to [41] a second set an informationmemory663

measure can be constructed as follows:664

ıi (�) D
ˇ̌
ˇ̌
ˇ

M̃0
i(�)

M̃0
iC1(�)

ˇ̌
ˇ̌
ˇ :665

Here, �i (�) D jM̃ i(�)j2 denotes the power spec-666

trum of the corresponding memory function M i(t),667

M̃0
i(�) D dM̃ i(�)/d� and M̃ i(�) is the Fourier transform668

of the memory function M i(t). The measures "i(�) are669

suitable for the quantification of the memory effects on670

a relative scale whereas the second set ıi(�) proves to be671

useful for quantifying the amplification of relative mem-672

ory effects occurring on different complexity levels. Both673

measures provide statistical criteria for comparison be-674

tween the relaxation time scales and memory time scales675

of the process under consideration. For values obeying676

f"; ıg � 1 one can observe a complex dynamics character-677

ized by the short-ranged temporal memory scales. In the678

memoryless limit these processes assume a ı-like mem-679

ory with parameters ", ı ! 1. When f"; ıg > 1 one deals680

with a situation with moderate memory strength, and the681

case where both ", ı � 1 typically constitutes a more regu-682

lar and robust random process exhibiting strong memory683

features.684

Manifestationof StrongMemory685

in Complex Systems686

A fundamental role of the strong and weak memory in687

the functioning of the human organism and seismic phe-688

nomena can be illustrated by the example of some situa-689

tions examined next. We will consider some examples of690

the time series for both living and for seismic systems. It691

is necessary to note that a comprehensive analysis of the692

experimental data includes the calculation and the pre-693

sentation of corresponding phase portraits in some planes694

of the dynamic orthogonal variables, the autocorrelation695

time functions, the memory time functions and their fre-696

quency power spectra, etc. However, we start out by cal-697

culating two statistical quantifiers, characterizing two in-698

formational measures of memory: the parameters �1(!) 699

and ı1(!). 700

Figures 1 and 3 present the results of experimental 701

data of pathological states of human cardiovascular sys- 702

tems (CVS). Figure 2 depicts the analysis for the seismic 703

observation. Figures 4 and 5 indicate the memory effects 704

for the patients with Parkinson disease (PD), and the last 705

two Figs. 6, 7 demonstrate the key role of the strength of 706

memory in the case of time series of patients suffering 707

from photosensitive epilepsy which are contrasted with 708

signals taken from healthy subjects. All these cases con- 709

vincingly display the crucial role of the statistical memory 710

in the functioning of complex (living and seismic) systems. 711

A characteristic role of the statistical memory can be 712

detected from Fig. 1 for the typical representatives taken 713

from patients from four different CVS-groups: (a) for 714

healthy subject, (b) for a patient with rhythm driver mi- 715

gration, (c) for a patient after myocardial infarction (MI), 716

(d) for a patient after MI with subsequent sudden car- 717

diac death (SSCD). All these data were obtained from the 718

short time series of the dynamics of RR-intervals from the 719

electric signals of the human ECG’s. It can be seen here 720

that significant memory effects typically lead to the long- 721

time correlations in the complex systems. For healthy we 722

observe weak memory effects while and large values of 723

the measure memory �1(! D 0) 	 25. The strong mem- 724

ory and the long memory time (approximately, 10 times 725

more) are being observedwith the help of 3 patient groups: 726

with RDM (rhythm driver migration) (b), after MI (c) and 727

after MI with SSCD (d). 728

Figure 2 depicts the strong memory effects presented 729

in seismic phenomena. By a transition from the steady 730

state of Earth ((a), (b) and (c)) to the state of strong earth- 731

quake (EQ) ((d), (e), and (f)) a remarkable amplification 732

of memory effects is highly visible. The term amplification 733

refers to the appearance of strongmemory and the prolon- 734

gation of the memory correlation time in the seismic sys- 735

tem. Recent study show that discrete non-Markov stochas- 736

tic processes and long-range memory effects play a cru- 737

cial role in the behavior of seismic systems. An approach, 738

permitting us to obtain an algorithm of strong EQ fore- 739

casting and to differentiate technogenic explosions from 740

weak EQs, can be developed thereupon. 741

Figure 3 demonstrates an intensification of memory 742

effects of one order at the transition from healthy people 743

((a), (b) and (c)) to patient suffering from myocardial in- 744

farction. The figures were calculated from the long time se- 745

ries of the RR-intervals dynamics from the human ECG’s. 746

The zero frequency values �1(! D 0) at ! D 0 sharply re- 747

duced, approximately of the size of one order for patient 748

as compared to healthy subjects. 749
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Correlations in Complex Systems, Figure 1
Frequency spectrumof the first information measure of memory (first point in the statistical spectrumon non-Markovity parameter)
"1(!) for the fourth cardiac patient groups from the short time series of RR-intervals: healthy subject (a), patient with rhythm driver
migration (RDM) (b), patient aftermyocardial infarction (MI) (c), and patient after MIwith subsequent sudden cardiacdeath (SCD) (d).
The frequency is marked in terms of units of ��1 . All spectra reveal the miscellaneous faces of statistical memory’s strength. For the
healthy subject one can seeMarkov effects and weakmemory. For other three cases of cardiac diseases we note the diverse displays
of strong memory. The strong memory has been accompanied by the spikes of the weak memory: for RDM on the all frequency
regions, for patient with MI for the middle and high frequencies and for patient after MI with SSCD only for high frequencies. From
Fig. 7 in [104]

Figures 4 and 5 illustrate the behavior for patients with750

Parkinson’s disease. Figure 4 shows time recording of the751

pathological tremor velocity in the left index finger of752

a patient with Parkinson’s disease (PD) for eight diverse753

pathological cases (with or without medication, with or754

without deep brain stimulation (DBS), for various DBS,755

medication and time conditions). Figure 5, arranged in756

accordance with these conditions, displays a wide variety757

of the memory effects in the treatment of PD’s patients.758

Due to the large impact of memory effects this observa-759

tion permits us to develop an algorithm of exact diagnosis760

of Parkinson’s disease and a calculation of the quantita-761

tive parameter of the quality of treatment. A physical role762

of the strong and long memory correlation time enables763

us to extract a vital information about the states of vari-764

ous patient on basis of notions of correlation and memory765

times.766

According to Figs. 6 and 7 specific information767

about the physiological mechanism of photosensitive768

epilepsy (PSE) was obtained from the analysis of the strong769

memory effects via the registration the neuromagnetic770

responses in recording of magnetoencephalogram (MEG) 771

of the human brain core. Figure 6 presents the topographic 772

dependence of the first level of the second memory mea- 773

sure ı1(! D 0; n) for the healthy subjects in the whole 774

group (upper line) vs. patients (lower line) for red/blue 775

combination of the light stimulus. This topographic de- 776

pendence of "1(! D 0; n) depicted in Fig. 6 clearly demon- 777

strates the existence of long-range time correlation. It is 778

accompanied by a sharp increase of the role of the statis- 779

tical memory effects in the all MEG’s sensors with sensor 780

numbers n D 1; 2; : : : ; 61 of the patient with PSE in com- 781

parison with healthy peoples. A sizable difference between 782

the healthy subject and a subject with PSE occurs. 783

To emphasize the role of strong memory one can con- 784

tinue studying the topographic dependence in terms of the 785

novel informational measure, the index of memory, de- 786

fined as: 787

�(n) D ı
healthy
1 (0; n)

ı
patient
1 (0; n)

; (62) 788

see in Fig. 7. 789
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Correlations in Complex Systems, Figure 2
Frequency spectra of the first three points of the first measure of memory (non-Markovity parameters) "1(!), "2(!), and "3(!) for
the seismic phenomena: a, b, c long before the strong Earthquake (EQ) for the steady state of Earth and d, e, f during the strong EQ.
Markov and quasi-Markov behavior of seismic signals withmanifestation of the weakmemory is observed only for "1 in state before
the strong EQ. All remaining cases b, c, d and d TS7 relate to non-Markov processes. Strong non-Markovity and strong memory is
typical for case d (state during the strong EQ). In behavior of "2(!) and "3(!) one can see a transition from quasi-Markovity (at low
frequencies) to strong non-Markovity (at high frequencies). From Fig. 6 in [105]

This measure quantifies the detailed memory effects790

in the individual MEG sensors of the patient with PSE791

versus the healthy group. A sharp increase of the role792

of the memory effects in the stochastic behavior of the793

magnetic signals is clearly detected in sensor numbers794

n D 10; 46; 51; 53 and 59. The observed points of MEG795

sensors locate the regions of a protective mechanism796

against PSE in a human organism: frontal (sensor 10),797

occipital (sensors 46, 51 and 53) and right parietal (sen-798

sor 59) regions. The early activity in these sensors may re-799

flect a protective mechanism suppressing the cortical hy-800

peractivity due to the chromatic flickering.801

We remark that some early steps towards understand-802

ing the normal and various catastrophical states of com-803

plex systems have already been taken in many fields of804

science such as cardiology, physiology, medicine, neurol-805

ogy, clinical neurophysiology, neuroscience, seismology806

and so forth. With the underlying systems showing frac- 807

tal and complicated spatial structures numerous studies 808

applying the linear and nonlinear time series analysis to 809

various complex systems have been discussed by many 810

authors. Specifically the results obtained shows evidence 811

of the significant nonlinear structure evident in the reg- 812

istered signals in the control subjects, whereas nonlinear- 813

ity for the patients and catastrophical states were not de- 814

tected. Moreover the couplings between distant parts and 815

regions were found to be stronger for the control subjects. 816

These prior findings are leading to the hypothesis that the 817

real normal complex systems are mostly equipped with 818

significantly nonlinear subsystems reflecting an inherent 819

mechanism which stems against a synchronous excitation 820

vs. outside impact or inside disturbances. Such nonlinear 821

mechanisms are likely absent in the occurrence of catas- 822

trophical or pathological states of the complex systems. 823
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Correlations in Complex Systems, Figure 3
The frequency dependence of the first three points of non-Markovity parameter (NMP) for the healthy person (a), (b), (c) and patient
after myocardial infarction (MI) (d), (e), (f) from the time dynamics of RR-intervals of human ECG’s for the case of the long time series.
In the spectrum of the first point of NMP "1(!) there is an appreciable low-frequency (long time) component, which concerns the
quasi-Markov processes. Spectra NMP "2(!) and NMP "3(!) fully comply with non-Markov processes within the whole range of
frequencies. From Fig. 6 in [106]

From the physical point of view our results can be used824

as a toolbox for testing and identifying the presence or ab-825

sence of various memory effects as they occur in complex826

systems. The set of our memory quantifiers is uniquely as-827

sociated with the appearance of memory features in the828

chaotic behavior of the observed signals. The registration829

of the behavior belonging to these indicators, as elucidated830

here, is of beneficial use for detecting the catastrophical831

or pathological states in the complex systems. There ex-832

ist alternative quantifiers of different nature as well, such833

as the Lyapunov’s exponent, Kolmogorov–Sinai entropy,834

correlation dimension, etc., which are widely used in non-835

linear dynamics and relevant applications. In the present836

context, we have found out that the employed memory837

measures are not only convenient for the analysis but are838

also ideally suitable for the identification of anomalous be-839

havior occurring in complex systems. The search for other840

quantifiers, and foremost, the ways of optimization of such841

measures when applied to the complex discrete time dy- 842

namics presents a real challenge. Especially this objective 843

is met when attempts are made towards the identifica- 844

tion and quantification of functioning in complex systems. 845

This work presents initial steps towards the understanding 846

of basic foundation of anomalous processes in complex 847

systems on the basis of a study of the underlying mem- 848

ory effects and connected with this, the occurrence of long 849

lasting correlations. 850

Some Perspectives on the Studies of Memory 851

in Complex Systems 852

Here we present a few outlooks on the fundamental role 853

of statistical memory in complex systems. This involves 854

the issue of studying cross-correlations. The statistical the- 855

ory of stochastic dynamics of cross-correlation can be cre- 856

ated on the basis of the mentioned formalism of projection 857
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Correlations in Complex Systems, Figure 4
Pathological tremor velocity in the left index finger of the sixth patient with Parkinson’s disease (PD). The registration of Parkin-
sonian tremor velocity is carried out for the following conditions: a “OFF-OFF” condition (no any treatment), b “ON-ON” condition
(using deep brain stimulation (DBS) by electromagnetic stimulator andmedicaments), c “ON-OFF” condition (DBS only), d “OFF-ON”
condition (medicaments (L-Dopa) only), e–h the “15 OFF”, “30 OFF”, “45 OFF”, “60 OFF” conditions – the patient’s states 15 (30, 45,
60) minutes after the DBS is switched off, no treatment. Let’s note the scale of the pathological tremor amplitude (see the verti-
cal scale). Such representation of the time series allows us to note the increase or the decrease of pathological tremor. From Fig. 1
in [107]

operators technique in the linear space of random vari-858

ables. As a result we obtain the cross-correlation memory859

functions (MF’s) revealing the statistical memory effects in860

complex systems. Somememory quantifiers will appear si-861

multaneously which will reflect cross-correlation between862

different parts of CS. Cross-correlation MF’s can be very863

useful for the analysis of the weak and strong interactions,864

signifying interrelations between the different groups of865

random variables in CS. Besides that the cross-correlation866

can be important for the problem of phase synchroniza-867

tion, which can find a unique way of studying of synchro-868

nization phenomena in CS that has a special importance869

when studying aspects of brain and living systems dynam-870

ics.871

Some additional information about the strong and872

weak memory effects can be extracted from the observa-873

tion of correlation in CS in the random event’s scales.874

Similar effects are playing a crucial role in the differen-875

tiation between stochastic phenomena within astrophys-876

ical systems, for example, in galaxies, pulsars, quasars, mi-877

croquasars, lacertides, black holes, etc. One of the most878

important area of application of developed approach is 879

a bispectral and polyspectral analysis for the diverse CS. 880

From the mathematical point of view a correct definition 881

of the spectral properties in the functional space of ran- 882

dom functions is quite important. A variety of MF’s arises 883

in the quantitative analysis of the fine details of memory 884

effects in a nonlinear manner. The quantitative control of 885

the treatment quality in the diverse areas of medicine and 886

physiology may be one of the important biomedical appli- 887

cation of the manifestation of the strong memory effects. 888

These and other features of memory effects in CS call 889

for an advanced development of brain studies on the ba- 890

sis of EEG’s and MEG’s data, cardiovascular, locomotor 891

and respiratory human systems, in the development of the 892

control system of information flows in living systems. An 893

example is the prediction of strong EQ’s and the clear dif- 894

ferentiation between the occurrence of weak EQ’s and the 895

technogenic explosions, etc. 896

In conclusion, we hope that the interested reader 897

becomes invigorated by this presentation of correlation 898

and memory analysis of the inherent nonlinear system 899
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Correlations in Complex Systems, Figure 5
The frequency dependence of the first point of the non-Markovity parameter"1(�) for pathological tremor velocity in the patient. As
an example, the sixth patient with Parkinson’s disease is chosen. The figures are submitted according to the arrangement of the ini-
tial time series. The characteristic low-frequency oscillations are observed in frequency dependence (a, e–h), which get suppressed
under medical influence (b–d). The non-Markovity parameter reflects the Markov and non-Markov components of the initial time
signal. The value of the parameter on zero frequency "1(0) reflects the total dynamics of the initial time signal. The maximal values
of parameter "1(0) correspond to small amplitudes of pathological tremor velocity. Theminimal values of this parameter are charac-
teristic of significant pathological tremor velocities. The comparative analysis of frequency dependence "1(�) allows us to estimate
the efficiency of eachmethod of treatment. From Fig. 5 in [107]

Correlations in Complex Systems, Figure 6
The topographic dependence of the first point of the second measure of memory ı1(! D 0;n) for the healthy on average in the
whole group (upper line) vs. patient (lower line) for R/B combination of the light stimulus. One can note the singular weak memory
effects for the healthy on average in sensors with No. 5, 23, 14, 11 and 9
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Correlations in Complex Systems, Figure 7
The topographic dependence of the memory index �(n) D �1(n; 0) for the the whole group of healthy on average vs. patient for an
R/B combination of the light stimulus. Strong memory in patient vs. healthy appears clearly in sensors with No. 10, 5, 23, 40 and 53

dynamics of varying complexity. He can find further de-900

tails how significant memory effects typically cause long901

time correlations in complex systems by inspecting more902

closely some of the published items in [42–103].903

There are the relationships between standard frac-904

tional and polyfractal processes and long-time correlation905

in complex systems, which were explained in [39,40,44,45,906

46,49,53,54,60,62,64,76,79,83,84,94] in detail.907

Example of using the Hurst exponent over time for908

testing the assertion that emerging markets are becoming909

more efficient can be found in [51].910

While over 30 measures of complexity have been pro-911

posed in the research literature one can distinguish [42,55,912

66,81,89,99] with the specific designation of long-time cor-913

relation and memory effects.914

Papers [48,57] are focused on long range correlation915

processes that are nonlocal in time and whence show916

memory effects.917

The statistical characterization of the nonstationarities918

in real-world time series is an important topic in many919

fields of research and some numerous methods of char-920

acterizing nonstationary time series were offered in [59,921

65,84].922

Long-range correlated time series have been widely923

used in [52,61,63,68,74] for the theoretical description of924

diverse phenomena.925

Example of the study an anatomy of extreme events in926

a complex adaptive system can be found in [67].927

Approaches for modeling long-time and long-range928

correlation in complex systems from time series are inves-929

tigated and applied to different examples in [50,56,69,70,930

73,75,80,82,86,100,101,102].931

Detecting scale invariance and its fundamental rela- 932

tionships with statistical structures is one of the most rel- 933

evant problems among those addressed correlation analy- 934

sis [47,71,72,91]. 935

Specific long-range correlation in complex systems are 936

the object of active research due to its implications in the 937

technology of materials and in several fields of scientific 938

knowledge with the use of quantified histograms [78], de- 939

crease of chaos in heart failure [85], scaling properties 940

of ECG’s signals fluctuations [87] , transport properties in 941

correlated systems [88] etc. 942

It is demonstrated in [43,92,93] how ubiquity of the 943

long-range correlations is apparent in typical and ex- 944

otic complex statistical systems with application to biol- 945

ogy, medicine, economics and to time clustering proper- 946

ties [95,98]. 947

The scale-dependent wavelet and spectral measures for 948

assessing cardiac dysfunction have been used in [97]. 949

In recent years the study of an increasing number of 950

natural phenomena that appear to deviate from standard 951

statistical distributions has kindled interest in alternative 952

formulations of statistical mechanics [58,101]. 953

At last, papers [77,90] present the samples of the deep 954

and multiple interplay between discrete and continuous 955

long-time correlation and memory in complex systems 956

and the corresponding modeling the discrete time series 957

on the basis of physical Zwanzig–Mori’s kinetic equation 958

for the Hamilton statistical systems. 959
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