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Abstract. Self-* systems have the ability to adapt to a changing environment
and to compensate component failures by reorganizing themselves. However, as
these systems make autonomous decisions, their behavior is hard to predict. With-
out behavioral guarantees their acceptance, especially in safety critical applica-
tions, is arguable. This chapter presents a rigorous specification and verification
approach for self-* systems that allows giving behavioral guarantees despite of
the unpredictability of self-* properties. It is based on the Restore Invariant Ap-
proach that allows the developer to define a corridor of correct behavior in which
the system shows the expected properties.

The approach defines relies (behavior the components can expect) and guaran-
tees (behavior that each component will provide) to specify the general require-
ments on the interaction between the components of the system on a formal basis.
If heterogeneous multi-agent systems with self-* properties are modeled so that
relies are implied by the other components’ guarantees, it is possible to formally
verify correct system behavior. When using observer/controller architectures the
approach also allows systematic decomposition and modular verification. We il-
lustrate the approach by applying it to two different case studies — an adaptive
production cell and autonomous virtual power plants.

Keywords: Adaptive Systems, Self-* Properties, Formal Methods, Verification,
Multi-Agent Systems, Observer/Controller.

1 From Design Time to Runtime

Adaptive systems are not yet the silver bullet they are often hyped to be. It turns out that
attempts to manage the complexity of modern cyber-physical systems or large-scale I'T-
systems often introduce a lot of complexity. While this might make the surrounding
infrastructure simpler, e.g., by decreasing the number of administrators required to su-
pervise a server farm, the transparency and controllability of the systems are reduced
and thus is their trustworthiness. It is obvious that systems in which decisions are will-
ingly relegated from design time to runtime pose many new challenges to regulators,
standardization committees, and certification authorities, especially with regard to de-
ployment of self-* systems in safety- and mission-critical domains.

One of the main tools in the certification of safety-critical systems are formal meth-
ods. A thorough formal analysis of a computer system can reveal flaws and bugs that
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are not identifiable by validation techniques such as testing. However, formal methods
usually rely on sophisticated models of the system and its individual components. If the
system is open and not all components are known at design time, it is impossible to cre-
ate such a comprehensive model. Additionally, it is quite difficult to grasp the complex
and diverse interactions that can occur in an open, adaptive system and it is even more
difficult to verify all possible cases of interleaved communications.

If, however, it were possible to specify the external behavior of each system com-
ponent in an abstract fashion and show that the individual components do not inter-
fere with each other, internal models could be discarded while the behavior of the
ensemble could still be verified. The rely/guarantee (R/G) paradigm first introduced
by Jones in [21] and Misra and Chandy in [26] provides such a theoretical frame-
work. It allows specifying guarantees provided by the components if they can rely on
properties guaranteed by the environment or other components. This allows integrat-
ing arbitrary components without knowledge of their internal behavior, a major differ-
ence to most of the related approaches that are outlined in Sect. 2. The R/G paradigm
is also ideally suited to capture the modularity of a system that can be decomposed
into several types of components. We use this ability to decompose the system into
a functional part and a part incorporating the self-* intelligence, represented by an
observer/controller (o/c) [34]. This observer/controller architectural pattern encapsu-
lates a feedback loop and is similar to the MAPE cycle [20] in the field of Autonomic
Computing [28].

This chapter presents an integrated approach that enables the engineer to verify func-
tional properties and thus give behavioral guarantees during design time without re-
stricting the flexibility of the system during runtime. Its strengths are modularity, a
top-down view of the system consistent with software engineering processes [38], and
its independence of the self-adaptation algorithm used. It can therefore deal with arbi-
trary system changes at runtime and is scalable with respect to the number of agents in
the system. The approach consists of the following elements:

— the Restore Invariant Approach (RIA), introduced in Sect. 3, is the theoretical
framework required to model adaptive behavior and detect misbehavior at runtime;

— a verification approach based on RIA and the observer/controller architectural pat-
tern (Sect. 4) that uses the rely/guarantee paradigm to show correct functional and
reconfiguration behavior at design time as detailed in Sect. 5;

— an online result checking technique that allows the use of arbitrary self-* algorithms
while maintaining functional correctness of the system, detailed in Sect. 6.

The target systems of this approach are systems based on an observer/controller archi-
tecture which implement their self-* properties by changing and adapting component
configurations. In the following, we will always refer to self-* systems and imply this
characteristic. This chapter focuses on the conceptional and theoretical foundations and
omits the implementation details due to space restrictions, although the presented con-
cepts were implemented for the case studies of an adaptive production scenario pre-
sented in Sect. 7 and autonomous virtual power plants, presented in Sect. 8. For more
details on the implementation issues refer to [2, 30, 39].
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2 State of the Art

There are several approaches for formal specification and verification of self-* systems
related to the work presented here. This section presents the most important of them.
Additional related work which focuses on single aspects of the overall approach will be
introduced in the respective sections.

Wooldridge and Dunne state in [47] that the environment is essential for the verifi-
cation of agents. They present a formal model in which the behavior of an agent and its
interaction with the environment are described as a sequence of interleaved agent and
environment actions. The framework used in this chapter reflects this idea and allows
detailed modeling of the feedback loops in a self-* system, while still providing the
ability for arbitrary system behavior. In contrast to Wooldridge and Dunne, the distinc-
tion of environment and system transitions in our approach is part of the used logical
framework and thus allows the use of a comprehensive verification theory, including
compositional reasoning with rely/guarantee. Further the behavior is restricted by a cor-
ridor of correct behavior formulated by constraints, which allows to specify the agent’s
behavior on an abstract level without having to consider the particular implementation.

In [41], Smith and Sanders present a top-down approach for incremental formal de-
velopment of self-organizing systems. An abstract specification for the complete system
is refined stepwise down to component level. The correctness of the system is ensured
by verification of the refinement steps. The Z notation is used as specification formal-
ism. Their approach does not distinguish self-* and functional behavior, as they do
not focus on a particular architecture. Instead they look at various applications and
show how refinement can be applied in each specific case. In contrast, by focusing on
an observer/controller-architecture, we can derive generic properties for applications
based on this architecture. Nevertheless, their work provides good strategies for the re-
finement between different abstraction layers which are similar to the decomposition
steps presented in this chapter and can provide useful guidance for further refinement
on agent level, e.g., when considering hierarchical observer/controller-architectures.

Giese et al. present a modeling and verification approach in [9, 18] for self-adaptive
mechatronic systems. The interaction between the components is modeled by so called
coordination patterns describing the structural adaptation process. The system states are
modeled as graphs and their dynamic behavior as graph transformations. A composi-
tional verification approach also utilizing the rely/guarantee paradigm allows verifying
safety properties that can be formalized as structural invariants over the graph transfor-
mation system. The coordination patterns in their approach are similar to parts of the
corridor specification in the Restore Invariant Approach, as both are specifying a correct
system structure. The rely/guarantees used here specify the requirements on the com-
ponents’ behavior in order to exhibit the desired properties as long the system is within
the corridor and the requirements on the self-* process. Their approach does not make
this distinction and directly uses the specification of the component behavior, which
together with the coordination patterns combines functional and self-* behavior. Their
approach therefore does not allow to change the implementation of the self-* behavior
without the need of performing the complete verification again.



83

There are a number of further approaches focused on analyzing adaptive systems.
Kramer and Magee [24] use automata to specify the properties of an adaptive system
and use LTSA (Labelled Transition System Analyser) for automatic analysis of execu-
tion scenarios. Their approach does not consider modular reasoning as presented here.
In [49] Zhang et al. present a modular approach based on model checking for adap-
tive programs against global invariants and transitional properties formulated in Linear
Temporal Logic (LTL). They present a model checking algorithm for the verification of
adaptive programs, such as an adaptive routing protocol. In contrast to the work here,
they focus solely on the verification technique and not on the specification of adaptive
systems. They also do not consider the formalization of uncertainty introduced by the
environment.

3 The Restore Invariant Approach

The Restore Invariant Approach (RIA) allows defining a corridor of correct behavior.
The system tries to operate within the corridor as long as possible. Due to unexpected
disturbances the system leaves the corridor. Disturbances can be changes in the en-
vironment, failures, new or leaving agents, or new objectives, for instance. Whenever
the corridor is left the system initiates a self-* phase and tries to reconfigure in order
to return to the corridor. This concept is further elaborated in Sect. 3.1. As Sect. 3.2
shows, the concepts of RIA and the behavioral corridor are the foundation for system
verification. An additional element necessary to enable successful reconfiguration is a
safe state the system can reach in case of a failure, as outlined in Sect. 3.3. Finally, the
concepts of RIA also allow to give a clear distinction between systems that have self-*
properties and those that don’t as described in Sect. 3.4.

3.1 Corridors of Correct Behavior

The basic idea behind the Restore Invariant Approach is to constrain the behavior of
the system so that it only exhibits correct behavior. An advantage of this approach is
that the system retains its flexibility and is still able to adapt during runtime and make
decisions autonomously.

From a formal point of view, a system can be described as a transition system SYS =
(S,—,I,AP,L), where S is the set of states, —C S x § a transition relation, / C S a set
of initial states, AP a set of atomic propositions and L a labeling function. A trace 1 of
the system is then given by a sequence of states s; € S whose states are related by the
transition relation and which starts in an initial state sq.

T=150,51,52,--+,5n

Fig. 1 shows an example trace of an abstract transition system SYS which tries to stay
within the corridor. The system recognizes a violation of the corridor and triggers a
self-* process in order to reach a state within the corridor.
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Fig. 1. Corridor of correct behavior of a self-* system [31]

Formally the specification of the corridor corresponds to a predicate logic formula' —
the invariant INVgj4 — which is evaluated over a system state. The term “invariant” is
used as the system’s goal is to maintain the invariant on the entire system trace. The
invariant differentiates the system states into those that exhibit correct behavior and
those that do not. This allows to separate the states into two disjoint sets: a set Sfc
of functional states and a set Sy, Of reconfiguration states. The functional states are
states within the corridor in which the system shows its desired behavior. The reconfig-
uration states are states outside the corridor in which reconfiguration is necessary. This
abstract definition can accommodate a variety of situations in the system that can lead
to adaptations. If, e.g., new agents that enter the system should trigger a reconfiguration,
the invariant will have to be formulated so that an idle agent or one that has not been
configured violates it. The system will then switch to a reconfiguration state as soon as
such a situation occurs.

Related Work: In [17], Girtner presents a similar classification of the state space for
fault tolerant systems. He distinguishes three kinds of states: a set of invariant states, in
which the system exhibits the desired properties, corresponding to the functional states
of RIA; a set of states constituting the fault span, containing all invariant states and
additionally all states which are tolerable by the system and from which the system
eventually returns into an invariant state; finally, the set of all possible states.

Another classification of the state space of Organic Computing systems is proposed
by Schmeck et al. in [37]. The target space contains the states the system should try
to reach. If this is not possible, the system should at least try to get into a state of the
acceptance space. The survival space consists of all states outside the acceptance space
from which the system can get back into the acceptance or target space. All remaining

! Theoretically, a temporal logic formula could be used instead of a predicate logic formula.
However, it is unclear how a system can evaluate a temporal invariant during runtime and
decide whether it is violated or not. In order to decide this, the system would have to predict the
future behavior. In the area of runtime verification the correctness of temporal logic properties
is checked during runtime. For example, Leucker et al. try to monitor temporal logic properties
during runtime [6]. In each step the property can be true, false or inconclusive. In this chapter
predicate logic is used to formulate the invariant, although the general approach is not limited
to it. The use of predicate logic means that the invariant can be evaluated in each state and it
can be decided whether a state is within the corridor or not.
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states are states within the dead space with no possibility to get back into the acceptance
space. Compared to the corridors of RIA, Schmeck et al. split the functional states into
target and acceptance space to distinguish optimal and non-optimal but correct states.

Both classifications separate the reconfiguration states into a set of states in which
a path back into a functional state exists and a set where no path exists anymore. The
classifications are used to describe the behavior of a self-* system on an abstract level.
The specification of behavioral corridors in RIA exceeds these classifications by pro-
viding the tools to clearly define the different sets of states and to use these definitions
both at design time to provide techniques for formal analysis (see Sect. 5) as well as at
runtime to monitor the correct behavior of the system (see Sect. 6).

3.2 Behavioral Guarantees Based on RIA

By distinguishing functional and reconfiguration states, the requirements for the self-*
properties of the system can be specified using the invariant. Whenever the invariant is
violated, the system has to try to return to the corridor and to restore the invariant. The
invariant is also a sufficient condition for system states that exhibit the expected behav-
ior. That means that the system exhibits correct behavior when in a state in which the
invariant holds. The correctness of the functional behavior of the system can therefore
be verified independently of the self-* mechanisms. For the verification of the functional
system it is assumed that there exists a mechanism that restores the invariant when it is
violated. For a specific self-* mechanism it has to be proven that this assumption holds.

The definition of corridors has several more advantages compared to an explicit list-
ing of all states. First, it is usually hard or expensive to find and list all states that are
valid. It is often easier to formulate common properties that valid states need to exhibit.
The abstraction induced by the invariant reduces the complexity of formal reasoning
and the separate treatment of functional properties and self-* behavior can be exploited
in order to give behavioral guarantees. In Sect. 5, a more detailed insight into this and
an approach for providing behavioral guarantees will be given.

3.3 Safe Reconfiguration with Quiescent States

To ensure correct reconfiguration the system may not perform any actions that interfere
with the reconfiguration process. Therefore the first task in a self-* phase is to transition
the involved system components to a consistent and passive state in which they perform
no critical actions. In literature this state is often called quiescent state [13,22,33,48].
Kramer and Magee define a quiescent state in [22] as a state in which an agent is in
a locally consistent and passive state, where it performs no actions which disrupt the
reconfiguration. They also identify a quiescent state as a necessary condition for recon-
figuration [23]. In a later work Vandewoude et al. [45] presented tranquility, a weaker
condition for consistent reconfiguration. It allows an agent to still be involved in a trans-
action if it stops actively processing requests. As quiescence implies tranquility we use
the stronger concept in the following, although it is possible to use the weaker condi-
tion in order to specify the requirements on an agent’s behavior regarding a consistent
reconfiguration.
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INV violated

working

INVig

INV restored

Fig. 2. Abtract view of a system’s behavior

Fig. 2 shows the life-cycle of a self-* system that uses the Restore Invariant Ap-
proach. As long as the invariant holds, the system is within the corridor and can exhibit
the expected behavior. When a failure occurs, the invariant is violated and the system
starts a self-* phase. The first step is a transition to a quiescent state to be able to per-
form the actual reconfiguration process. In many cases, it is not necessary for the whole
system to enter a quiescent state. Often it is sufficient that only the affected part of the
system becomes quiescent, while the rest of the system can still be working. A chal-
lenge here is to identify the parts that need to be included into the reconfiguration. This
question is not examined here. For details on this topic refer to [1,40]. As soon as re-
configuration is finished and the invariant is restored, the system leaves the quiescent
state and starts working again (functional phase).

What quiescence means is application-specific and has to be defined in the context
of the considered application. A quiescent state can be a truly passive state in which an
agent stops all actions until the reconfiguration process finishes (see Sect. 7) but also
a state in which the agent continues acting according to the old configuration until the
new one is calculated (see Sect. 8). The specifics of the quiescent state depend on the
kind of reconfiguration used in a system and the conditions for a consistent switch to
a new configuration. In Sect. 5 we will have a closer look at how these transitions are
initiated with respect to a certain system architecture.

3.4 Comparing Systems with and without Self-* Properties

Based on the classification of functional and reconfiguration states, the difference be-
tween systems with and without self-* properties can be explained. Fig. 3 shows an
abstract system with three states. If the system leaves the corridor and enters a state S,
that violates the invariant, it is therefore outside the corridor. In safety-critical applica-
tions, s, is typically some kind of fail-safe state to avoid harm to human beings and the
system’s environment. In a fail-safe state the system still fulfills its safety properties, but
usually does not guarantee any liveness properties such as progress or termination [17].

A traditional system with no self-* capabilities nor redundancy cannot reach a func-
tional state once it has reached an error state (see Fig. 3(a)). In contrast, a self-* sys-
tem (Fig. 3(b)) can return to a functional state (s4), e.g., by reconfiguring itself. This
implies that the relevant agents have to be put into a quiescent state in order to be
reconfiguered consistently. During the reconfiguration, the system is changed so that
redundancy within the system can be used to compensate for failures. Thus, com-
ponent failures reduce the level of redundancy limiting potential future reconfigura-
tions. The changes in the system are often enacted as part of a self-* process that
changes the internal structure of the system. We distinguish two kinds of redundancy:
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Fig. 3. Behavior of a traditional system compared to a system with self-* capabilites

local redundancy, where one part of the system contains all redundancy; and distributed
redundancy, where the redundancy is spread over the system. While the former can be
exploited without the need of self-* properties, the latter can only be enabled by enact-
ing a new system structure. Such distributed redundancy plus self-* properties is also
able to compensate for the complete failure of a part of the system. Pure local redun-
dancy is always subject to single-point failures and thus limits a system’s recoverability.
Hence the combination of redundancy and self-* properties can considerably contribute
to a robust and flexible system.

4 Observer/Controller-Architectures

So far, the self-* system was considered in a very abstract and formal fashion. In this
section, the observer/controller-architecture, a common architecture of self-* systems is
considered. Based on this architecture, the formal modeling and verification approach
with RIA is explained in detail in Sect. 5.

A way to integrate adaptivity in a system is the introduction of feedback loops [12,
14]. A change in the system or its environment triggers a reaction within the system
that causes a subsequent change and so forth. Such loops can be used to model the
adaptiveness of a system and to understand the dynamics that occur in a system [42].

In this work, the generic observer/controller-architecture proposed by Richter et al.
in [34] is used and refined. The architecture shown in Fig. 4 is one realization of the
feedback loop principle: a functional system is observed and the observations are re-
ported to the controller which in turn effects the system in a way that it deems best
to reach the system’s goals. The actual effect is monitored by the observer. Thus, a
feedback loop is established that guides the adaptation of the system and its behavior.

The functional system in Fig. 4 consists of several autonomous, interacting compo-
nents, so called agents. These components react to control signals from the controller
component, but only in case of changes in the environment which necessitate a recon-
figuration of the functional system. As long as the system behaves correctly according
to the corridor, the o/c-layer is passive and does not interfere with the rest of the sys-
tem. However, the observer monitors the functional system which is equivalent to the
monitoring of the invariant. Whenever the invariant is violated, the observer notifies
the controller. The controller then initiates a reconfiguration of the system. After it
has advised the agent to enter a quiescent state, it starts a reconfiguration mechanism
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Fig. 4. An observer/controller-architecture for systems using RIA [16]. It contains a monitor com-
ponent to observe the invariant as well as a result checker to verify solutions of the reconfiguration
algorithm.

calculating a new configuration for the system. The new configuration has to fulfill
the invariant and thus, the system will again exhibit correct behavior after the recon-
figuration. The interaction between the o/c-layer and the functional system is always
observer/controller-initiated.

Fig. 4 suggests that the o/c-layer is a central instance within the system. This is a
sophism since the architecture can be realized in several ways [11]. Depending on the
system’s properties and its application area, each agent can have an individual o/c-layer,
thus achieving a completely decentralized architecture. Multiple layers of observation
and control can be implemented achieving a decentralized, hierarchical architecture.

Components in the system interact horizontally in each layer and vertically between
the layers. Interactions can thus take place only between agents in the functional layer,
between the o/c-layer and the functional layer, and between several o/c-layers, de-
pending on the chosen architecture. Again, what all these possible variations of o/c-
architectures have in common is the strict separation of functional system and o/c-layer
which enables the specification and formal analysis of desired system properties as well
as behavioral guarantees as shown in this chapter.

5 Formal Model of an O/C-Based System

In this section a generic formalization of self-* systems with an o/c-architecture is pre-
sented. Based on the formal framework described in Sect. 5.1 and a compositional rea-
soning paradigm outlined in Sect. 5.2, a formal model for systems based on
o/c-architectures is developed in Sect. 5.3. After showing how such a system can be
decomposed properly in Sect. 5.4, conditions for correct behavior of the individual com-
ponents and interaction between the layers are formulated in Sect. 5.5. The formulated
conditions can be instantiated for specific applications to retrieve the proof obligations



89

for the particular agents and the o/c-interaction, effectively allowing a composition ver-
ification approach.

5.1 Formal Framework

To begin with, we want to give a short overview of the formal framework used for mod-
eling and verification. The full details, including a specialized logic and calculus along
with the respective semantics, can be found in [4, 8]. For a tool-supported verification,
these elements have been integrated in the interactive theorem prover KIV [5].

From a formal point of view a run of the system is a sequence of states, which is
called a trace. A state is defined by an evaluation of the systems variables V. A step
consists of a so called system transition followed by an environment transition. A step
therefore consists of three states: an unprimed state s; at the beginning of the step, an
intermediate primed state s} formalizing the evaluation after the system transition, and
a double primed state s/’ for the evaluation after the environment transition. The double
primed state is equal to the unprimed state for the subsequent step (s = s;11). Thus
the system and environment transition alternate, as depicted in Fig. 5. This trace based
view of the system is necessary as the properties one expects from the system and the
guarantees about its behavior are temporal properties. Desired guarantees are, e.g., that
the system never shows some unwanted behavior or a property always holds.

step

state: Sy 30’ So” S, 52’ 52” S,
interval: s OO RSO0

— system transition
------ > environment transition

Fig. 5. Relation between unprimed, primed and double primed states. A step consists of a system
transition followed by an environment transition.

Besides the variables v there are also primed and double primed variables in order
to accurately formalize the transitions. For each variable v € V there is a corresponding
primed variable v/ and double primed variable v". The sets of all primed/double-primed
variables is denoted accordingly by V' and V"'

A system transition (s; — sg) can therefore be formulated as a predicate logic formula
over V and V' that describes the relation between the values of the variables v € V
before and after the system transition. An environment transition (s; — s!') analogously
describes the changes during an environment transition. As the double primed state is
the unprimed state of the successive state, the value of v in state s/ is equal to the value
of v in the next successive state s;. 1. For example, X' = x+ 1 expresses that the system
increases x by one and x” = x’ expresses that during an environment transition x is not
changed. If there is no statement made for a variable in the environment step, this means
that the value can be changed arbitrarily by the environment. This is a crucial feature
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of the framework: if no restriction is put in place, no assumption is made of what the
environment is capable of. It is therefore not necessary to explicitly model everything
the environment can do, but verify the system for completely arbitrary changes in the
environment by consciously under-specifying certain aspects.

While it is a great advantage to be able to leave many aspects of the environment
open, an explicit model of some of the behavior of the environment can be very benefi-
cial in the case of self-* systems [47]. If regarded properly, the system boundary can be
clearly established and thus a clear separation between the system and its environment
can be achieved. This also aids in the modeling of the interactions between the system
and its environment, as exemplified in Sect. 7 and Sect. 8.

Parallel components are expressed through an interleaving operator ||. The interleav-
ing of two components (agents) Ag; and Ag; means that either Ag; or Ag; can make
a system transition. The particular agent cannot distinguish how many transitions the
other agents have done between two of its steps. From its local point of view everything
occurred in a single environment transition. That means from an agent’s point of view
the system transitions of the other agents are in its environment transitions as well as
changes made by the global environment. This is illustrated in Fig. 6.

transition transition
of Ag; of Ag;

O

transition
of Ag;

Fig. 6. Local view of an agent Ag; and its relation to the run of the total system

5.2 Compositional Reasoning with Rely/Guarantee

So far we established a global view of the system. However, the goal is to retrieve
properties of single agents and to have a local view on the system but still be able to
guarantee properties of the complete system. The observer/controller-architecture pro-
vides a natural way for the decomposition into several subcomponents. This is depicted
in Fig. 7. The complete system can at first be split into the observer/controller o/c and

Self-* SYS

7N

o/c || SYSfunc

N

Ag||--- 1| 4gn

Fig. 7. Compositional view of the system structure
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the functional system SYSj;,.. Both are running in parallel which is represented by the
interleaving operator ||. The functional system can again be split into several agents
(Agy,...,Ag,) that are running in parallel as well. Of course, the observer/controller
can also consist of several parallel components. This is not considered here, as for the
verification of functional properties only the specification of the complete o/c-layer is
required. However, the approach presented for the functional system works for a de-
composition of the o/c as well.

This modular structure can be used for a compositional verification approach. The
idea behind compositional verification is to reason about properties of the global system
by proving properties of single components only. The main advantage is that reasoning
over single components is usually less complex then reasoning over a parallel system. A
common compositional proof technique is the rely/guarantee paradigm which is used
here and was introduced by Jones in [21] and by Misra and Chandy under the term
assumption-commitment in [26].

The basic idea is that each component guarantees a specific behavior as long as it can
rely on some properties of its environment. The behavior of a component is specified by
a guarantee G(V,V') provided by the component. This is expressed as a predicate over
the component’s transitions. To be able to guarantee the specified behavior, the compo-
nent needs to be able to make assumptions about its environment, as it relies on certain
—but not necessarily completely specified — aspects of behavior of its environment. If no
relies are formulated at all and the environment is thus completely arbitrary, a compo-
nent will not be able to give any guarantees, as every system action can immediately be
revoked by the environment?. To create relies that limit the behavior of the environment
as little as possible, they are usually defined by excluding some particular behavior. A
typical property of the environment is that it does not change a component’s internal
variables. Formally, a rely R(V', V") is specified over the environment transitions.

The behavior of a component Ag; can then be specified using both rely and guar-
antee. As long as the rely R;(V’, V") holds, the component guarantees G;(V,V') . This
property is formalized as R;(V',V") < G;(V,V'). The rely/guarantee specification ab-
stracts from the internal implementation of the component and specifies the external
behavior a component should exhibit. It is therefore a black box specification.

In order to be able to reason about the global system, a compositionality theorem
developed by Baumler et al. [7] is used. It describes the necessary correlations between
the local rely/guarantees R;/G; of the components C; and defines the proof obligations
in order to guarantee a global rely/guarantee property R/G of the combined system.
The main obligation is to prove that each component behaves according to its local
rely/guarantee specification. The other obligations ensure the compatibility and consis-
tency among the rely/guarantees, e.g., the guarantee of one component does not violate
the rely of another component.

Theorem 1 (Compositionality theorem). If:

i foralli=1,...,n: C;,Init(V) - Ry(V',V") 5 Gi(V, V')
ii. foralli=1,...,n:G;(V'.V") = GV, V')A
iii. foralli=1,...,n:G;(V,V)

2 Note, that from the local view of a component, the environment contains all other components.
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iv. foralli=1,...,n:R{(V,VYAR(V',V") = R;(V, V")
v RVVY) =y RV, V)
vi. 3V 1 Init(V)

then: C1||...||Cy, Init(V) = R(V', V") 5 G(V, V"))
The informal meaning of the proof obligations of this theorem are as follows:

i. All components must sustain their guarantee as long as the rely holds. It can be
assumed that an initial condition Ini#(V) holds in the first step.

ii. The guarantee of each component preserves the global guarantee and does not vio-
late the relies of all other components.

iii. The local guarantee is reflexive, that means it must hold if nothing (no variable) is
changed.

iv. The relies of all components are transitive. With this property, a component’s relies
are preserved even if other components make several steps in a row.

v. All component relies hold if the global rely holds. Therefore, no component rely is
violated in the environment step. This implies that an agent cannot assume that no
failures occur, for instance.

vi. An initial configuration for the system must exist. This ensures that obligation i is
consistent.

If the rely/guarantees fulfill these properties and the component implementation is cor-
rect with respect to its local rely/guarantee property then the global guarantee holds for
the complete interleaved system.

If the system consists of several identical components of the same type only one of
these components has to be proven. The theorem then allows to reason about a system
consisting of an arbitrary (but finite) number of components running in parallel, also
including changing numbers of agents. The proofs are also valid when the number of
agents changes during runtime. Thus, the kinds of adaptivity that can be covered with
this technique include component failures, as well as adding and removing agents. The
adaptivity of the components is realized by changing their parameters.

The compositionality theorem was proven with the interactive theorem prover KIV
and can therefore be directly applied during a proof for a particular system. The ad-
vantage is that the reasoning is tool-supported and that for a particular system only the
local R/G properties have to verified against the components implementation. More in-
formation about the theorem, the resulting proof obligations and technical details can
be found in [36].

5.3 Formal Model of a System Based on an Observer/Controller-Architecture

With these formal foundations in place, it is now possible to define an abstract for-
mal model for systems based on an observer/controller-architecture that can be used
to formally specify the corridor of correct behavior and the requirements for a correct
o/c implementation. The model can then be instantiated for a concrete system to pro-
vide behavioral guarantees by formal verification of the functional system part and an
observer/controller implementation against their respective specifications.
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The system can be described as a set of variables V,;; which is split into a set Vg,
of variables defining the state of the functional system and a set V,,, describing the sys-
tem’s environment. The variables in Vj,, again can be split into the following disjoint
sets, as depicted in Fig. 8:

— A set Vi, of variables which contain the configuration of the functional system.
These are the variables (parameters) that can be changed by the observer/controller
during a self-* phase in order to restore the invariant.

— A set Vj,, of variables that contains the agent’s internal variables. They can only be
changed by the agents. This set contains variables which the agents use for internal
calculations and to store intermediate data.

— All other variables are in V5. These variables can be changed by the environment
and describe, e.g., sensor data or hardware status which can both include errors or
be changed at random points in time.

Fig. 8. Abstract o/c-system with different variable sets for environment and functional system

The set of the variables of the functional system therefore is defined as Vg 1=
Veonf U Vint U Viesr. The set of V., models the environment of the system and allows to
express the effect an agent’s action has on its environment. As the agents’ actions alter
the environment, and the environment and the agents are interleaved, feedback loops
can thus be formalized.

Each agent has its own set of variables V.. Additionally the agents have two vari-
ables (flags) reconf and deficient which model the o/c-interaction. The flag reconf sig-
nals an agent that a self-* phase has started and that it should behave passively. The flag
deficient signals an agent that a reconfiguration occurred. The second flag is necessary
as it is theoretically possible that between two steps of an agent several steps of the
remaining system — including a complete reconfiguration — occurred due to the asyn-
chronous execution. In a concrete implementation these flags not necessarily have to be
flags that are set by the o/c directly, they can also be refined to a message passing com-
munication model. Such a model allows interactions between the layers to be conveyed
by messages and complex protocols, e.g., handshake protocols with multiple messages.
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Formally the state of an agent is represented as a tuple:

stateq == (.id : ID X .reconf: bool x .deficient : bool
X .veonf 1 Vegure X .vint @ Vi X .vrest : Vieg);

The dynamics are modeled as state transitions specifying how the variables of an agent
change during a system step. Formally, this is expressed as transition predicates relating
unprimed and primed variables.

5.4 Decomposition of the Observer/Controller-Architecture

As described above and illustrated in Fig. 7, the self-* system can be decomposed into
several components running in parallel. If we apply the rely/guarantee approach to the
observer/controller-architecture the system can be decomposed in two steps (see Fig. 9).

Self-* SYS
first decomposition
for two components

+ +
Rore #+ G || Ross, 2+ G,
/ l \ second decomposition
for n agents

Agr || -1 Ag,
Fig. 9. System structure and compositionality

At first the system is decomposed into the o/c part and the functional system. The
behavior of both is specified with corresponding rely/guarantee properties. On this level
we have a parallel system consisting of two components. For a particular implementa-
tion, the following has to be proven:

— For the o/c part it must be proven that the implementation of the observer/controller
(0/Cimpt) is correct with respect to its specification.

O/Cimpl ): Ro/c l> Go/c (1)

— For the functional system it must be verified that the agents behave according to
their rely/guarantee property.

SYSfune = Rsvsy,,. = Gsvsy,e 2)

The first decomposition leads to a separation of concerns. Both system parts can be
treated separately. The rely/guarantee properties specify the interaction between both
layers. This specification and the properties each layer must guarantee ensure that the
complete system exhibits the expected properties. The correctness of the global system
is ensured by a compositionality theorem.

The functional system itself consists again of a number of agents and can be de-
composed in a second step into several agents. The course of action is the same as
for the first decomposition step. The rely/guarantee property of the functional system
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(Eq. 2) is broken down to local rely/guarantee properties for the individual agents and
are enriched with properties about the interaction between the agents themselves. For a
particular implementation Ag; of an agent it must be proven that it is correct according
to its R/G specification:

Agi =R = G 3)

The R/G specification contains the interaction of the agent with its observer/controller
and other agents with shared variables. It also contains, e.g., the individual contribution
of one agent to the global task.

In the next sub-section we define generic rely/guarantee properties for the first de-
composition step. They specify the requirements on the interaction between the ob-
server/controller and the functional system in order to prove that a property Prop always
holds.

5.5 Rely-Guarantee Definition of the Interaction between Functional
and Self-*-Layers

Before we consider the verification of Eq. 1 and Eq. 2 against a particular implemen-
tation, we need to specify the rely/guarantee properties first. The observer/controller-
architecture reflects the distinction of the two phases of the restore invariant approach.
The functional part is mainly responsible for establishing the functional properties of
the system and therefore is active during the functional phases. The observer/controller-
layer is responsible for monitoring the invariant and reconfiguration in case of an in-
variant violation. It puts the functional part into a quiescent state and is mainly active
during the self-* phases.

Observer/Controller Specification. First, we look at the observer/controller specifi-
cation and its relies and guarantees. A correct o/c implementation has to guarantee that
at the end of every self-* phase the invariant is restored. That means whenever the o/c
signals an agent to leave its quiescent state, INV g4 must hold.

Note that this does not require that the o/c always finds a solution. This would im-
ply a perfect o/c, which is not realistic as sometimes there is no solution possible, e.g.,
when no more redundancy is available in the system. Eq. 4 is sufficient to guarantee
safety properties. Additional requirements can be added to express some quality cri-
teria concerning the reconfiguration. Further, the observer/controller has to guarantee
that it does not interfere with the functional system in functional phases and that it
always puts the agent into a quiescent state before changing the configuration param-
eters (nolnterference(Vy, V;H)). It also guarantees not to change the agent’s internal
variables (Unchgys(Viunc \ Veonr)) and not to violate the system properties that should
be proven (denoted here by Prop). These system properties are usually defined by the
developer and are retrieved from the requirements on a particular system.

Gofe(Vans Vi) ¢+ (Vi © (Agj.reconf\— Agl.reconf — INVria(Vly))) (4

a

N (Vi : = Agj.reconf — nolnterference(Vyy, V.),))
A (Prop(Vau) — Prop(Vy))

a

N Unchgy(Viune \ Veony)
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To be able to guarantee this behavior the observer/controller relies on the agents not to
leave their quiescent state themselves. In terms of the reconf variable, this means that it
is only changed on the o/c’s initiative.

Ro/e(Viys Vi) i+ (Vi @ Agj.reconf < Ag] .reconf)
A (Prop(Vgy) — Prop(Vy))

a a

The observer/controller also assumes that the property is maintained by the rest of the
system (all the agents currently participating in the system). This is necessary as we
want to prove that the property is never violated by the complete system and the func-
tional system is part of the system as well.

Functional System Specification. The functional system guarantees that it does not
change the configuration on its own. It also has to guarantee the considered property
Prop. Further, the functional system must guarantee to be quiescent during the self-*
phase and only to leave the quiescent state on o/c notifications.

Gspe (Vaits Vo) 1 Veons = Vi
N (Prop(Vay) — Prop(V!,))
N (Vi Agreconf — quiescence(Vay,V.)))

a

A (Vi : Ag;.reconf — Ag..recony)

To ensure this, it relies on a correct o/c behavior, i.e., the o/c only changes the configura-
tion variables in self-* phases and the internal variables of the agents are only changed
by themselves. It further relies on the remaining part of the system not to violate the
expected property as well.

RS (Vo Vi) i3 (Vi 0 = Ag).reconf A — Ag deficient — Unchg,y,(Veons))
N (Vi : Agl.deficient — Ag! .deficient)
A (Prop(Van) — Prop(Vy))
A Unchg e, (Vint)

Applying the compositionality theorem from Sect. 5.2 it can be proven that the abstract
property Prop also holds for the combined system if both parts behave according to their
rely/guarantee specification. The environment of the complete system is still allowed
to arbitrarily change the environment (V,,,) and the agents’ variables V,.;; which are,
e.g., specifying the agents’ sensor data or hardware status. It is just assumed that the
environment cannot change an agent’s internal variables or configuration parameters.

5.6 The Verification Process

We now have all elements in place that are required to actually verify a concrete appli-
cation. This process is exemplified with two case studies in Sect. 7 and Sect. 8. In all
cases, four general steps have to be followed:
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1. Define formal model, system dynamics, and property:
— define a formal model of the functional system, respectively the agents;
— define the variables describing the system state;
— specify the dynamic behavior, i.e. the state changes;
— specify the property the functional system has to adhere to.
2. Define the corridor and reconfiguration behavior:
— specify the application specific corridor based on the formal model;
— define what the quiescent state of an agent is;
— specify what nolnterference means for the observer/controller in the particular
application.
3. Instantiate the abstract rely/guarantees in this section with the application specific
variables and formulas:
— for the observer/controller;
— for the functional system.
4. Verify that the observer/controller and the functional system behave according to
the instantiated rely/guarantee properties.

Following this course of action will verify that the functional system behaves according
to its specification and that the interaction between observer/controller and the func-
tional system is correct. This includes all behavior that takes place when the system is
reconfigured. However, the actual reconfiguration algorithm implemented in the con-
troller part of the o/c is not subject to verification. Therefore, an additional measure
has to be put in place. This measure is discussed in the following section before the
verification process is exemplified with two case studies.

6 Observer/Controller Correctness by Verified Result Checking

The verification of the functional system relies on a correct observer/controller-layer.
For the verification of the functional system it was assumed that the observer/controller
applies configurations that fulfill the invariant. To verify this property, one option is to
reason about the reconfiguration algorithm in question by direct verification. Depending
on the algorithms’ complexity this task can be arbitrarily difficult or even infeasible as
often bio-inspired algorithms, learning techniques or stochastic approaches are used to
implement the self-* features. These algorithms are not necessarily sound nor complete
and thus do not always return valid results which disqualifies them for direct verifi-
cation. In this section we want to give a brief insight into a technique that allows to
formally verify the correctness independent of the particular algorithm with a verified
result checker. Sect. 6.1 outlines the concepts we developed while Sect. 6.2 shows how
the result checker can be derived from the specification and be used in the system. For
more details, refer to [16].

6.1 Foundations of Verified Result Checking

As a technique to avoid direct verification and as an alternative to pure online verifica-
tion [25] of the complete system we developed the concept of verified result checking,
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which combines the classical idea of result checking by Blum, Wasserman and Kan-
nan [10,46] and formal program verification.

Result checking is a way to ensure the correctness of a program by another program.
In contrast to testing and verification the correctness is not enforced by ensuring the
correctness of the used algorithm itself, but by checking the correctness of all of its
results at runtime. To actually be able to give guarantees in advance, we combine the
result checking approach with design time verification of the particular result checker.
This allows for runtime assurance but design time verification of the algorithm. It also
makes it possible to switch algorithms during runtime, e.g., to have specialized algo-
rithms for different situations. The verification task is reduced to the verification of the
result checker. The program to check whether a configuration is correct is usually sim-
pler than the program to calculate a configuration. This makes verification of the result
checker less complex than the verification of the reconfiguration algorithm.

A result checker is therefore a short program RC that reads the output of the program
to check and returns correct if the result is correct and incorrect otherwise (see
specification below). It is executed after the reconfiguration algorithm and reads the
calculated configuration (Vo). If the configuration restores the invariant, the checker
returns correct and forwards the configuration. If the configuration is incorrect, it is
blocked and feedback is provided to the reconfiguration algorithm. This feedback can
consist of the parts of the invariant that are violated or — if a metric is available — a
measure of the error of the solution.

Specification of Result Checker (RC)

input configuration (Veonf) of 0/cimpi
output ‘correct” if Invgia (Veons), ‘incorrect’, otherwise

While this technique allows to check new configurations for validity, the lack of a
direct verification of the algorithm means that no statement can be made about termina-
tion of the algorithm. Therefore only correctness and quality properties of a configura-
tion that is forwarded to the system but no liveness criteria in the sense of “something
good will eventually happen” about the self-* phase itself can be proven with the re-
sult checking approach. Liveness properties ensure that the system makes progress in
some manner, while safety properties (‘“something bad will never happen”) are proper-
ties that ensure that there are no threats to life and limb. However, liveness properties in
an self-* system are hard to verify as failures can always occur and additional assump-
tions about the environment have to be made, e.g., assumptions about the frequency of
failures. Failures eat redundancy, in the sense of possibilities that another component
can take over missing functionality. If no redundancy is available, the system can not
compensate a failure any more and therefore, no liveness properties can be guaranteed.
They can thus be treated as a kind of quality properties of a considered implementation.
This might not be a very relevant limitation in practice but will have to be considered
in formal verification. However, the system is still able to guarantee safety properties
which are most interesting for self-* systems anyway.
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Related Work: A similar idea in order to enable the use of unsound algorithms and
still ensure correct results, but not with the focus on formal verification and correctness
guarantees, is presented by Rochner and Miiller-Schloer in [35]. They add a so called
guard to their Observer/Controller-architecture that filters the actions calculated by the
controller. In principle, this corresponds to the result checking idea. However, they do
not consider the correctness of the guard itself nor do they describe how such a filter
can be derived systematically.

A related field is runtime verification [25] which deals with checking the correctness
of a property during runtime. This approach tries to completely move the verification
from design to runtime, by developing suitable monitors in order to accurately decide
whether a property holds or not. In contrast to the approach presented here runtime
verification does not deal with the question how a system can be adapted if a violation
is detected. However, ideas and results from the field can be used to develop appropriate
observers in order to detect system failures and invariant violations.

6.2 Deriving und Using a Result Checker

The implementation and the formal specification of a result checker can be systemati-
cally derived from the specification of the invariant. The result checker implementation
is then verified to prove that it returns correct for a configuration if and only if the
invariant INV gy (conf) evaluates to true. In [16] a systematic development and veri-
fication of a result checker for self-organizing resource-flow systems is described in
detail.

The invariant can be seen as constraints on the configuration variables, as the corri-
dor is formulated as a predicate INVgja (V) over all variables V. It usually constrains
the configuration variables in relation to the remaining variables and therefore describes
correct configurations with respect to the system’s situation. If the invariant is vio-
lated, e.g., due to a failure which is reflected in a change of a variable’s value, the
observer/controller tries to find a new evaluation for the configuration variables, which
re-establishes the invariant.

The reconfiguration task can therefore be considered a constraint satisfaction prob-
lem (CSP) [15,44]:

CSPreconf = (Vconfa DconfalNVRIA(V))

The decision variables are the configuration variables V,,,s with corresponding domains
D ons and the constraints are defined through the invariant. The goal is to find a valid
evaluation of the configuration variables such that the constraints (invariant) are fulfilled
[29]. Usually one is not only interested in whether a solution is correct or incorrect, but
also in how good a solution is. In case of an incorrect solution detailed feedback is
required in order to find a new and valid configuration. Therefore the result checker can
be extended with a penalty function which quantifies the quality of a configuration.

In case of an invalid result the result checker provides feedback about which con-
straints are violated for which agents. This detailed feedback can than be used by the
self-* algorithm to find a better solution. For instance, if a genetic algorithm is used,
the result checker can be called by the fitness function and used as one element in the
calculation of the fitness values of the configurations in a population.
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Fig. 10. An adaptive production cell with three robots, two transport units, and three tools [19]

7 Application to an Adaptive Production Cell

In this section, the application of the specification and verification approach to a simple
adaptive production cell is described. The cell depicted in Fig. 10 consists of three
robots and two autonomous transport units (carts) connecting them. Every robot can
accomplish three tasks: drill a hole into a workpiece (D); insert a screw into this hole
(D; and tighten the screw with a screwdriver (T). For each task the robots have different
tools which they can switch.

Every workpiece entering the cell has to be processed according to a given order,
e.g., drill, insert, tighten. In case one or more tools break and the current configuration
allows no more correct processing of the incoming workpieces, the observer/controller
is reconfiguring the cell and re-assigning the different tools such that production can
continue. Further the carts have to be re-routed in order to preserve the right processing
sequence. They always have to transport from the drilling robot to the inserting robot
and from the inserting robot to the robot that is tightening the screw. As the system
is deciding on its own which robot is applying which tool, we at least want to have
the guarantee that workpieces are processed correctly: the tools are applied in the right
order and workpieces leaving the cell are fully processed with all three tools.

1. Define Formal Model, System Dynamics, and Property. The first step is to build
a formal model of the production cell. Each robot has, besides the two flags reconf and
deficient for reconfiguration, a variable availableTools describing the set of available
tools and a variable assignedTool for the currently assigned tool. Access to a variable
of a Robot r is denoted by r.assignedTool. The set robots contains all currently partic-
ipating robots. The task is specified as a sequence of tools which should be applied to
a workpiece. A workpiece wp therefore has two variables: wp.state modeling its cur-
rent processing state and wp.task for the task for this workpiece. The set of workpieces
currently in the production cell is denoted with cell. In order to formulate properties
about workpieces leaving the cell, the leaving workpieces are stored in a storage (list
of workpieces). The expected property (Prop) the system should exhibit then is, that
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all workpieces have correct state and leaving workpieces are fully processed. It can be
formulated as follows, where L is the standard prefix operator for lists:

correctProcessing(Vyy) <> (Y wp € cell : wp.state C wp.task)
A (VY wp € storage : wp.state = wp.task)

This property should always be maintained by the complete system and its validity on
the entire trace is the behavioral guarantee we want to give for the system.

In [39] an extended variant of the adaptive production cell is described. It includes
correct routing of the carts which was not considered here. This leads to additional prop-
erties in INV g4, describing correct routes. Carts are also specified with rely/guarantees.
The specification of the corridor and its verification is presented in [32]. Further, the pa-
per contains a role concept for the agents and a detailed model of the dynamics of the
agents modeled with UML-statecharts. The implementation of the production scenario
is described in [30].

2. Define the Corridor and Reconfiguration Behavior. The invariant specifies correct
configurations of the production cell which leads to correct behavior. A valid configura-
tion is one that assigns all needed tools. In other words, for each workpiece in the cell,
all tools of the workpiece’s task have to be assigned. Further, only tools available to a
robot can be assigned.

INVgia = (Vwp €cellVt €wp.task : A r € robots : r.assignedTool =1t)
A (Y r € robots : r.assignedTool € r.availableTools)

In this application quiescence means that a robot stops during reconfiguration and does
not perform any processing steps, like applying a tool. The observer/controller further-
more guarantees that it does only interfere when a self-* phase was started in before-
hand. This means that the o/c does only change a robot’s assignedTool in functional
phases.

3. Instantiate the Abstract Rely/Guarantees. In order to retrieve the rely/guarantee
properties the variables have to be assigned to the generic variable sets.

Vine = {rID |V r € robots}

Veons := {r.assignedTool |V r € robots}

Viess = {r.availableTools | V¥ r € robots}

Ve = {wp.state,wp.task | ¥V wp € cell U storage}

For this scenario, the robots’ internal variables are merely their IDs. The set of config-
uration variables contains the assignedTool variable of each robot. The availableTools
of each robot can be arbitrarily changed by the environment and are therefore in V.
The environment is thus allowed to change this set which models tool failures but also
maintenance in case the set is extended. From the point of view of the production cell,
the task according to which a workpiece should be processed, the storage and the state
of the workpieces are in V,,,. For example, the application of a tool changes the envi-
ronment as the workpiece’s state is manipulated. The task of new workpieces entering
the cell is set by the environment.
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Observer/controller specification. The next step is to instantiate the generic R/G prop-
erty of the observer/controller. The observer/controller has to guarantee that it correctly
restores the invariant at the end of a self-* phase, indicated by changing the robots re-
conf variable, and that it does not interfere in functional phases. It also guarantees that
it does not violate the correctProcessing property and that it only changes the configu-
ration variables. The instantiated guarantee then looks like this:

Goje(Van, Vi) 14+ (V r € robots : r.reconf A= 1’ .reconf — INVria(V,;))

a a

A (Y r € robots . — ¥ .reconf — ¥ .assignedTool = r.assignedTool)

A (correctProcessing(Vy) — correctProcessing(V;H))
A UncthyS(Vfunc\ Vconf)

The rely R, . for the o/c-layer is the same as the generic one which assumes that the
functional system does not end the self-* phase on its own. Every implementation,
distributed or central, that fulfills this R/G-property is a valid o/c-implementation. For
the production cell scenario a central and a distributed o/c-layer was implemented [1,
29]. The central one uses a constraint solver in order to calculate new valid assignments.
The distributed one is based on coalition formation and tries to find a minimal set of
robots that is able to reconfigure the cell. The correctness in both cases is ensured via a
verified result checker (see Sect. 6) which ensures that only correct configurations are
forwarded to the functional system.

Functional system specification. The rely/guarantee property for the functional system
is retrieved analogously by instantiating the generic property:

Gsygﬁm(,(vall, V!,) < (Y rerobots : rassignedTool = r' .assignedTool)

a

A (correctProcessing(Vay) — correctProcessing(V.,))
N (Y r € robots : r.reconf — V., = V)

A (Y r € robots : r.reconf — ¥ .reconf)

The functional part does not change the configuration on its own (1) and guarantees
the expected property correctProcessing (2). It also guarantees to enter the quiescent
state, when a self-* phase was initiated (3). The functional system ensures that it only
leaves the quiescent state when notified by the o/c (4). To be able to guarantee this, the
functional system relies on the o/c not to change the configuration in functional phases.
Further it relies on others to not change its internal variables. In this case, the rely is
identical to the generic Ryys,,,. shown on page 96.

As the functional system consists of several robots the next step is to split the R/G
property into properties for the single robot in a second decomposition step. In this
decomposition the interaction between the robots must also be considered, as from the
point of view of each individual robot, the o/c as well as the other robots are in its
environment. The local rely/guarantees are retrieved by restricting the property to the
scope of a single robot. Additionally, each robot has to guarantee that it does not change
the variables of the other robots. The local R/G property for a single robot r then is:
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Gr(Vau, Vly) > (rassignedTool = r' .assignedTool)

A (correctProcessing(Vai) — correctProcessing(V?,))

A (r.reconf — V!, = V)
A (r.reconf — ¥ .reconf)

The rely is restricted to the local scope analogously.

RV, V) 5 (= reconf\N— 1" deficient — Unchg,,,(Veonf))
A (¥ .deficient — ¥’ .deficient)
A (correctProcessing(Vyi) — correctProcessing(V.,))

A Unchg,,,(r.ID)

4. Verification. For the particular implementation it must be proven that it is correct
with respect to this R/G-specification. Hence, the number of proofs depends on the num-
ber of different agent implementations. In case of a homogeneous system consisting of
identical agents — like the robots — only one proof has to be made, while in heteroge-
neous systems in which different agent types can have different dynamics, the proofs
have to be performed for each agent type separately.

In this application the functional and self-* phases are alternating. Hence, in the qui-
escent state the robots come to a full stop while being reconfigured. On the other end of
the spectrum of quiescent behavior are systems in which the self-* layer works in par-
allel with the functional system permanently. In such a case, the o/c-layer is constantly
applying new configurations and the requirements for the quiescent state must be less
restrictive. Such a system is presented in the next section.

8 Application to Autonomous Virtual Power Plants

Future energy systems require autonomous, decentralized management to deal with
the enormous number of power generators and controllable consumers. Decentralized
power generation and the limitations of the power network make it necessary to lo-
cally manage the balance between power production and consumption in a decentral-
ized fashion. Autonomous Virtual Power Plant s(AVPP) [1, 2] could be the building
blocks of such a future system. One AVPP controls a number of small energy producers
such as biogas plants, solar plants and run-of-the-river power plants. The plants are di-
vided into stochastic ones such as solar and wind generators and controllable ones. The
AVPP’s task is to control the plants in such a way that the load equals the combined
production of the plants by calculating schedules for the controllable plants. The con-
trol decisions are based on forecasts of the plants’ power production and of the load.
A correct schedule for the individual plants can be calculated by a genetic algorithm
or a particle swarm optimizer. The schedule changes as new prognoses come in and
old ones are revised. The AVPP thus self-adapts constantly to new information and to
the new environmental situation, meaning that there are no strictly discernible self-*
and functional phases. In addition, a reactive algorithm compensates for slight errors
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in the predictions by adapting each power plant’s output slightly if current data about
production and load become available [3]. However, the calculation of new power plant
schedules can be seen as the main self-adaptive feature and is thus designated as the
self-* phase in the following.

1. Define Formal Model, System Dynamics, and Property. An AVPP constitutes an
observer/controller that manages a functional system consisting of a set N of individual
power generators. If a power plant does not produce the power it forecast or the load
changes unexpectedly, the invariant of the AVPP is violated and a new schedule has to
be calculated. The total load which should be met is denoted as L. and is available to the
observer/controller and all power plants. The AVPP calculates schedules for the power
plants based on a load prognosis L, which approximates the future load. Each power
plant i € N has a scheduled target output Py, that is derived from the AVPP’s target
output which in turn is determined by the prognosed load (Pyarger = Lprog = va Prarger,i)-
As the schedule is made for several timesteps in advance, P,arget,meg and Pygrger; are
lists of values. The scheduled target output for time 7 is denoted by P}, ;-

The property (Prop) that is of importance in the energy system is grid stability. The
power grid is sensitive to imbalances between consumption and production. If they
differ, the network frequency changes which can lead to power outages and destroy
equipment. Therefore, the AVPP has to guarantee that — if the forecast of the upcoming
load is good enough — it will always produce as much power as requested. This boils
down to an approximate equality between the scheduled target output of the power
plants for the current timestep and their actual output in this time step:

gndStablllty( all =Pl =~ ZPactuall

target

Again, it is not sensible to demand strict equality since the prognosis can never be
guaranteed to be exactly equal to the actual load. As there is a band in which the power
grid can operate and the reactive mechanism can compensate slight deviations, this is
not strictly necessary.

2. Define the Corridor and Reconfiguration Behavior. The next step is to formalize
the corridor of correct behavior. A valid configuration is one that describes a valid
schedule for the system and that ensures that in sum as much power is produced as
currently is consumed and that the schedule will be able to cover the consumption
predicted for each timestep ¢.

The first constraint describes that a plant’s assigned target output has to be either
zero or between the power plant’s minimal and maximal output possibilities.

Ccons:Viat #O_>Pmm1<P <Pmaxt

target,i —= Ytarget,i =

Further a valid schedule has to assure that the change of output power from one time
step to the next is not greater than the rate of change of a plant (v;).

+1
Lhange Vit |Pt Pttarget,i‘ <vi

target,i
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In every timestep each plant’s target output should be approximately equal to the current
output (1 = now).?
Chalanced = Vi : mrvgvet i =~ Lactual i

The current power output varies due to the reactive behavior of the power plants. A
further constraint describes that the difference between the next target output and the
current output may not exceed the rate of change of the plant.

. . now+1
Cvarzance = ‘Ptargett - actua11| <v;

The schedule for the stochastic power plants also must assure that the scheduled output
approximately equals the forecast:

Cstoch Vl L Ptargetl ~ pred,i

The corridor is then defined by the conjunction of all the constraints.
INVRia (V) Cwm A Cchange A Cbalanced A Cvarlame A Cstoch

The most common kinds of stochastic power plants are solar and wind power plants.
Their output is directly dependent on the weather which thus has to be modeled within
the system. It is captured in variables that are combined in the set Weather. The output
of a stochastic plant is then a function of Weather.

The nolnterference property of the AVPP states that it changes the schedule only
after signaling it. The quiescent state of a power plant in this case only requires the
power plant not to signal the end of a self-* phase itself. This is necessary in order to
guarantee that the invariant holds whenever the end of a self-* phase is signaled. It is
interesting to note that, in comparison to the agents in the production cell, the power
plants can not simply stop whenever a constraint is violated. Instead, in the quiescent
state, the power plants stick to their current schedule until a new schedule has been
calculated. This behavior, however, has no influence on the verification approach.

3. Instantiate the Abstract Rely/Guarantees. The next step is to assign the variables
to the different sets and to instantiate the generic rely/guarantee properties.

Vine = {Pmax,iaPmin,ivViaPpred,i}
Vconf = {Ptarget,i}
Vrest = {Pactualt}

Ve = {Lc, Weather}

The constants describing the physical limitations of the power plants are internal vari-
ables, like the maximal possible output. Also the forecast of the future output of a plant
is an internal variable. These can not be changed by the environment or the AVPP. The
configuration variables consist of the assigned schedule for each power plant. These can
not be changed by the environment, but by the AVPP. Each power plant has a variable
for the actual power output, which can be changed by the environment. This models
failures such as a broken power generator or connection loss to the power grid which
lead to a change in the actual output. The environment contains the consumer load and
the variables describing the weather.

3 For the verification this is formalized as the difference may not exceed a certain €.
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Observer/controller specification. Instantiating the generic rely/guarantee properties
for the observer/controller we retrieve the specification of the AVPP’s self-* behavior.

Goe(Van, Vi) 1+ (Vi = reconf; N = reconf; — INVgia(Vyy;))
A (Vi : = reconf; — nolnterference(Vy, Vi)
N (gridStability(Vay) — gridStability(V},;;))
A Unchgy (Viune \ Veony)

The AVPP ensures that it always calculates valid schedules for the system, specified
using the invariant INVR]A(V‘;H) and that it does only interfere in self-* phases. The
AVPP also guarantees not to violate gridStability with its actions. As it does neither
produce any power output nor consumes any power and a change of the schedule only
comes into effect in the steps of the power plants, this is trivially true. The AVPP only
changes the configuration variables, i.e., Prger,i» Of the power plants. It relies on the
power plants not to violate gridStability either and not to leave the quiescent state during
a self-* phase.

R/G-specification of the functional system. The R/G-specification for the functional
system is also received by instantiating the generic R/G property. As the functional
system is composed of the individual power plants, the second decomposition step is
to formulate R/G-Properties for the particular power plant. These local rely/guarantee
properties are obtained as in the previous application by restricting the parts which are
quantified over all power plants to the particular power plant. In this case, there is no
direct interaction between the power plants themselves and thus no additional properties
describing such a communication are necessary. The guarantee for a single power plant
i then looks like:

Gi(Vau, Vg’zll) = Pt/arget,i = Prarget,i
N (gridStability(Vay) — gridStability(V!,)))
A (reconf; — quiescence(Viunc, Vi)
A (reconf; — reconf})
A power plant guarantees not to change the schedule on its own and not to violate the
gridStability property. The quiescent state of a power plant is that it adheres to the “old”
schedule as long as a reconfiguration takes place until the AVPP has finished writing
the new schedule and that it does not abort reconfiguration on its own.
In order to be able to guarantee this it must rely on the AVPP not to change the

schedule without notification. It further assumes that no internal variables are changed,
e.g., the maximal and minimal power output of the plant.

Ri(V0,;, Vi) =+ (= reconfi \— deficient] — Unchg,,, (Piarger,i))
A (deficient; — deficient])
N Unchg oy, ({ Pmax,is Pmin,is Ppred.i> vi})
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4. Verification. For each type of power plant implementation it has to be proven that it
satisfies these R/G-properties. Analogously it must be verified that the AVPP’s recon-
figuration mechanism adheres to its specification and only calculates valid schedules.
Then it can be deduced that for a finite but arbitrary number of power plants and an
AVPP implementation that adheres to the specification, the gridStability property is
maintained under the assumption that enough power is available in the whole system
to fulfill the load. This rely is formulated in the global environment. In a more detailed
model, the AVPP has the ability to throw-off load and therefore to control the load of
the system in case the power available is insufficient.

Examples for Invariant Violations. The invariant can be violated in several ways. In
case of a stochastic power plant, unforeseen environmental influences such as sudden
weather changes can invalidate the forecast output which leads to a violation of Cyep,
for this power plant. This can lead to a power deficit or surplus, both of which will
have to be dealt with by rescheduling the available deterministic plants. A deterministic
power plant is less likely to deviate from its prognoses, but it is still possible that the
power plant goes offline unexpectedly. In this case, Cpyianceq 1 Violated and other plants
have to be rescheduled to compensate for the missing power. A further violation can
occur if the load suddenly changes and the reactive mechanism of the deterministic
plants changes the actual power output. If this was not foreseen in the prognoses, this
leads to a deviation form the scheduled target load of the plant. If this deviation is too
big, either Cpyianced OF Cyariance are violated.

In all cases the AVPP calculates a new schedule that is adapted to the new situation
and which fulfills the invariant again. The reactive mechanism of the power plants en-
sures that grid stability is maintained. An invariant violation shows that the dynamics
of the systems are unable to handle the current circumstances and adaptation is needed.

9 Conclusion and Outlook

This chapter presented an approach for formal modeling and compositional verification
of self-* systems based on observer/controller-architectures which realize self-* capa-
bilities by adapting configuration parameters of the participating components. The ar-
chitecture separates the self-* and the functional behavior of the system. This separation
is exploited by the Restore Invariant Approach in order to allow a separate verification
of the functional and self-* part of the system. For the verification of the functional part
a particular behavior of the observer/controller-layer is assumed and vice versa. This
is specified by an invariant that defines the corridor of correct behavior in which func-
tional correctness is ensured. The functional system is decomposed into properties over
single agents. Compositional reasoning ensures the correctness of the overall system by
proofs over single agents.

For the verification of the observer/controller behavior, verified result checking is
applied. This allows moving the verification task to design time while correctness is
assured during runtime. As correctness is ensured independently of the reconfiguration
algorithms, these can be switched during runtime. This also allows the use of algorithms
often used in self-* and nature-inspired systems that are neither sound nor complete.
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By focusing on a specific architecture, generic properties that all applications have
in common can be formulated. These can be instantiated for an application to retrieve
the respective proof obligation. For the formal model and its verification, common for-
malisms and techniques are used that have successfully been applied to traditional sys-
tems. This allows to benefit of all advantages, like proof support, but still allows to
express the important aspects of self-* systems. The framework includes explicit con-
sideration of the environment, enabling reasoning about feedback loops which are a
major aspect when considering self-* systems. However, the explicit model of the en-
vironment does not restrict the approach, as unforeseen changes of the environment
are implicitly assumed when not specified otherwise. By providing such a fragmentary
specification, uncertain behavior or arbitrary behavior can be modeled.

The approach was applied to two applications to illustrate the various aspects and
differences, like continuous adaptation without the need of a strong quiescent state com-
pared to alternating phases which need an explicit quiescent state for synchronization
and correct reconfiguration.

In conclusion, the presented approach allows giving behavioral guarantees despite
the self-* properties of the system. It provides a framework for formal modeling and
verification of a system which enables formal proofs without restricting the flexibility
of the system to adapt to unforeseen situations. This will hopefully raise the acceptance
of self-* systems and facilitates the use of these techniques in safety-critical domains.

Future research will include the consideration of hierarchical architectures with a
multi-layered observer/controller structure paired with the functional system, e.g., as
presented by Miiller-Schloer and Sick in [27]. Such an architecture can be beneficial in
the AVPP scenario, where superordinate AVPPs could coordinate the actions of ones
located on a lower level. Every level introduces new interaction possibilities that need
to be considered in the formal model.

Another interesting extension of the presented approach is to allow the definition of
soft corridors where a violation does not cause a reconfiguration right away but allows
a fine-grained reaction to problems. The mentioned works in the field of runtime ver-
ification could provide useful instructions for the development of monitors in order to
recognize a corridor violation quickly. An interesting challenge to solve is to synthe-
size appropriate monitors based on a given corridor specification and to find methods
to decide on a violation early enough.

So far, the verification approach was only applied for safety properties which state
that a property is never violated. A next step is to investigate the verification of liveness
properties, like e.g., progress properties. This could be done in a similar fashion as
presented in [43], where the rely/guarantee approach was already successfully applied
to prove liveness properties of lock free algorithms. However, the verification of self-*
systems is more complicated, as failures have to be considered. If failures can happen
arbitrarily often, there is no possibility to ensure progress of the system. Therefore an
approach must be found that restricts the environment, e.g., the frequency of failures.
The challenge is to make assumptions that are realistic and still allow failures to happen.

Behavioral guarantees are a major step towards the acceptance of self-* systems
and their application in safety-critical domains. Therefore the development of suitable
techniques and tools is important. This chapter presented one approach to tackle these
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challenges. However, it also illustrated how difficult the task is and that there are open
questions that will need to be tackled in order to extend the scope of formal techniques
to the full range of self-* systems.
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