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Abstract. A decentralized algorithm for solving set partitioning prob-
lems (SPP) has numerous applications in multi-agent systems. Apart
from its relevance for problems of operations research, the SPP is equiv-
alent to clustering of agents as well as the generation of coalition struc-
tures. SPADA, the algorithm proposed in this paper, does not use central
metrics, relies exclusively on local agent knowledge, and respects agent
autonomy. By trying to increase its own benefit, each subset of agents,
representing a coalition or cluster, contributes to establishing a suitable
partitioning. Agents are at liberty to decide if they want to join or leave
a subset. All operations that change the composition of these subsets or
the acquaintances of agents can be mapped onto a graph that represents
these relations. The algorithm is evaluated in a scenario of decentralized
energy management where it is used as a self-organization mechanism.
The evaluations show that the quality of the partitioning is within 10% of
the solutions found by a particle swarm optimizer with global knowledge.

Keywords: Self-Organization, Distributed Problem Solving, Set Parti-
tioning Problem, Coalition Formation, Clustering.

1 Introduction

In the set partitioning problem (SPP), a set A = {ay,...,a,} is partitioned
into k < n subsets, called partitions, such that each partition is pairwise disjoint
from all others. The resulting set of partitions is called a partitioning. If a SPP
is complemented with a similarity metric and the set is partitioned in a way
that similar or dissimilar elements are grouped in the same partition, the SPP
is equivalent to clustering or anticlustering [14], respectively. If the a; represent
agents and the metric encodes how well different agents can work together to
solve a problem, the SPP is equivalent to coalition structure generation [12,13].

Due to these interrelations, algorithms for the solution of the SPP in multi-
agent systems (MAS) have a broad area of application. Some of these algorithms,
e.g., those formulated and solved as a linear programming problem, require
global system knowledge and are thus not applicable if the cost of gathering
this knowledge is high or the system does not support obtaining such knowledge
due to its openness and adaptivity. Many existing approaches try to circumvent
this problem one way or the other, but they still suffer from some drawbacks
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that limit their usefulness in highly adaptive systems. In many cases, a global
metric is required or some form of global knowledge needs to be gathered be-
fore the algorithm can be run (e.g., [12]). A crucial step in some algorithms
(e.g., those proposed in [13]) is to distribute this global knowledge among the
agents. All possible coalitions and their utility are pre-calculated and the best
one is picked after a global announcement. This ensures optimal solutions but
introduces global synchronization points. This is not practical in many cases,
especially when agents enter and leave the system arbitrarily.

The decentralized algorithm proposed in this paper — the Set Partitioning
Algorithm for Distributed Agents (SPADA) — does not suffer from these draw-
backs. It solves SPPs in a completely decentralized fashion, relying only on local
knowledge. Thus, no central metric is necessary and the quality of the partition-
ing is evaluated locally. With different metrics, SPADA can easily be applied
to different clustering and coalition structure generation problems in MAS. For
example, SPADA can be used to perform anticlustering [14] in which a set is par-
titioned in a way that the resulting clusters are similar but the elements within
each cluster are dissimilar. A further possibility is to establish a clustering in
which each cluster must have properties similar to the original set. In Sect. 4,
we show an application in the field of decentralized energy management, where
anticlusters form a system structure at runtime. The case study also shows that
our algorithm is well-suited for reconfiguration in self-organizing systems.

The paper is structured as follows: Sect. 2 introduces a graph-based view of
partitions. The decentralized algorithm, SPADA, is detailed in Sect. 3. Subse-
quently, Sect. 4 describes a scenario in which SPADA was evaluated and presents
the evaluation results. In Sect. 5, SPADA is compared to related approaches. Fi-
nally, Sect. 6 summarizes the paper and gives an outlook on future work.

2 The Agent and System Model

Before we explain SPADA in detail, we state the assumptions we make about the
MAS on which the algorithm is implemented and introduce the model, a graph-
based view on the system, used to specify agent knowledge and partitions.

We assume a MAS in which all agents are able to communicate with each
other. The knowledge of agents, however, is limited so that each agent is ac-
quainted with a constant number of other agents. This property restricts the
number of agents an interaction can be initiated with. Although acquaintances
may change over time, the number of acquaintances per agent is constant to
minimize the memory required and reduce the probability of working with out-
dated information. Acquaintances are represented by directed and unique links.
A link (a,b) indicates that agent a is acquainted with agent b. Furthermore,
the acquaintance relation is (1) irreflexive as an agent is not acquainted with
itself, (2) not symmetric as links are directed, and (3) not transitive to limit the
number of acquaintances per agent. As a result, a system of agents and links
between them forms an overlay network that can be represented as a directed
acquaintances graph (see Fig. 1(a)). We assume that the undirected counterpart
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of the acquaintances graph is fully connected. This is important because par-
titions located in different subgraphs cannot exchange knowledge and agents.
Thus, disconnected subgraphs would reduce the set of possible solutions.

Fig. 1. Fig. 1(a) shows a system of six agents represented as a graph. Agents are nodes
and acquaintances are depicted by directed edges, e.g., f is acquainted with b and
c. Fig. 1(b) depicts a system consisting of three partitions {a,c, f}, {b,d}, {e} with
leaders a,d,e. Dashed edges represent unmarked links, whereas bold edges represent
marked links.

A partitioning for such a MAS is a division of the given graph into several sub-
graphs with a pairwise disjoint set of nodes (i.e., agents). Partitions are repre-
sented by marked links, which are links with a partition-specific flag. Links with-
out this flag are called unmarked links. A marked link (a, b) between two agents a, b
states that a is acquainted with b, and that a, b are members of the same parti-
tion. Note that two agents ¢, d can be in the same partition without a link between
them. As links are unique, a link is either marked or unmarked.

In terms of the acquaintances graph, a partition is defined by a tree T of
marked links with a designated agent (the leader \) at its root. This results
in a directed forest for all partitions. With = an arbitrary agent and R* the
reflexive transitive closure of the relation R induced by marked links, {x | AR* z}
describes the set of members of X’s partition. Fig. 1(b) shows three partitions
{a,c, f}, {b,d}, and {e} with leaders a, d, and e at the trees’ roots.

Each leader X steers the development of its partition, and is known to every
member of its partition®. Initially, every agent is the leader of a partition with
size one. Though every agent is basically capable of being a leader, there is only
one leader per partition to avoid inconsistencies in the course of the formation
process. A leader therefore unambiguously identifies its partition. It is respon-
sible for managing the partition’s composition and knowledge by modifying the
marked and unmarked links of its members. For this purpose, a leader knows all
marked links of its partition (the members) and all unmarked links of all mem-
bers (further acquaintances of the members). With respect to Fig. 1(b), leader d,
e.g., has knowledge of its own and b’s marked links {(d,b)} U () and unmarked
links {(d, f)} U {(b,a), (b,e)}. A leader A changes its partition A by requesting
A’s acquaintances (i.e., the acquaintances of A’s members) to join or by asking
agents within A to leave in order to increase the benefit of the individual par-
titions or the system. Because of the constant number of links per agent, the

! This does not imply that member z is acquainted with X via an unmarked link (z, A).
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number of external agents a leader can contact to extend its partition is limited
by the number of partition members multiplied by the number of acquaintances
per agent, minus the number of partition members.

3 The Decentralized Set Partitioning Algorithm

As mentioned in the previous section, each leader tries to optimize the composi-
tion of its partition with regard to various application-specific criteria. Therefore,
each leader periodically evaluates whether it is worthwhile 1) to integrate new
agents into its partition and 2) to exclude current members from its partition.
Leaders must thus be able to identify appropriate candidates for integration (see
Sect. 3.1) and exclusion (see Sect. 3.5). Because agents that were requested to
join another partition are at liberty to decline the invitation (see Sect. 3.2 and
Sect. 3.3), they must be able to make an informed decision whether to accept or
reject such an invitation. If an agent accepts an invitation, it is removed from its
current partition (see Sect. 3.4). In general, leaders and requested agents make
such a decision with the help of a local fitness function f(A,e€) on the basis of
local knowledge. f(A,¢€) assesses the quality of a partition A in its local envi-
ronment ¢ that is defined as a set of agents (the higher the fitness, the better
the partition). This set consists of the acquainted agents of A that are not mem-
bers of A. A leader uses the fitness function as a basis to evaluate the reward
functions r,.(a, A, €) (r stands for request) and r.(a, 4,¢€) (e stands for ezclude)
to determine appropriate candidates a for integration and exclusion. Further,
a requested agent a makes its decision whether to change from partition A,
to partition A,., based on the fitness function by applying a reward function
(@, Areq; Acur, €) (j stands for join). While € depends on the situation in which
such a reward function is evaluated, each agent must use the same fitness and
reward functions in order that the agents pursue a common objective to solve
the SPP. For example, if agents with similar computational power should be
grouped into a partition, each agent should use f(4,€) to compare the similarity
of the computational power in a specific partition A to the corresponding value
in partitions defined by the agents contained in the local environment e.

Since agents use local knowledge to evaluate the fitness, they make assump-
tions about their environment based on their own knowledge and application-
specific information retrieved from acquainted agents. To make better use of this
information, leaders reorganize the acquaintances of agents being part of their
partitions so that agents and partitions become acquainted with several different
agents over time (see Sect. 3.6). As a result, local knowledge spreads in the sys-
tem, resulting in a larger variety of possible partitions. Moreover, as integrated
agents introduce access to new acquaintances in the form of unmarked links, the
partition’s knowledge and flexibility is increased with each new member.

In the following sections, we describe the procedure for integrating and re-
moving agents in detail, and show how SPADA deals with agents entering and
leaving the system (see Sect. 3.7). We further explain that leaders stop modifying
their partition as soon as it satisfies given termination criteria (see Sect. 3.8).
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3.1 Identifying Candidates for Integration

Each leader ) identifies candidates for integration into its partition A and deter-
mines the order in which they are invited to join A as shown in the following.
Let A, be the set of all acquainted agents of A’s members that, in principle,
can be integrated into A (i.e., A, does not contain members of A). To identify
suitable candidates, A assesses the benefit of their participation in A for at most
m, € N agents. The number of agents to be assessed is limited for efficiency
reasons, but the quality of the result increases with m,.. A defines which agents are
to be rated by determining a largest arbitrary subset A% C A, with |A%| < m,
elements. For each potential member a € A%, A rates the reward ry € R if
agent a changes into A by using a reward function r,.(a, 4, €) that relies on the
fitness function. The reward function compares the fitness f(4, €) of A’s current
composition to the fitness f(A U {a}, e\ {a}) when a is a member of A:

ry =rr(a, A €) = f(A U {a}, e\ {a}) = f(4,€)

For this evaluation, A requests local knowledge about A and its environment e
from its partition members and from agents its members are acquainted with.
A reward r¢ < 0 states that it is not beneficial to integrate a into the partition
since the fitness would decrease. If r? is greater than a given threshold 7, € R,
a is a candidate for integration. In such a case, A adds (a, %) to a list £, that
holds rated candidates. Afterwards, A sorts £, by reward in descending order.
Since 7, may be less than 0, A’s partition can be extended by an agent a (and
thus become acquainted with other agents), although a is not considered benefi-
cial from the partition’s perspective. This can be of use in some situations, e.g.,
if the partition’s fitness is low and there are no alternatives, or if the partition
has too little knowledge for appropriate evaluations of the local fitness function.
Next, we show how A integrates some of the candidates in £, into A.

3.2 Trying to Integrate Agents into a Partition

In case L, is not empty, a leader \ assumes that it is beneficial to extend its
partition A by at most k. € N candidates given in the list £,.. Until A has been
extended by k, agents or £, is empty, A removes the first entry (a,r?) from L,
and sends an invitation to agent a. This invitation includes application-specific
information about A and its acquainted agents. Based on this information and
the information about a’s current partition, a decides whether or not it accepts
the request (see Sect. 3.3). If a accepts the invitation, it sends an acknowledgment
to A, whereupon A asks a to leave its current partition. After a was removed
from its current partition (see Sect. 3.4), it provides A with all its acquaintances
(unmarked links) and adopts A as its leader.

A integrates a into A by converting an arbitrary unmarked link (b, a) pointing
from member b to a into a marked link by adding a flag. Hence, a is a leaf with
parent b in the tree representing A. The number of links per agent remains un-
changed as the unmarked link (b, a) is converted into a marked link and removing
a from its prior partition does not change the number of links per agent.
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3.3 Handling Join Partition Requests

Whenever an agent a receives a request to join the partition A,., of a requesting
leader A;cq, a decides whether to accept or refuse the invitation based on local
knowledge. To come to a decision, a uses the fitness function to compute the

req

reward 7“;1 of changing from its current partition Ag,, to partition A,q:

Aveq

T =71(a, Aregs Acur, €) = f(Areqg U {a}, e\ {a}) — f(Areq, €) +

f(Acur \{a}, €) = f(Acur, €\ {a})

The knowledge of a used to evaluate the reward is information sent by A, about
Areq and Ayeq’s acquaintances as well as knowledge requested from its current
leader A, about A, and A.,-’s acquaintances. This additional estimation
of the reward by a is advantageous because A, assessed the use of a based
on its own local knowledge which differs from the knowledge available to a.
In particular, since a’s view on the local environment € is extended by Arc,’s
knowledge, a can come to a different decision and refuse the invitation.

In case a accepts the invitation, A..; asks a to leave Agy,. If @ is not the
leader Acyr, it informs A, of its intention to leave the partition. Thereupon,
Acur Temoves a from Ag,, (see Sect. 3.4). Otherwise, if a is the leader of Ay,
two cases have to be distinguished: 1) In case a is not the only member of A.y., a
removes itself from the partition (see Sect. 3.4). 2) In case a is the only member
of Acyr, Acur dissolves after a has been integrated into Ay.q.

Having been removed from A.,., a sends its acquaintances in the form of
unmarked links to M.y, thus completing the integration process.

<

3.4 Removing an Agent from a Partition

Removing an agent a from a partition A with leader A modifies A’s acquaintances
graph. Because A separates a from the tree T' that represents A, the number of
modifications needed depends on the structure of the acquaintances graph and
the position of @ in T'. a is removed from T by converting all incoming and
outgoing marked links of ¢ into unmarked links by deleting the flag. Afterwards,
A re-establishes the tree property. The number of links n per agent is not changed.
As any agent can be removed from a partition, a can be a common node, a leaf,
or the root of T'. The latter is the case if A = a. In such a situation, a removes
itself from A, determines a new leader, and sends all knowledge about A to the
new leader. We describe the necessary operations for all cases in the following.
With the tree T' in mind, let C, be the set of children of a, p, the parent of a
if @ is not the root, and \* the leader of A after a was removed. Furthermore, let
Lyem and Lye be two preliminary empty sets of links. L., gathers all marked
links to be removed from T, and L, all marked links to be added to T'.
First, A adds the marked link (pg, @) to Lyem if @ is not T’s root (see Fig. 2(a)).
In such a case, A remains the root of 7' (A* = A). Then, if a has been a leaf, no
further marked links have to be identified for removal and A updates the sets
of links. Otherwise, if a has not been a leaf (C, # 0), A converts all marked
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Fig. 2. Fig. 2(a) depicts the removal of agent a from a partition with leader A (bold
edges represent marked links): existing marked links from/to a become unmarked links
(dashed non-bold edges) and new marked links (dashed bold edges) to a’s children are
created. Fig. 2(b) shows the removal of an agent a that is the leader X of a partition: a’s
child b becomes the new leader \*, existing marked links starting at a become unmarked
links, and new marked links from [, to all of a’s children except b are created.

links (a,h) with h € C, to unmarked links and updates a’s knowledge accord-
ingly. Afterwards, A selects an arbitrary agent b € C,. If a is not the root of T',
A creates a new marked link (pq,,b) to keep the tree connected and adds this link
to Lypew. Otherwise, b becomes the new root, and thus the new leader \* = b
(see Fig. 2(b)). Subsequently, A selects a leaf [, of the subtree with root b (note
that this could be b itself and that all n outgoing links of a leaf are unmarked)
and connects [ with each child ¢ € C \ {b} (|Cq \ {b}| < n) so that ¢ remains in
the partition. Therefor, A establishes a new marked link (I, ), and adds (Ip,%)
to Lpew- Ip thus becomes the new parent of each such agent i.

Next, A updates the set of marked links M of A’s members by adding all links
contained in L, and removing all links contained in L,..,,. Having updated M,
A adds all links contained in L,.¢,, to the set of unmarked links ¢/ of A’s members
and removes all links in L, from . For p, and [,, these modifications can lead
to a situation in which the number of outgoing links exceeds n by k. In such a
case, A removes k unmarked links for the corresponding agent. This is possible
as (1) k is at most 1 for p, and p, has at least one unmarked link (p,, @), and (2)
Iy had n unmarked links before a has been removed. However, this procedure can
break the acquaintances graph into several disconnected subgraphs (see Sect. 2
and 4). Since a is removed from A, X’s knowledge of links starting at a is obsolete.

Having updated the links, A\ informs a that it was removed from A. In case
the leader removed itself (A\* # \), A transfers its knowledge to A\*. Afterwards,
it informs each member to adopt A* as leader.

3.5 Excluding Agents from a Partition

Excluding agents is another way to increase the fitness of a partition with two
or more members. This can be useful in situations in which a partition or a
partition member changed over time, resulting in a structure where some of its
members, initially beneficial, decrease the partition’s fitness.
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A leader )\ identifies members to be excluded from its partition A similar to
identifying candidates for integration (see Sect. 3.1) by determining a largest
arbitrary subset A. of A’s members (|A.| < me) that should be analyzed with
respect to the benefit of their exclusion. \ evaluates the reward r¢ of excluding
agent a € A, by subtracting the fitness f(A\{a},eU {a}) in a situation in which
a is not a member of A from A’s current fitness f(4,¢€). Again, A evaluates the
fitness by making use of local knowledge requested from A’s members and their
acquaintances. A reward r¢ < 0 means that it is not beneficial that a is a member
of A. If r% is below a threshold 7., A adds the tuple (a,r%) to a list L. that holds
rated candidates for exclusion sorted by reward in ascending order.

Next, those candidates whose exclusion is most beneficial are removed. Until
A has been reduced by k. < |A| agents or L, is empty, A removes the first entry
(a,r?) from L, and removes a from A as described in Sect. 3.4. Before removing
another agent, \ informs a about its exclusion which then forms a new partition
of size 1 with itself as leader. If a was A’s leader, no further agents are excluded.

3.6 Mixing Acquaintances

Having enlarged their partition, leaders mix the acquaintances of their partition
members to enable variety in partition structures. Thus, each agent becomes
acquainted with various different agents over time. Since agents keep their ac-
quaintances whenever they change partitions, a broad spectrum of agents be-
comes available as potential members. Mixing acquaintances only modifies the
heads of unmarked links. This entails that the direction of links does not change,
and that marked links and thus the tree structure are not altered. For example,
two unmarked links (a, ¢) and (b, d) can therefore be replaced by (a, d) and (b, c).
SPADA’s implementation makes sure that the number of acquaintances of the
partition as well as of each agent is kept constant and that the changes adhere to
the properties of links named in Sect. 2. Consequently, mixing acquaintances does
not break the acquaintances graph into disconnected subgraphs (see Sect. 2).

3.7 Dealing with the Dynamic Nature of MAS

To accommodate the dynamics of MAS, SPADA deals with agents joining or
leaving the system so that the constant number of links per agent as well as the
tree property is maintained. We currently assume that messages are processed
correctly and malfunctioning agents become unavailable. If a new agent a joins
the system, it broadcasts a message and creates unmarked links to a random
subset of agents that reply to this message. Further, some agents replace one
of their unmarked links by a new unmarked link to a. To identify unavailable
agents, an agent periodically pings its acquaintances and its leader. If an agent
detects that the head of an unmarked link is unavailable, it broadcasts a message
and creates a new unmarked link to a responding agent. Moreover, if an agent
notices that a head of its marked links is unavailable, it informs its leader which
removes the unavailable agent from its partition. In case a leader left the system,
each member of the corresponding partition assumes that it is the leader of a
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new partition and sends a message to the heads of its marked links. Agents that
receive such a message adopt the sender as leader and forward the message to
the heads of their marked links, thus recreating a tree structure.

3.8 Termination and Completeness

Initially, every agent is the leader of its own partition (see Sect. 2)2. This ini-
tial structure changes over time until an adequate solution is found. To decide
whether its partition contributes to an adequate solution, each leader evaluates
application-specific termination criteria formulated as predicates. Since we re-
gard a decentralized algorithm for MAS, leaders perform this evaluation on the
basis of local knowledge provided by partition members and acquainted agents.
If the termination criteria are met for a specific partition, its leader marks it as
terminated. Consequently, there may be partitions marked as terminated while
others keep on changing their structure. As the shape of partitions influence the
satisfaction of termination criteria, the local fitness function used by agents and
leaders should be devised in such a way that their decisions target termination.

If a member of a terminated partition A, receives and accepts a join parti-
tion request from an active partition A4, the algorithm is reactivated for Acy;.
Thus, partitions are reactivated individually which enables selective changes with
respect to their composition. This is particularly beneficial when using the algo-
rithm for reconfiguration in self-organizing systems (see Sect. 4).

Because of these properties, it is not certain that all partitions reach a con-
sensus and thus termination cannot be guaranteed. Furthermore, just like every
algorithm using only local knowledge, SPADA is not complete since there can be
a global solution satisfying the termination criteria that cannot be found locally.

4 Analysis and Evaluation

For evaluation, we regarded an application from the domain of decentralized
energy management, which benefits from decentralized, locally operating mech-
anisms like SPADA. In the power grid, the main task is to hold the balance
between energy production and consumption. However, this task gets more and
more complicated because the number of power plants, especially distributed
energy resources like solar panels, is steadily increasing. An approach to deal
with this rising complexity is to partition all power plants into self-organizing
groups of power plants, called Autonomous Virtual Power Plants (AVPPs) [5].
Each AVPP autonomously plans the energy supply based on predictions made by
producers and consumers, reacts to load or supply changes, and adapts its struc-
ture when required. Additionally, uncertainty — introduced by stochastic energy
sources like wind and sun — is a great challenge since weather-dependent power
plants suffer from limited controllability and hard to predict power output. As
a way to handle uncertainty, AVPPs utilize the trustworthiness of power plants.

2 Any structure adhering to the SPP’s definition can be used as an initial partition.
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A power plant’s trust value increases with the accuracy of its power predictions
and its availability. Besides other factors, these trust values play a key role in
the formation of AVPPs. The aim is to achieve a similar mix of trustworthy and
untrustworthy power plants in each AVPP by performing an anticlustering.

To assess the fitness of a partitioning, for each AVPP, we calculate the mean
trust value of power plants contained in this AVPP. Since the goal is to equalize
these mean trust values, their standard deviation o is to be minimized. Because
our trust values are from the interval [0, 1], o is always between 0 and 1/0.5. We
therefore define a partitioning’s fitness F(o) as a function of o as follows:

1 1 1
.7-"(0)—( a)o , with a =
o+1 l-a V0.5 +1

F (o) monotonically decreases on the interval [0, v/0.5] so that we have F(0) = 1
for optimal partitionings (each partition has the same mean trust value) and
F (\/ 0.5) = 0 for a maximum standard deviation. Expecting SPADA to perform
well, F(o) is particularly sensitive to changes when o is small.

We compare the results of SPADA to a central approach that also solves
the SPP in general, but by making use of global knowledge. More precisely, we
use a particle swarm optimizer (PSO) [9], a metaheuristic for finding solutions
in optimization problems, based on the flocking behavior of birds. Basically,
the PSO uses a swarm of particles that roams the search space by modifying
candidate solutions by basic set operations (“split” and “merge”) in order to find
optimal solutions with respect to F (o). In contrast to other existing mechanisms
like k-means clustering or the k-nearest neighbor algorithm, SPADA and the PSO
do not specify a concrete number of partitions or clusters in advance.

For evaluation, we implemented a system consisting of 435 agents in Repast
Simphony [1], which uses a sequential, round-based execution model. Since we
avoided the complexity of an asynchronous execution model, SPADA could not
benefit from parallelism. In each round, every leader could modify the composi-
tion of its partition, mix acquaintances, and evaluate termination criteria, which
could result in multiple changes to the partitioning (see Sect. 3). We assume that
all messages are processed correctly and all agents work properly. SPADA’s local
fitness function f (A, €) compared the mean trust value of a partition to the mean
trust value of the partition’s local environment. If f(A,e) < 0.4, a leader marked
its partition as terminated. The higher the deviation between the mean trust
value of the regarded partition and the local environment, the lower the parti-
tion’s fitness. As mentioned in Sect. 3, a partition’s local environment consists of
the partition’s acquaintances that are not members of the partition. An agent’s
decisions thus aimed at minimizing this deviation, thereby improving F (o). To
avoid fluctuation of agents between partitions, the reward function rj/»l"'“’ of a
requested agent additionally implemented a mechanism that allows the agent to
prefer partitions in which it has been a long time if the reward is small. Note that
it is important to distinguish between an agent’s local assessment of a partition’s
fitness by applying f(4,¢€), and the global fitness of the partitioning gauged by
F(o) appraising the result of solving the SPP. The PSO used five particles to
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find a nearly optimal partitioning within 30 seconds. We recorded 300 simulation
runs for each test (see Fig. 3 for parameters). For each run, we generated the
initial acquaintances graph at random. Further, each agent had a fix uniformly
distributed random trust value € [0, 1]. By parametrization, we prevented both
algorithms from forming the trivial optimal partitioning consisting of one big
AVPP (0 = 0). The following results are arithmetic means of recorded data
(similar results are obtained with a beta distribution with o = 8 = 0.1).

In the first simulation runs for ¢4, ..., t5, both algorithms modified an initial
partitioning in which each agent formed its own partition to identify suitable
parameters for SPADA. The results are depicted in Fig. 3. The PSO achieves
a nearly optimal mean fitness of 0.999, and SPADA also performs very well:
the mean fitness increases rapidly to a value beyond 0.9 (however, please note
that the partitioning is changed several hundred times in each round), and slowly
converges to mean values between 0.856 and 0.959. For each test, the graphs show
similar characteristics: the number of accepted and refused invitations drops
rapidly because partitions terminate over time®. Some partitions are reactivated
by active partitions, leading to a temporal decline in fitness. However, since
memberships are rearranged, SPADA achieves a higher fitness value for suitable
parameter settings afterwards (t2 and t3). Looking at the results in detail, for
t1, the fitness is rather low and the number of refused invitations high, which
is not desired as this means unnecessary processing and message delivery in
the system. To increase local knowledge and thus the quality of the result, we
increased the number of links n per agent in t5. However, despite better fitness,
the number of refused invitations even increases slightly. We thereupon used
only half the number of links to be rated by a leader to limit the number of
refused invitations per leader and round to m, = 10 instead of m, = 20; we
used k, = 5 for all simulation runs. Compared to t3, the fitness is still high but
refused invitations are reduced by nearly 50%. Next, we varied the minimum
reward 7, necessary to become a candidate for integration. In ¢4, we increased 7,
from —2 to 0 so that leaders do not send invitations to potentially non-beneficial
agents. Compared to t3, the number of refused invitations is reduced but, as
7 = 0 reduces the spread of local knowledge, fitness decreases. Regarding ts,
where 7, is 1, the number of refused invitations is further decreased. The fitness
for t5 is low because, with respect to the composition of partitions, variety is too
limited: sometimes, leaders could not find candidates for integration.

In addition to the tests for initial configuration, we evaluated the behavior
of SPADA for parameter sets ts, t4, and t5 if it is used for reconfiguration,
meaning that SPADA and the PSO were initialized with a randomly generated
partitioning consisting of 10 to 20 partitions of a size between 5 and 50, and
a rather high mean fitness of 0.875 as it might be the case in reconfiguration
scenarios. Further, one random partition triggered reconfiguration while others
were terminated. The results for ¢3, t4, and ¢5 are similar to initial configuration

3 Regarding a partition A, the number of messages necessary to identify suitable can-
didates for integration is O(n - |A| +m,) (see Sect. 3.1), for exclusion O(n - |A|+m.)
(see Sect. 3.5), and to handle join partition requests O(n - |A]) (see Sect. 3.3).
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Fig. 3. For evaluation, we varied the number of links n per agent, the number of links
m, rated by leaders to identify candidates for integration, and the minimum reward 7,
necessary to become a candidate. The graph shows SPADA’s average performance for
tests t1, t2, t3, t4, and t5 compared to the PSO when modifying an initial partitioning.

(see Fig. 3). Again, SPADA and the PSO achieve a high fitness of 0.941 and
0.997, respectively. The number of accepted and refused invitations, however,
are less than a tenth of the number of accepted and refused invitations when
regarding initial configuration. However, we observed that SPADA sometimes
could not complete reconfiguration for t5 because of the high value of 7.. In
such a case, the leader could not identify a candidate for integration because its
partition was situated in a local optimum from its perspective. Consequently, we
identified ¢35 as the best set of parameters. Although nearly all partitions were re-
triggered over time, SPADA needed 119 changes on average for t3 to reconfigure
the system as most of the re-triggered partitions terminated after a few rounds,
whereas it made 1858 modifications to the initial partitioning. Hence, SPADA
is very well-suited for reconfiguration where selective changes are often desired.

In all simulation runs, the undirected analog of the acquaintances graph re-
mained connected although its connectivity is not yet guaranteed (see Sect. 3.4).
The reason for this is that it is rather unlikely to break the acquaintances graph
into disconnected subgraphs if the number of links per agent is high enough.
Summarizing, despite using local knowledge only, the quality of partitionings
found by SPADA is within 10% of the solutions found by the centralized PSO.

5 Related Work and Discussion

As outlined in the introduction, clustering is equivalent to solving the SPP. MAS
clustering algorithms can be used in a variety of circumstances. However, truly
decentralized ones, like SPADA, are relatively rare.

Agents are often used to represent complex data that needs to be categorized.
In [6], e.g., agents are used to model the behavior of costumers on e-commerce
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websites. Clustering the agents allows to define a hierarchical categorization of
these websites and to categorize customers into different profiles. If a user can be
assigned to one of the clusters, the type of website the user is most comfortable
with can be displayed. The clustering is performed with global knowledge.

In networks on chip, a domain-specific agent-based clustering approach can
be used to map tasks to processing elements (PEs) [3]. Clustered PEs fulfill
tasks together. If a centralized task scheduler cannot map a task to a cluster, a
re-clustering takes place. During the process, PEs are requested by clusters and
switch if they are idle or can be made available until the task can be mapped.

There are several approaches for decentralized clustering in sensor networks.
In this domain, it is easier to design efficient communication protocols on high-
level structures represented by clusters than on individual nodes [7]. Additionally,
as the network’s structure can change arbitrarily at runtime and robustness is of
great concern, centralized approaches are not employable. Instead, highly decen-
tralized algorithms such as ACE [7] or HEED [15] are used. However, there are
simplifying factors when clustering in sensor networks. First, the communication
range of each node defines the set of neighbors. It is thus not necessary to define
neighborhood relationships. Second, the goal of the algorithms is usually to find
a clustering that assigns each sensor node a cluster head within its communi-
cation radius and to allow all cluster heads to communicate with each other.
In contrast, the goal of our approach, SPADA, is not predefined and can differ
greatly depending on the definition of the reward functions.

Coalition formation algorithms or task allocation algorithms [8] solve the SPP
(and thus the clustering problem) during the process of coalition structure gen-
eration. Specialized algorithms for this task are often not fully distributed as,
e.g., global knowledge is required to calculate the search space [12]. Even if the
search space (i.e., the set of all possible coalitions) is distributed [13], such an
approach still requires a lot of communication, scales badly, and is not applica-
ble in systems with a fluctuating agent population. In other cases, pre-defined
organizational structures are exploited to guide the search for coalitions. This en-
ables the use of local knowledge and neighborhood relations. While [2] is based
on a hierarchical system structure, [4] requires a graph structure that defines
input/output relations between agents.

Our approach does not suffer from many of these drawbacks. It is based on
an adaptive neighborhood relation, works with local knowledge only and is fully
distributed. This also distinguishes the algorithm from other approaches to par-
titioning where global knowledge is a prerequisite, e.g., from control theory [10].
Apart from a fully connected acquaintances graph, no organizational structure
is required. While other approaches are often optimized to specific problems in
specific domains (e.g., [15]) and thus might make better use of domain-specific
knowledge, SPADA deals with the properties of MAS in a generic way and allows
the solution of different problems such as clustering, anticlustering, and coalition
formation by applying different metrics (i.e., reward functions).

SPADA has been inspired by a clustering algorithm proposed by Ogston
et al. [10], but has been substantially extended and improved. The differences
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between this algorithm and SPADA primarily arise form our design goals: (1) to
strictly adhere to the principle of agent autonomy, (2) to use only local knowl-
edge, (3) to clearly separate different concerns, and (4) to achieve low complexity
with (5) great flexibility by solving the SPP in general. [11]| uses the notion of
attributes and objectives to describe the properties and goals of an agent, as well
as their euclidean distance to encode the distance between agents and clusters.
SPADA encapsulated this information in the reward functions used by partition
leaders. While this might at first seem to contradict design goals (1) and (3), it
is beneficial since it allows altering the behavior of SPADA by only changing the
reward functions. As this increases flexibility tremendously, in contrast to [11],
SPADA can be used for clustering, anticlustering, or coalition structure genera-
tion. Additionally, SPADA respects the agent’s autonomy as a leader has to ask
agents whether or not they will join its partition. This allows for the efficient use
of local knowledge, as the requested agent might have information that is not
available to the requesting leader. Finally, unlike [11], SPADA represents parti-
tions as trees and leaders try to change their partition’s structure in a guided
instead of a random process. This can lead to better results because of a lower
probability of breaking a good partitioning and to fewer changes necessary in
order to come to a result.

Unfortunately, it is not easily possible to quantify the differences between our
approach and the one proposed in [11]|. The algorithm of Ogston et al. does not
solve the SPP in general and their paper leaves enough room for interpretation
to allow different actual implementations of the basic idea, making it hard to give
a fair evaluation. Therefore, we focused on a comparison to the particle swarm
optimizer. The results obtained are even more significant as they demonstrate
the quality of SPADA compared to nearly optimal solutions of a centralized
optimization approach that also solves the SPP in general.

6 Conclusion and Future Work

In this paper, we presented a fully decentralized algorithm, called SPADA, that
solves the set partitioning problem in multi-agent systems, a problem equivalent
to clustering or coalition structure generation. In contrast to other approaches
(e.g., [12,2]), our algorithm neither relies on global knowledge nor on a central
metric nor does it require a predefined organizational structure to form ap-
propriate partitions. It compensates for the drawback of having less knowledge
available by honoring the autonomy of agents and the different perspectives they
have on the system. As a result, despite its restriction to local knowledge, the
evaluations show that the algorithm performs very well compared to a central
approach using global knowledge. Furthermore, the above-mentioned properties
widen its range of application and are advantageous in systems consisting of a
great number of adaptive agents located in a changing environment.

Future work includes identifying possibilities to ensure the connectivity of the
acquaintances graph whenever agents change partitions. We will further investi-
gate how SPADA can deal with synergy effects when modifying partitions, and
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how it can be applied to form partially predefined hierarchical system struc-
tures. Forthcoming papers will introduce the particle swarm optimizer used for
evaluation, and show a modularized approach for creating local fitness functions.
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