
Using Java for Real-Time Critical Industrial Robot Programming

Andreas Schierl, Andreas Angerer, Alwin Hoffmann, Michael Vistein and Wolfgang Reif

I. VISION

Industrial robotics is characterized by sophisticated me-
chanical components and control algorithms. However, the
efficient use of robotic systems is very much limited by
existing programming methods which make software devel-
opment complex and time-consuming. In order to overcome
these shortcomings, the vision of the research project Soft-
Robot was to facilitate robotics software development, i.e.
increase reuse and reduce development time, by providing
“robotics” as just another API in Java which is currently
the most popular programming language with billions of
supported devices, millions of skilled software developers
and a broad range of available libraries and tools. Hence,
robotics software can be easily combined with those libraries
and can be programmed using integrated development en-
vironments (e.g. Eclipse) with their rich built-in support
for build management, revision control, or unit tests. In
comparison to C/C++, Java is more comfortable to use and
less error-prone due to its automatic memory management.

II. GOALS

Based on this vision, SoftRobot aimed to develop an
object-oriented framework that allows to program indus-
trial robots using Java. Like in traditional robot languages
(e.g. KRL), the new framework had to provide real-time
guarantees for robot control, in order to offer the expected
predictability and precision of the robot. However, when
developing robotics software, one should only be aware that
real-time guarantees are important for certain task steps, but
should not be bothered with low-level aspects of real-time
programming (e.g. scheduling). This is an important goal to
decrease complexity and allows to offer an API in plain Java
instead of real-time capable programming languages.

Additionally, to become an acceptable replacement in
industrial applications, the framework had to support easy
motion programming and control flow, and also motion
blending and the definition of motion trigger actions to
achieve the performance and expressiveness of traditional
robot programs. Beyond that, controlling multiple robots
or devices from one application, as well as sensor-guided
motions were in the focus of the project. From an non-
functional point of view, the architecture should be extensible
to allow adding new devices or robot capabilities.

The authors are with the Institute for Software and Systems Engineering,
University of Augsburg, D-86135 Augsburg, Germany. E-mail of corre-
sponding author: schierl@informatik.uni-augsburg.de

This work presents results of the research project SoftRobot which is
funded by the European Union and the Bavarian government. The project
is carried out together with KUKA Laboratories GmbH and MRK-Systeme
GmbH and is kindly supported by VDI/VDE-IT GmbH.

III. SOLUTION

To achieve these goals, we developed a multi-layered
software architecture [1], which is depicted in Fig. 1, and
provided prototypical reference implementation.

Orocos RCC
Device

Drivers

Calculation

Modules

Command

Layer

Activity Layer

Actuator

R
o

b
o

t
ic

s
 A

P
I

Ja
v
a

R
C

C

C
+

+

Activity

PTP Robot

Action Command

Robot

Applications

Domain-Specific

Languages

Service-Oriented

Architectures

Actuator Interface Meta Data

Fig. 1. The SoftRobot architecture

Robot control is performed in the so called Robot Control
Core (RCC) which is implemented in C++ using Orocos [2].
It fulfills the hard real-time requirements of robot control
and allows to control two KUKA Lightweight robots syn-
chronously using the Fast Research Interface [3] at a rate up
to 1kHz. The RCC is interfaced through an extensible data-
flow language called Realtime Primitives Interface (RPI)
which is described in [4].

On top of that, we implemented the Java-based Robotics
API. Its lower part, the Command Layer [5], is used for
describing real-time critical robot transactions as a composi-
tion and coordination of robot Commands. Robot Commands
consist of an actuator (e.g. a Lightweight robot) commanded
to execute an action (e.g. a point-to-point motion from given
start to goal position). This layer includes an automatic
translation of robot transactions into RPI at runtime, so that
they can be submitted to and executed on the RCC.

Application programmers use the Activity Layer of the
Robotics API that provides robot Activities through an exten-
sible set of actuator interfaces. These Activities correspond
to robot transactions with meta data about the expected
result states of the system. Additionally, these Activities
allow composition using typical composition patterns such
as sequential or parallel execution.

IV. RESULTS

Using this software architecture, the given goals could be
achieved. Motion programming similar to the KUKA Robot

Paper accepted for Workshop on Software Development and Integration in Robotics (SDIR VII), St. Paul, Minnesota, USA, May 14, 2012

; move linearly to point P1, allow blending
LIN P1 C_DIS

; move linearly to point P2, set a digital output at 70mm
TRIGGER WHEN PATH=70 DELAY=0 DO $OUT[2]=TRUE
LIN P2 C_DIS

; move to point P3, no blending
LIN P3

Listing 1. Robot program in KRL

// initialize device interfaces
MotionInterface r = lbr.use(MotionInterface.class);
GripperInterface g = gripper.use(GripperInterface.class);

// move linearly to frame p1, allow blending
r.lin(p1).beginExecute();

// move linearly to frame p2, open the gripper at 30%
MotionProgressActivity lin = r.lin(p2);
RtActivities.addSubActivity(lin,

lin.getMotionTimePercent(30),
g.open()).beginExecute();

// move to frame p3, wait for completion
r.lin(p3).execute();

Listing 2. Similar robot program in Java

Language (cf. Lst. 1) can be achieved by using Activities,
even including the advanced capabilities of the Lightweight
robot such as force-based motions. Motion planning requires
the start position of the robot, but this can be retrieved from
the meta data of the previous activity and does not have to be
given explicitly by the programmer. Using Activity meta data
is also more flexible than using the current robot position,
because it allows for pre-planning a sequence of activities
before execution.

Additionally, it is possible to blend between subsequent
motions on a Java control flow level, as Activity meta data
also contains information about possible start positions (and
velocities) for blending. Thus, a following Activity can plan
a motion from the given start position and velocity for
blending. However, the Activity must also be able to cope
with the case that the blending state has already passed when
the command is issued, and the robot will thus stop at the
defined end position and has to continue from there. This
approach can be also applied for compliant motions, where
an Activity may establish contact and subsequent Activities
have to cope with this case (e.g. by first releasing the force).

Furthermore, the Activity composition patterns allow to
specify trigger actions (cf. Lst. 2) that are to be executed
when a certain state occurs, and also to compose a sequence
of multiple Activities into one transaction (if required) to
eliminate unwanted delays between the single Activities.
Lst. 3 shows some advanced Activities that have no direct
equivalent in KRL. The two arm robot used here provides a
specialized interface that implements synchronized two arm
linear motions by a quite simple composition of Activities
for the single arms.

As the robot application is programmed and executed
in standard Java, this architecture reduces the complexity

// initialize device interfaces
LwrMotionInterface r = lbr.use(LwrMotionInterface.class);
LinInterface twoArm = twoArmRobot.use(LinInterface.class);

// move to frame p1, stop if force of 5N is measured
r.linToContact(p1, 5).execute();

// move both arms synchronously to p2, allow blending
twoArm.lin(p2).beginExecute()

// move both arms synchronously to p3, wait for completion
twoArm.lin(p3).execute();

Listing 3. Advanced Robotics API instructions

of integrating standard hardware (e.g. Microsoft Surface,
cameras) into robot applications, and also simplifies the co-
ordination of multiple robots, as all robots can be controlled
from a single application. Although the direct code-level
comparison shows that Robotics API code does not achieve
the same syntactical compactness as code written in KRL
(which can be considered a DSL), we believe that the above
mentioned advantages clearly make the Robotics API the
better overall solution.

V. OUTLOOK

The proposed software architecture was evaluated suc-
cessfully in a range of applications (cf. Factory 2020 [6]),
and received a lot of interest at the final project demonstra-
tion in March 2012. Allowing to program robots in stan-
dard programming languages promises to open up a whole
range of new opportunities. We started to extend Eclipse
as development environment with plugins supporting the
development of robot applications, but also using Service-
oriented Architectures to control greater automation solutions
becomes feasible now. Additionally, the Robotics API is a
helpful foundation for domain specific robot languages [7],
but also for graphical programming of robots (e.g. using state
charts).

REFERENCES

[1] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif, “Hiding
real-time: A new approach for the software development of industrial
robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, St. Louis, MO, USA, 2009.

[2] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Proc. 2001 IEEE Intl. Conf. on Robotics and Automation, Seoul,
Korea, 2001.

[3] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the KUKA lightweight robot,” in Workshop on Innovative Robot
Control Architectures for Demanding (Research) Applications. IEEE
Intl. Conf. on Robotics and Automation, Anchorage, AK, USA, 2010.

[4] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif,
“Interfacing industrial robots using realtime primitives,” in Proc. IEEE
Intl. Conf. on Automation and Logistics, Hong Kong, 2010.

[5] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif, “The
Robotics API: An object-oriented framework for modeling industrial
robotics applications,” in Proc. 2010 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Taipeh, Taiwan, 2010.

[6] Factory 2020. Institute for Software and Systems Engineering.
[Online]. Available: http://video.isse.de/factory

[7] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-
engineering the KUKA Robot Language,” Workshop on Domain-
Specific Languages and models for ROBotic systems, 2010 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, Taipeh, Taiwan, 2010.

