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Amortization of a shock in an electrorheological shock absorber is carried out in the motion of a piston in

an electrorheological fluid. The drag force acting on the piston is regulated by varying the voltage applied

to electrodes. A model of an electrorheological shock absorber is constructed. A problem on shock absorber

reduces to solution of a coupled problem for motion equation of the piston and nonlinear equations of fluid

flow in an unknown domain that varies with the time. A method of semi-discretization for approximate

solution of the coupled problem is considered. Results on the existence and on the uniqueness of the

solution of the coupled problem are obtained. Convergence of approximate solutions to the exact solution

is proved. Numerical simulation of the operation of the shock absorber is performed.

1 Introduction

Electrorheological fluids are smart materials which are concentrated suspensions of polarizable particles
in a dielectric liquid. With an applied electric field the particles form chains aligned with the electric field.
Such a unidirectional chainlike structure is anisotropic and it causes dramatic changes in the rheological
properties of the fluids. The apparent viscosity (the resistance to flow) in the direction orthogonal to
the direction of the electric field abruptly increases. It can increase by several orders of magnitude for
electric fields of the orders of 1 kV mm−1, see [22]. The apparent viscosity of flow in the direction of
the electric field also changes but not so drastically, see [26].

Due to their remarkable properties electrorheological fluids have various applications in electrome-
chanical devices such as clutches, shock absorbers, valves and others [5]. Various problems on dynamics
of electrorheological clutches and valves were formulated and studied in [6], [7], [32]-[35]. However, to
the best of our knowledge, the problem of the electrorheological shock absorber has not been formulated
and studied. Our paper is devoted to this problem.

A longitudinal section of an electro-rheological shock absorber is shown in Figure 1. As illustrated,
the absorber consists of two fluid chambers filled with an electro-rheological fluid and a piston rod with
two transfer ducts whose inner walls serve as electrodes. When a body strikes the piston, it moves, and
the resistance to the motion of the piston is regulated by varying the voltage applied to the electrodes.

The flow of the fluid is presumed to be axially symmetric, and in line with Figure 1, we consider
the domain of the flow which is displayed in cylindrical coordinates r, z at the instants of time t = 0

§ Corresponding author
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Figure 1. Schematic representation of an electro-rheological fluid (ERF) shock absorber.

and t > 0 in Figure 2. The lightly shaded domain is the domain of the fluid, and the heavily shaded
domain corresponds to the piston rod. The shape of the domain of flow is defined by the displacement
of the piston a(t), and we denote the domain of flow corresponding to the displacement a(t) by Ωa(t).
In this case a(0) = 0. Electrodes are placed on the parts CD and C ′D′ of the boundary of the domain
of the fluid. When the piston rod is displaced by an amount a(t) = l1(t) − l1(0), the floating piston is
displaced from the origin by the amount b(t) = a(t)R2

1R
−2 (see Figure 2) since the fluid is assumed to

be incompressible.
Suppose that a solid body of a mass m falls on the upper part of the piston with a velocity directed

opposite to the direction of the z axis, and the body moves along with the piston. According to the
Newton principle, the motion of the piston satisfies

m1
dv

dt
(t) = G(t, v(t), V (t)). (1.1)

Here m1 = m+m0, m0 is the mass of the piston, v(t) the velocity of the piston, and G(t, v(t), V (t)) the
drag force acting on the piston. The drag force depends on the applied voltage V (t) and on the velocity
v(t). In this case v is a scalar function satisfying the initial condition

v(0) = v0 < 0. (1.2)

In the case that m is considerably greater than m0, one can consider that v0 is the velocity of the falling
body at the instant the body comes in contact with the piston. The drag force is computed by the
solution of a problem for the electro-rheological fluid flow.

Below in Section 2, we formulate problems for the electric field and for the fluid flow. In this case
the flow domain Ωa(t) varies with time. The problem for the shock absorber reduces to solution of a
coupled problem for the motion equation of the piston (1.1) and the equations of fluid flow in variable
unknown domain Ωa(t). The equations for the electric field and the velocity and pressure of the fluid are
not coupled.

In Section 3, we present an operator formulation of the problem for the fluid flow. For the sake of
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Figure 2. Domain of flow of the electro-rheological fluid at instants of time t = 0 (left) and t > 0 (right).

simplicity, it is assumed here that the inertial forces are equal to zero. We explain why this assumption
is physically appropriate and acceptable in practice if the initial velocity of the piston is not very large.
Moreover, it is pointed out that under neglect of the inertial forces, one obtains an upper bound of the
time of absorption. This upper bound is very close to the time of absorption with regard for the inertial
forces.

A theorem on the existence and on the uniqueness of the weak solution of the problem on fluid flow
is presented for the case that the function t → a(t) is given. This theorem follows from the previous
results of the authors and from known results of the theory of monotone operators.

In Section 4, we consider a method of semi-discretization for numerical solution of the coupled problem
on shock absorber. The discretization is made with respect to the time variable. The closed interval of
time [0, T ] is subdivided on N parts, the time-step k = T/N and tn = nk, n = 1, 2, ..., N . The functions
of velocity of the piston, velocity and pressure of the fluid, and electric field are assumed to be affine in
each subinterval [tn, tn+1]. Having solved the problem on fluid flow at t = tn in Ωa(tn), the drag force is
calculated and dv

dt (tn) is computed by (1.1), then a(tn+1) and Ωa(tn+1) are defined, n = 0, 1, 2, ..., N .
Results on the existence and on the uniqueness of the solution of our coupled problem with variable

domain and on convergence of approximate solutions obtained by the method of semi-discretization to
the exact solution of the coupled problem are established in Section 5. A scheme of the proof of these
results is the following: For each displacement of the piston q = a(t) a homeomorphism Pq of the closed
domain Ωq onto a fixed closed domain Ω is constructed. The mappings Pq and the inverse of it P−1

q are
continuously differentiable almost everywhere in Ωq and in Ω , respectively.

The problems with variable domains are transformed to the problems with the fixed domain Ω. It is
proved that the solutions obtained by the method of semi-discretization are bounded in corresponding
norms as the parameter k tends to zero, and these solutions depend continuously on k. Passing on to
the limit, we obtain the results on the existence and on convergence.

Simulation results and conclusions are contained in Section 6 and 7, respectively.



4 W. G. Litvinov et al.

We mention that the methods of approximation and of proof of convergence of approximate solutions
applied in Sections 4 and 5 are some modifications of the method developed in [21]. In the paper [21],
the idea of delay is used for approximation of problems on plastic flow with moving unknown boundary.

Problems for the flow of viscous fluids with moving unknown boundary were investigated in many
works, see e.g. [12], [23], [24], [25], [29], [30].

2 Governing equations for the electro-rheological fluid.

2.1 Constitutive equation

We consider the following constitutive equation of the electro-rheological fluid (see [13]):

σij(p, u,E) = −pδij + 2ϕ(I(u), |E|, µ(u,E))εij(u), i, j = 1, · · · , n, n = 2 or 3. (2.1)

Here, σij(p, u,E) are the components of the stress tensor which depend on the pressure p, the velocity
vector u = (u1, · · · , un), and the electric field E = (E1, · · · , En), δij are the components of the unit
tensor (the Kronecker delta), and εij(u) are the components of the rate of strain tensor

εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.2)

where xi are Cartesian coordinates of a point x = (x1, · · · , xn). Moreover, I(u) is the second invariant
of the rate of strain tensor.

I(u) =
n∑

i,j=1

(εij(u))
2
, (2.3)

and ϕ is the viscosity function depending on I(u), |E| and µ(u,E).
The function µ is introduced in the constitutive equation (2.1) in order to take into account the

anisotropy of the electro-rheological fluid under which, the viscosity of the fluid depends on the angle
between the vector of electrical field and the vector of velocity with respect to the charged electrode.
The viscosity is maximal when the vector of velocity is orthogonal to the vector of electric field, and
minimal when these vectors are parallel.

The electrode can move relative to the body of an electro-rheological device, and hence, we consider
that the electrode can move relative to the reference frame under consideration. Let x′ be a second
reference frame which is immutably connected with the electrode, so that the electrode is immovable in
the reference frame x′. Let û(x, t) = (û1(x, t), û2(x, t), û3(x, t)) be a vector of transfer velocity, û(x, t) is
a velocity of a point of the reference frame x′ that coincides with the point x of the first reference frame
at an instant t. It is assumed that û is a known function.

We define the function µ as the square of the cosine of the angle between the vector of electric field
and the vector of velocity relative to the electrode, i.e.

µ(u,E) =
(
u− û

|u− û| ,
E

|E|
)2

R3

=
((ui − ûi)Ei)2

(ui − ûi)(ui − ûi)EjEj
. (2.4)

Here and below the Einstein convention on summation over repeated index is applied, and we denote
by (., .)R3 the scalar product in R3.

If the electrode does not move relative to the reference frame, then û = 0 and the function µ takes
the form

µ(u,E) =
(
u

|u| ,
E

|E|
)2

R3

. (2.5)

In the general case, the function û is defined as follows:

û(x, t) = ǔ(t) + w(x, t), (2.6)
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where ǔ(t) = (ǔ1(t), ǔ2(t), ǔ3(t)) is the vector of translation velocity, and w(x, t) = (w1(x, t),
w2(x, t), w3(x, t)) the vector of rotational velocity,

w1(x, t) = ω2(t)x3 − ω3(t)x2,

w2(x, t) = ω3(t)x1 − ω1(t)x3,

w3(x, t) = ω1(t)x2 − ω2(t)x1. (2.7)

Here ω(t) = (ω1(t), ω2(t), ω3(t)) is the vector of angular velocity at an instant t.
The function µ(u,E) is an invariant which is independent of the choice of the reference frame and of

the motion of the frame with respect to the electrode.
The viscosity function ϕ is identified by approximation of flow curves (see [13]), and it was shown in

[13] that it can be represented as follows:

ϕ(I(u), |E|, µ(u,E)) = ζ(|E|, µ(u,E))(λ+ I(u))−
1
2 + ψ(I(u), |E|, µ(u,E)), (2.8)

where λ is a small parameter, λ ≥ 0.

2.2 The problem for the electric field.

We consider our problem in the cylindrical coordinate system (r, α, z) and assume that the flow of the
fluid is axially symmetric, i.e., the functions u, p, and E depend only on r, z, t in the mobile orthonormal
basis er, eα and ez. The vectors u and E are of the forms u(r, z, t) = (ur(r, z, t), 0, uz(r, z, t)) and
E(r, z, t) = (Er(r, z, t), 0, Ez(r, z, t)). We use the notations ur = u1, uz = u2, Er = E1, and Ez = E2, so
that u = (u1, u2), and E = (E1, E2). We denote the value of the function E at an instant t by Et, i.e.,
E(r, z, t) = Et(r, z), where (r, z) ∈ Ωa(t).

Since electro-rheological fluids are essentially dielectrics, the magnetic fields in these fluids can be
neglected. At each instant of time t there exists a function of electric potential θt (see [13]) such that

Et = − grad θt, (2.9)

and θt is the solution of the following problem:

div (χ grad θt) = 0 in Ωa(t), (2.10)

θt = V (t) on S1a(t), (2.11)

θt = 0 on S0a(t), (2.12)
∂θt
∂r

= 0 on S2a(t), (2.13)

ν1χ
∂θt
∂r

+ ν2χ
∂θt
∂z

= 0 on Sa(t)\
(

2⋃

i=0

Sia(t)

)
. (2.14)

Here χ is the dielectric permittivity, S1a(t) and S0a(t) are the surfaces of the control and null electrodes
respectively (lines CD and C ′D′ in the Figure 2), Sa(t) is the boundary of Ωa(t), ν1 and ν2 are the radial
and axial components of the unit outward normal ν to the boundary Sa(t).

In the case at hand, we have

S2a(t) = {(r, z)| (r, z) ∈ Ωa(t), r = 0}, (2.15)

grad θt =
(
∂θt
∂r

,
∂θt
∂z

)
, (2.16)
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and equation (2.10) takes the form

∂

∂r

(
χ
∂θt
∂r

)
+
χ

r

∂θt
∂r

+
∂

∂z

(
χ
∂θt
∂z

)
= 0 in Ωa(t). (2.17)

Let q be a displacement of the piston. The displacement of the piston is limited, q ∈ [0,A], where A
is an admissible displacement,

A =
R2(l − l1(0)− d)

R2 −R2
1

.

At q = A there is no fluid beneath the piston, i.e. in the lower chamber B.
For an arbitrary q ∈ [0,A], we define the following set:

Zq = {w ∈ C∞(Ωq),
∂w

∂r
= 0 on S2q}. (2.18)

Here Ωq is the domain of flow corresponding to the displacement q of the piston.
Let Z0q be the closure of Zq with respect to the norm

‖ w ‖Z0q
=

(∫

Ωq

[
w2 +

(
∂w

∂r

)2

+
(
∂w

∂z

)2
]
rdrdz

) 1
2

. (2.19)

Again, we consider the following space:

Zq = {w|w ∈ Z0q, w = 0 on S0q

⋃
S1q}. (2.20)

The expression

‖ w ‖Zq=

(∫

Ωq

[(
∂w

∂r

)2

+
(
∂w

∂z

)2
]
rdrdz

) 1
2

(2.21)

defines a norm in Zq being equivalent to the norm of Z0q determined by (2.19).
Let θ0t be a function such that

θ0t ∈ Z0a(t), θ0t = V (t) on S1a(t), θ0t = 0 on S0a(t). (2.22)

We assume also that the function χ is given in a large domain Θ that contains all domains Ωq, χ is
integrable in Θ with respect to the measure rdrdz and, in addition,

b1 ≥ χ ≥ b0 > 0 a.e. in Θ, (2.23)

where b0 and b1 are positive constants.
Define a bilinear form eq : Z0q × Zq → R as follows:

eq(f, h) =
∫

Ωq

χ

(
∂f

∂r

∂h

∂r
+
∂f

∂z

∂h

∂z

)
rdrdz, f ∈ Z0q, h ∈ Zq. (2.24)

Consider the problem: Find θ1t satisfying

θ1t ∈ Za(t), ea(t)(θ1t, h) = −ea(t)(θ0t, h), h ∈ Za(t). (2.25)

The function θt = θ0t + θ1t is the weak solution of the problem (2.17),(2.11)-(2.14).
The Riesz theorem implies

Theorem 2.1 Suppose that the function a(t) is given and the conditions (2.22), (2.23) are satisfied.
Then there exists a unique weak solution θt of the problem (2.17),(2.11)-(2.14). The function θt is
represented in the form θt = θ0t + θ1t, where θ0t is a function satisfying (2.22) and θ1t is the solution
of the problem (2.25).
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2.3 The problem for the fluid flow

In the case at hand, the components of the rate of strain tensor have the following form in cylindrical
coordinates:

ε11(u) = ∂u1
∂r , ε22(u) = u1

r , ε33(u) = ∂u2
∂z ,

ε13(u) = ε31(u) = 1
2

(
∂u1
∂z + ∂u2

∂r

)
, (2.26)

ε12(u) = ε21(u) = ε32(u) = ε23(u) = 0.

The second invariant of the rate of strain tensor is defined by

I(u) =
(
∂u1

∂r

)2

+
(u1

r

)2

+
(
∂u2

∂z

)2

+
1
2

(
∂u1

∂z
+
∂u2

∂r

)2

. (2.27)

Let Q = {(r, z, t)|t ∈ (0, T ), (r, z) ∈ Ωa(t)}. The equations of motion have the following forms:

ρ

(
∂u1

∂t
+ u1

∂u1

∂r
+ u2

∂u1

∂z

)
+
∂p

∂r

−2
∂

∂r
(ϕε11(u))− 2

∂

∂z
(ϕε13(u))− 2

r
ϕ(ε11(u)− ε22(u)) = K1 in Q, (2.28)

ρ

(
∂u2

∂t
+ u1

∂u2

∂r
+ u2

∂u2

∂z

)
+
∂p

∂r

−2
∂

∂r
(ϕε13(u))− 2

∂

∂z
(ϕε33(u))− 2

r
ϕε13(u) = K2 in Q. (2.29)

Here K1 and K2 are the radial and axial components of the vector of volume force K = (K1,K2), ρ is
the density, and the function ϕ is defined by (2.8).

The equation of incompressibility has the form

div u =
∂u1

∂r
+
∂u2

∂z
+
u1

r
= 0 in Q. (2.30)

Denote the boundary of the piston at an instant t by S3a(t), and by S4a(t) the lower part of the
boundary Sa(t) of Ωa(t) (line EF in Figure 2, right).

Let

Γ = {(r, z, t)|t ∈ [0, T ], (r, z) ∈ Sa(t)},
Γ2 = {(r, z, t)|t ∈ [0, T ], (r, z) ∈ S2a(t)},
Γ3 = {(r, z, t)|t ∈ [0, T ], (r, z) ∈ S3a(t)},
Γ4 = {(r, z, t)|t ∈ [0, T ], (r, z) ∈ S4a(t)}.

(2.31)

We consider the following boundary conditions:

u1|Γ = 0, u2|Γ3 = v, u2|Γ4 = vR2
1R

−2,

u2|Γ\(S4
i=2 Γi

) = 0, ∂u2
∂r |Γ2 = 0. (2.32)

Here the condition on Γ4 follows from the equation of incompressibility (2.30) under the assumption
that the lower boundary of Ωa(t) (line EF in Figure 2, right) is rigid. In this case the pressure in the gas
reservoir enables one to determine uniquely the function of pressure of the fluid (see Subsection 3.2).

The initial condition has the form

u(r, z, 0) = u0(r, z) in Ωa(0). (2.33)

The drag force G(t, v(t), V (t)) in (1.1) is defined as

G(t, v(t), V (t)) = −
∫

S3a(t)

[
2ϕε31(u)ν1 + (−p+ 2ϕε33(u))ν2

]
ds. (2.34)
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The problem on electro-rheological shock absorber consists in the finding of the piston velocity v, of
the electric potential θ, and of the velocity and pressure of the fluid u and p, moreover, the domain Q

is unknown. The domain Ωa(t) is defined by the displacement of the piston a(t) (see Figure 2),

a(t) = −
∫ t

0

v(τ) dτ, (2.35)

and v(t) is the solution of the problem (1.1) and (1.2). In this case

l1(t) = l1(0)−
∫ t

0

v(τ) dτ. (2.36)

3 Operator formulation of the problem on fluid flow.

3.1 Assumptions and spaces of functions

Denote the values of the functions u, p, and K at a point of time t by ut, pt and Ka(t), i.e., u(r, z, t) =
ut(r, z), p(r, z, t) = pt(r, z) and K(r, z, t) = Ka(t)(r, z) where (r, z) ∈ Ωa(t).

For the sake of simplicity, we ignore the inertial forces in the equations of fluid flow and consider the
problem in the quasi-stationary formulation, i.e. we consider the following motion equations:

∂pt

∂r − 2 ∂
∂r (ϕε11(u

t))− 2 ∂
∂z (ϕε13(u

t))− 2
rϕ(ε11(ut)− ε22(ut)) = K

a(t)
1 in Ωa(t), (3.1)

∂pt

∂z − 2 ∂
∂r (ϕε31(u

t))− 2 ∂
∂z (ϕε33(u

t))− 2
rϕε13(u

t) = K
a(t)
2 in Ωa(t). (3.2)

Here ϕ is defined by the right-hand side of (2.8) with u = ut, E = Et, and it is presumed that the
functions a(t) and Et are given. Ignoring the inertial forces in (3.1) and (3.2) is physically appropriate
and acceptable in practice if the initial velocity of the piston v0 is not very large. This is due to the
following facts:

The kinetic energy of a falling body and the piston at the initial instant t = 0 is equal to m1v
2
0/2

(see (1.1) and (1.2)). This kinetic energy is taken up by the dissipated power and by the inertial forces
power. The inertial forces power is defined by

ρ

2∑

i=1

(
∂ui
∂t

+ u1
∂ui
∂r

+ u2
∂ui
∂z

)
ui.

Outside of the subdomain between the electrodes, the velocity of the fluid and the derivatives of the
velocity are small (see Section 6). The density of the fluid ρ is also small.

The module of the electric vector is maximal in between the electrodes, and it is almost zero outside
of the subdomain between the electrodes (see Section 6). In between the electrodes, the velocity vector
coincides with the direction of the axis z and it is orthogonal to the electric vector (see Section 6).
Therefore, the viscosity of the fluid in between the electrodes is greater by orders of magnitude than it
is in the remaining part of the flow domain. The inertial forces in between the electrodes are negligible
as compared with the internal forces caused by the viscous stresses.

Because of this, the predominant share of the kinetic energy of the falling body and the piston is
taken up by the power dissipation in between the electrodes. In essence, the absorption of the kinetic
energy of a falling body through the power dissipation is the predestination of the electrorheological
shock absorber.

From the energy conservation law, it follows that neglect of the inertial forces increases the time it
takes for the absorption of the kinetic energy of the falling body and the piston. Therefore, under neglect
of the inertial forces, one obtains the upper bound of the time of absorption. Moreover, this upper bound
is close to the time of absorption with regard for the inertial forces.
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The condition of incompressibility has the form:

div ut =
∂ut1
∂r

+
∂ut2
∂z

+
ut1
r

= 0 in Ωa(t). (3.3)

In line with (2.32), the boundary conditions are the following:

ut1|Sa(t) = 0, ut2|S3a(t) = v(t), ut2|S4a(t) = v(t)R2
1R

−2,

ut2|Sa(t)\(
S4

i=2 Sia(t))
= 0, ∂u

t
2

∂r |S2a(t) = 0.
(3.4)

Concerning the functions ζ and ψ defining the viscosity (see (2.8)), we assume:
(A1): ζ : (y1, y2) → ζ(y1, y2) is a function continuous in R+ × [0, 1] and, in addition,

0 ≤ ζ(y1, y2) ≤ a0, (y1, y2) ∈ R+ × [0, 1], (3.5)

where a0 is a positive constant and R+ is a set of nonnegative numbers.
(A2) : ψ : (y1, y2, y3) → ψ(y1, y2, y3) is a function continuous in R2

+×[0, 1], and for an arbitrarily fixed
(y2, y3) ∈ R+ × [0, 1], the partial function ψ(., y2, y3) : y1 → ψ(y1, y2, y3) is continuously differentiable
in R+, and the following inequalities hold:

a2 ≥ ψ(y1, y2, y3) ≥ a1, (3.6)

ψ(y1, y2, y3) + 2 ∂ψ∂y1 (y1, y2, y3)y1 ≥ a3, (3.7)

| ∂ψ∂y1 (y1, y2, y3)|y1 ≤ a4, (3.8)

where a1 − a4 are positive constants.
Let us dwell on the physical sense of the inequalities (3.5)–(3.8). The inequalities (3.5) and (3.6)

indicate that the viscosity is bounded from below and from above by positive constants. The inequality
(3.7) implies that for fixed values of |E|, the derivative of the function I(u) → G(u) is positive, where
G(u) is the second invariant of the stress deviator

G(u) =
n∑

i,j=1

(
σij(p, u,E) + pδij

)2

= 4
[
ϕ(I(u), |E|, µ(u,E))

]2
I(u).

This means that in case of simple shear flow, the shear stress increases with increasing shear rate. (3.8)
is a restriction on ∂ψ

∂y1
for large values of y1. The inequalities (3.5)–(3.8) are natural from a physical

point of view.
The viscosity function is identified by approximation of a set of flow curves which are obtained exper-

imentally by viscometric testing for different electric fields. The inequalities (3.5)–(3.8) are consistent
with the shapes of the flow curves and enable one to approximate a set of flow curves over a wide range
of shear rates with high degree of accuracy (see [14]).

At λ = 0 the viscosity function ϕ defined by (2.8) is singular at I(u) = 0, ϕ(0, |E|, µ(u,E)) = ∞,
and the flow problems for such viscosity function reduce to the solution of variational inequalities (see
[13]). The equation (2.8) with a small positive λ defines a fluid with a finite but possibly large viscosity
at I(u) = 0. From a physical point of view, a fluid with bounded viscosity is more reasonable than a
fluid with singular unbounded viscosity (in reality all viscosities are bounded). It is shown in [13] that
the solutions of the problems with bounded viscosities converge to the solution of the problem with the
singular viscosity as λ tends to zero. Because of this, we assume that

λ > 0. (3.9)

For a displacement of the piston q ∈ [0,A], we introduce the following sets:

H0q = {h|h = (h1, h2) ∈ C∞(Ωq)2, h1|Sq = 0, ∂h2
∂r |S2q = 0}, (3.10)

Hq = {h|h ∈ H0q, h2 = 0 on S3q ∪ S4q}, (3.11)
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H1q = {h|h ∈ Hq, div h = 0}. (3.12)

We remind that S2q is the set of the points (r, z) of the boundary Sq of Ωq such that r = 0, and S3q

and S4q are the points of the boundary of the piston and the lower part of the boundary Sq.
Let Hq and H1q be the closures of Hq and H1q with respect to the norm

‖ h ‖Hq=

(∫

Ωq

I(h) rdrdz

) 1
2

, (3.13)

where I(h) is given by (2.27).
Let also H0q be the closure of H0q relative to the norm

‖ h ‖H0q
=

(
‖ h ‖2Hq

+
∫

S3q

|h|2 ds
) 1

2

, (3.14)

where ds = (dr2 + dz2)
1
2 .

The norms (3.13) and (3.14) are equivalent to the norm of Sobolev space, see [20].
Let also Yq be the space of scalar functions which are square integrable in Ωq with respect to the

measure rdrdz. The norm in Yq is given by

‖ f ‖Yq=

(∫

Ωq

f2 rdrdz

) 1
2

. (3.15)

Yq/R is the quotient space with the norm

‖ ḟ ‖Yq/R= inf
f∈ḟ

‖ f ‖Yq . (3.16)

We assume that the function of volume forces is given in each domain Ωq so that

Kq ∈ Y 2
q , q ∈ [0,A]. (3.17)

Everywhere below we use the following notation. If U is a normed space, we denote the dual of U by
U∗, and by (f, h) the duality between U∗ and U , where f ∈ U∗ and h ∈ U . The space Yq is identified
with its dual space Y ∗q . The sign ⇀ denotes weak convergence in a Banach space.

3.2 Weak solution of the problem

Let wt be a function such that

wt ∈ H0a(t), w
t
2|S3a(t) = v(t), wt2|S4a(t) = v(t)R2

1R
−2,

wt2|Sa(t)\(∪4
i=2Sia(t))

= 0, div wt = 0.
(3.18)

For an arbitrary t ∈ [0, T ], we define the operators Lt : Ha(t) → H∗
a(t) and Bt : L(Ha(t), Y

∗
a(t)) as

follows:
(Lt(y), h) = 2

∫
Ωa(t)

ϕtεij(wt + y)εij(h) rdrdz, y, h ∈ Ha(t),

(Bty, q) =
∫
Ωa(t)

(div y)q rdrdz, q ∈ Ya(t). (3.19)

The distance between the electrodes is small as compared to the length of the electrodes. So that,
under the computation of the viscosity function, we can assume that in between the electrodes the
vector of velocity relative to the electrodes is orthogonal to the vector of electric field strength, and the
electric field strength is equal to zero in the remaining part of the domain under consideration.

The results of calculations presented in Section 6 and in [14] show that these assumptions are workable.
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With these assumptions the viscosity function ϕt in (3.19) takes the following form:

ϕt =

{
ζ(|Et|, 0)(λ+ I(wt + y))−

1
2 + ψ(I(wt + y), |Et|, 0) in Xa(t),

ζ(0, 0)(λ+ I(wt + y))−
1
2 + ψ(I(wt + y), 0, 0) in Ωa(t) \ Xa(t),

(3.20)

where Xa(t) is the domain between the electrodes (see Figure 2),

Xa(t) = {(r, z)|r ∈ (r1, r2), z ∈ (l − l1(0)− a(t)− d, l − l1(0)− a(t))}.
We consider the following problem: Find a pair of functions (yt, pt) satisfying

yt ∈ Ha(t), pt ∈ Ya(t)/R, (3.21)

(Lt(yt), h)− (B∗t p
t, h) = (Ka(t), h), h ∈ Ha(t), (3.22)

(Btyt, q) = 0, q ∈ Ya(t). (3.23)

The pair (ut = wt + yt, pt), where (yt, pt) is the solution of the problem (3.21)–(3.23), will be called the
weak solution of the problem (3.1)–(3.4).

The next theorem follows from the results of [13] and [18].

Theorem 3.1 Suppose that a(t) and E(t) are given, where t ∈ [0, T ], and the conditions (A1), (A2),
(3.9), (3.17) and (3.18) are satisfied. Then there exists a unique solution to the problem (3.21)–(3.23).

The function pt is defined with an accuracy of a constant addend. The pressure in the shock absorber
depends on the pressure in the gas reservoir (see Figure 1). The pressure in the reservoir should be
sufficiently large in order that the normal component of the force acting on the top lid of the shock
absorber to be positive, i.e. the normal component of the force acting on the fluid at the cross-section
z = l (see Figure 2) to be negative. Otherwise, the upper chamber (chamber A in Figure 1) is bound
to be not fully filled with the fluid, when the piston moves downwards. In such an event the cavitation
appears, but it is not admissible.

Let

S0 = {(r, z)| z = l, r ∈ (R1, R)}. (3.24)

The normal component of the surface force acting on the fluid at the cross-section z = l at an instant t
is given by

F2(t) =
(
− pt + 2ϕt

∂(wt2 + yt2)
∂z

)
|S0 . (3.25)

Taking into account (3.17) and the results of [2], Section 18, it can be shown that

F2(t) ∈ H− 1
2 (S0), t ∈ [0, T ]. (3.26)

In order that the upper chamber (chamber A in Figure 1) be fully filled with the fluid, the distribution
F2(t) must be nonpositive. In other words, it should be so that (F2(t), β) ≤ 0 for all t and an arbitrary
β such that β ∈ H1

0 (S0), β(s) ≥ 0 at s ∈ S0.
Let δ be a small positive constant and α be a function such that

α ∈ C1([R1, R]), α(r) ≥ 0 at r ∈ [R1, R],
α(r) = 1 at r ∈ [R1 + δ,R− δ], α(R1) = 0, α(R) = 0.

(3.27)

Then α ∈ H1
0 (S0) and we take the constant addend of pt ∈ Yt/R so that

(F2(t), α) = −C, t ∈ [0, T ], (3.28)

where C is a positive constant.
In this case the function pt is defined uniquely. The condition (3.28) denotes that the total axial force
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acting on the top lid of the shock absorber is positive. We assume that (3.28) is the condition of without
cavitation flow. Provided that the pressure in the gas reservoir is so that −(F2(t), α) ≥ C, the fluid flows
without cavitation.

The normal component of the surface force acting on the fluid at the cross-section z = −b(t), i.e. on
S4a(t) is defined by

F3(t) =
(
pt − 2ϕt

∂(wt2 + yt2)
∂z

)
|S4a(t). (3.29)

Since F3(t) ∈ H− 1
2 (S4a(t)) for all t ∈ [0, T ], we can consider that the total axial force acting on the fluid

on the boundary S4a(t) is equal to (F3(t), α1), where

α1 ∈ C1([0, R]), α1(r) ≥ 0, α1(r) = 1 at r ∈ [0, R− δ], α1(R) = 0. (3.30)

Therefore, if the pressure in the gas reservoir pg is so that

pg ≥ (F3(t), α)
πR2

, (3.31)

then the fluid flows without cavitation.
We define the axial component of the total force acting on the piston (the drag) at an instant t as

follows (compare with (2.34)):

G(t, v(t), V (t)) = −
∫

S3a(t)

[
2ϕtε31(wt + yt)ν1 + (−pt + 2ϕtε33(wt + yt))ν2

]
α4(t) ds. (3.32)

Here ϕt is defined by (3.20), and α4(t) is a nonnegative smooth function that is equal to unit everywhere
on S3a(t) with the exception of small vicinities of the points s1 = (R1, l), s2 = (R, l − l1(t)), s3 =
(R, l − l1(t)− d), in addition, α4(si) = 0, i = 1, 2, 3.

The function α4(t) is introduced in (3.32) since the function of surface forces acting on the piston is
an element of the space H− 1

2 (S3a(t)).
Thus, the problem on electrorheological shock absorber consists in finding the functions v(t), Et =

− grad (θ0t+ θ1t), ut = wt+ yt, and pt such that the equations (1.1), (1.2), (2.25), (3.21)–(3.23), (3.28)
and (3.32) are satisfied.

The domain Ωa(t) is unknown, and it is defined by a(t) (see (2.35) and Figure 2). In this case the
values l1(0), v(0) = v0, and m1 are given.

4 Numerical solution of the problem on shock absorber

We consider the method of semi-discretization of the problem. Let us choose a positive integer N , let k
denote the corresponding time-step: k = T/N and tn be the subdivisions of [0, T ]: tn = nk, 0 ≤ n ≤ N .

We denote the approximations of the functions v, a, E, u, y and p by vk, ak, Ek, uk, yk, and pk, respec-
tively. The approximations of these functions at an instant tn are denoted by vkn, akn, Ekn, ukn, ykn,
and pkn, respectively.

Initial step, n = 0, t = 0

• Compute θ10, the solution of the problem (2.25) at t = 0 in the domain Ω0. The electric field at t = 0
is determined by the following expression:

E0 = − grad (θ00 + θ10). (4.1)

• Find y0 and p0 the solution of the problem (3.21)–(3.23) and (3.28) at t = 0.
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• Compute G(0, v(0), V (0)) and then dv
dt (0) by using (3.32) and (1.1),

dv

dt
(0) =

1
m1

G(0, v(0), V (0)). (4.2)

• Set vk0 = v(0) = v0, Ek0 = E0, yk0 = y0, uk0 = w0 + y0, pk0 = p0, and

vk(t) = v0 + dv
dt (0)t, t ∈ [0, k], (4.3)

ak1 = − ∫ k
0

(v0 + dv
dt (0)t)dt = −v0k − k2

2
dv
dt (0), (4.4)

vk1 = v0 + dv
dt (0)k. (4.5)

We mention here that the minus sign is taken in (4.4) since the displacement is positive by definition,
while the velocity is negative.

Now, let vkn, akn, Ek(n−1), yk(n−1), pk(n−1) and uk(n−1) = wtn−1 + yk(n−1) be computed.

Time step t = tn, 1 ≤ n ≤ N .

• Compute θ1tn the solution of the problem (2.25) for t = tn in the domain Ωakn . Then, compute Etn

by

Etn = −grad (θ0tn + θ1tn), (4.6)

and set Ekn = Etn .
• Compute ytn and ptn the solution of the problem (3.21)–(3.23), and (3.28) for t = tn in the domain

Ωakn . In this case the function wtn in the operator Ltn satisfies the conditions (3.18) with v(tn)
replaced by vkn.

Set ykn = ytn , pkn = ptn , ukn = wtn + ykn.
• Compute G(tn, vkn, V (tn)) by (3.32), where S3a(tn) is replaced by S3akn , and take

dvk

dt
(tn) =

1
m1

G(tn, vkn, V (tn)). (4.7)

• Set

vk(t) = vkn + dvk

dt (tn)(t− tn), t ∈ [tn, tn+1], (4.8)

vk(n+1) = vkn + dvk

dt (tn)k, (4.9)

ak(t) = akn − ∫ t
tn
vk(τ)dτ = akn − vkn(t− tn)− 1

2
dvk

dt (tn)(t− tn)2, t ∈ [tn, tn+1], (4.10)

ak(n+1) = akn − vknk − 1
2
dvk

dt (tn)k2. (4.11)

We define the values of the functions Ek, uk and pk in the intervals nk < t < (n+ 1)k as follows:

Ek(t) = Ekn + t−nk
k (Ek(n+1) − Ekn), (4.12)

uk(t) = ukn + t−nk
k (uk(n+1) − ukn), (4.13)

pk(t) = pkn + t−nk
k (pk(n+1) − pkn), (4.14)

for 0 ≤ n ≤ N − 1.

5 On the convergence of approximations

Below we use the ideas of the works by Litvinov [19], Section 6.3 and [21].
Let q be a displacement of the piston, q ∈ [0,A]. We partition the domain Ωq into three parts, Ω0q,Ω1q,
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and Ω2q,

Ω0q = {(r, z)| r ∈ (0, R), z ∈ (−qR2
1R

−2, l − l1(0)− q − d]},
Ω1q = {(r, z)| r ∈ (r1, r2), z ∈ (l − l1(0)− q − d, l − l1(0)− q]},
Ω2q = {(r, z)| r ∈ (R1, R), z ∈ (l − l1(0)− q, l)}.

(5.1)

Clearly, Ωq = Ω0q ∪ Ω1q ∪ Ω2q. We denote the points of Ωq at q > 0 by (rq, zq).
We define a mapping Pq : Ω0 → Ωq as follows: (r, z) ∈ Ω0, Pq(r, z) = (rq, zq) ∈ Ωq,

rq = r, zq = z[l−l1(0)−q(1−R2
1R

−2)−d]
l−l1(0)−d − qR2

1R
−2 at (r, z) ∈ Ω0q,

rq = r, zq = z − q at (r, z) ∈ Ω1q,

rq = r, zq = l − (l1(0)+q)(l−z)
l1(0)

at (r, z) ∈ Ω2q.

(5.2)

The function Pq defines a one-to-one mapping of Ω0 onto Ωq, moreover it is continuously differentiable
almost everywhere in Ω0. The function Pq is continuous in Ω0, moreover it is continuously differentiable
almost everywhere in Ω0. The function Pq is not differentiable at points (r, z) such that z = l− l1(0)−d,
r ∈ [r1, r2], and z = l − l1(0), r ∈ [r1, r2].

We suppose that

V ∈ C([0, T ]), the function q → Kq ◦ Pq belongs to C([0,A];Y 2
0 ), (5.3)

see (3.17).
We denote the functions t→ Et ◦Pa(t), t→ ut ◦Pa(t) and t→ pt ◦Pa(t) by E ◦Pa, u ◦Pa, and p ◦Pa,

respectively. Similarly, we denote the functions t→ Ek(t)◦Pak(t), t→ uk(t)◦Pak(t) and t→ pk(t)◦Pak(t)

by Ek ◦ Pak , uk ◦ Pak and pk ◦ Pak , respectively.

Theorem 5.1 Suppose that the conditions (A1), (A2), (2.22), (2.23), (3.9), (3.17) and (3.18) are
satisfied. Let also (5.3) hold and a(T ) ≤ A. Then there exists a unique solution v, a, E, u, p (Et =
−grad (θ0t+ θ1t), ut = wt+ yt) of the coupled problem (1.1), (1.2), (2.25), (2.35), (3.21)–(3.23), (3.28)
and (3.32) such that

v ∈ C1([0, T ]), a ∈ C2([0, T ]), (5.4)

E ◦ Pa ∈ C([0, T ];Y 2
0 ), u ◦ Pa ∈ C([0, T ];H00), p ◦ Pa ∈ C([0, T ];Y0). (5.5)

Moreover,

Ek ◦ Pak → E ◦ Pa in C([0, T ];Y 2
0 ), (5.6)

uk ◦ Pak → u ◦ Pa in C([0, T ];H00), (5.7)

pk ◦ Pak → p ◦ Pa in C([0, T ];Y0), (5.8)

as k → 0.

It should be pointed out that in the case when a(t1) = A, where t1 < T , the problem under consid-
eration can be studied on the interval [0, t1].

Proof of Theorem 5.1 The existence of a unique solution Ek, uk, pk, vk, ak of the semi-discrete prob-
lem follows from the theorems 2.1 and 3.1. Let k → 0.

By virtue of (3.5)–(3.8), and (3.28) G(t, vk(t), V (t)) > 0 for all t ∈ [0, T ] and all k. So that (1.1)
implies dvk

dt (t) > 0, and (1.2) yields

|vk(t)| < |v0|, t ∈ [0, T ]. (5.9)
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It follows from (5.9) and from the results of [19], Section 6.3, that

‖ uk(t) ◦ Pak(t) ‖H00≤ C1, (5.10)

‖ pk(t) ◦ Pak(t) ‖Y0≤ C2 (5.11)

for all k and t ∈ [0, T ], in addition,

|G(t, vk(t), V (t))| ≤ C3, (5.12)

|dvk

dt (t)| ≤ C4. (5.13)

By virtue of (5.9) and (5.13), a subsequence {vm} can be extracted such that

vm → ṽ in C([0, T ]). (5.14)

Let

ã(t) = −
∫ t

0

ṽ(τ)dτ, (5.15)

and

Ẽ(t) = −grad (θ0t + θ1t), (5.16)

where θ1t is the solution of the problem (2.25) in the domain Ωã(t), θ0t satisfies (2.22) with a(t) being
replaced by ã(t).

Let also ũ(t) = wt + yt, p̃(t) = pt, where yt and pt is the solution of the problem (3.21)–(3.23), (3.28)
in the domain Ωã(t), wt satisfies (3.18), where a(t) is replaced by ã(t) and v(t) is replaced by ṽ(t).

The relation (5.14) and the results of [19], Section 6.3 imply the following:

Em ◦ Pam → Ẽ ◦ Pã in C([0, T ];Y 2
0 ), (5.17)

um ◦ Pam → ũ ◦ Pã in C([0, T ];H00), (5.18)

pm ◦ Pam → p̃ ◦ Pã in C([0, T ];Y0), (5.19)

and the functions v = ṽ, a = ã, E = Ẽ, u = ũ, p = p̃ is the solution of our coupled problem (1.1), (1.2),
(2.25), (3.21)–(3.23), (3.28), (3.32). In this case Et = −grad (θ0t + θ1t) and ut = wt + yt.

It follows from (5.14) that v ∈ C([0, T ]). By applying the results of [19], Section 6.3, we obtain that
t→ G(t, v(t), V (t)) is a function which is continuous on [0, T ], and so (1.1) implies that v ∈ C1([0, T ]).

The function v takes negative values (see (1.2)) and is increasing. Since the viscosity function is
bounded (see (3.5), (3.6), and (3.9)), there exists a constant k > 0 such that

G(t, v(t), V (t)) ≤ k|v(t)|, t ∈ [0, T ]. (5.20)

(1.1) and (5.20) yield

v0 exp
(
− k

m1
t

)
≥ v(t), t ∈ [0, T ]. (5.21)

Therefore,

v(t) < 0 at t ∈ [0, T ], T <∞. (5.22)

Since v ∈ C1([0, T ]) and (5.22) is satisfied, an arbitrary solution of the coupled problem can be ap-
proximated by the solution of the semi-discretized problem considered in Section 4. The solution of
the semi-discretized problem is unique and so, the solution of the coupled problem is also unique. Now
(5.17)–(5.19) yield (5.6)–(5.8).

Remark [Possible generalization] Problems on shock absorber can be investigated with regard for
the inertial forces in the motion equations for the fluid. In addition, one can consider that the domain
of flow is not axially symmetric.
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6 Simulation results

For the simulation, we consider the Rheobay TP AI 3656 Electrorheological fluid, a product of Rheobay
[1, 14]. The experimentally obtained flow curves (relating the shear stress to the shear rate) of this
product, corresponding to different electric field strengths orthogonal to the velocity fields, have been
approximated by cubic splines. The viscosity function was then calculated from these splines. see [14]
for details.

The calculations were fulfilled for the following data set, cf. Figure 2, R = 0.023 meter, R1 = 0.005
meter, r1 = 0.013 meter, r2 = 0.017 meter, l = 0.14 meter, l1(0) = 0.02 meter, d = 0.04 meter, and
C = 0.5 Newton (cf. (3.28)) and m1=50 kg., K = (K1,K2) = 0.

The results of calculations are presented in figures 3–7.
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Figure 3. Velocity of the piston as a function of time. The curves correspond to the voltages V = 9× 103 Volt
(solid line) and V = 6× 103 Volt (dashed line).
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Figure 4. Drag force acting on the piston plotted against the velocity. The curves correspond to the two cases
considered in the Figure 3. In the case that λ =0 in (2.8) and in (3.20), respectively, the piston comes into
motion if and only if the total force acting on it attains some finite value, that depends on the voltage on the
electrodes. The near phenomenon occurs at small positive λ. The drag force shown here is relatively large at
very small velocity of the piston.
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Figure 5. Contour plots for the electric potential at V = 9× 103 Volt at time t = 0.006, 0.090, 0.186 second.

7 Conclusion

1. The drag force acting on the piston depends on the voltage, on the velocity of the piston and on its
position (on a(t)), and on the pressure in the gas reservoir. The pressure in the gas reservoir should be
sufficiently large, so as the condition (3.31) to be satisfied. Otherwise, the chamber A (see Figure 1) is
bound to be not fully filled with the fluid and the cavitation appears.

2. The impact force, i.e. the drag force is large at high voltage, even though the module of velocity of
the piston is very small (see Figure 4).

3. In between the electrodes, the electric vector is essentially directed along the direction of the axis r
or in the opposite direction, depending on the sign of V (t); practically E1(t) = V (t)/(r2−r1), E2(t) = 0
in between the electrodes. The electric field falls drastically as the distance to the electrodes increases, see
Figure 5. One can consider that electric vector equals zero outside of the domain between the electrodes.

4. In between the electrodes, the direction of the vector of velocity of the fluid coincides essentially
with the direction of the axis z, and the velocity vector is orthogonal to the electric vector.

5. Profile of the relative velocity of the fluid in between the electrodes tends to the rectangular profile
as the voltage increases, at zero voltage the profile is close to the corresponding profile of the Newtonian
fluid, see Figure 7.

6. The module of the velocity of the piston can be brought to an arbitrarily small value by the
electrorheological fluid. However, the fluid cannot reduce it to zero in any finite time, since the viscosity
of the fluid takes finite values (see (5.22)). When the electrorheological shock absorber operates, an
additional force, that is created by a spring, reduces the velocity of the piston to zero, then restores the
piston to its original position.
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Figure 6. Surface plots of the longitudinal component u2 of the velocity of the fluid for V = 9× 103 Volt at
time t = 0.006, 0.090, 0.186 second.

Acknowledgement

The work of the authors has been supported by the German National Science Foundation (DFG) within
the Collaborative Research Center SFB 438.

References

[1] Bayer Provisional Product Information of Rheobay TP AI 3565 and Rheobay TP AI 3566. Bayer Silicones
Rheobay, Bayer.

[2] Baiocchi, C., & Capelo, A. 1984 Variational and Quasivariational Inequalities. Applications to Free
Boundary Problems. John Wiley and Sons.

[3] Belonosov, M.S. & Litvinov, W.G. 1996 Finite element method for nonlinearly viscous fluids. Zeitschrift
für Angewandte Mathematik und Mechanik 76, 307–320.

[4] Block, H. & Kelly, J.P. 1988 Electro-rheology. Journal of Physics D: Applied Physics 21, 1661–1677.
[5] Bossis, G. (Ed.) 2002 Electrorheological Fluids and Magnetorheological Suspensions. Proceedings of the

Eight International Conference , Nice, France 9–13 July 2001. World Scientific.
[6] Ellam, D.J., Atkin, R.J. & Bullough, W.A. 2005 Analysis of a smart clutch with cooling flow using

two-dimensional Bingham plastic analysis and computational fluid dynamics. Proceedings of the institution
of Mechanical Engineers, Part A: Journal of Power and Energ 219, 639-652, 2005.

[7] Ellam, D.J., Bullough, W.A. & Atkin, R.J. 2005 Modelling the flow of an electrostructured fluid in
transient operation. Proceedings of the institution of Mechanical Engineers, Part A: Journal of Power and
Energy 219, 61-76.

[8] Filisko, F. 1995 Overview of ER technology. Progress in ER Technology, Havelka K. (Ed.). New York,
Plenum Press.



Problem on shock absorber 19

v
el

o
ci

ty
u

r
e
l

0.0

0.4

0.8

1.2

0.013 0.017
r [meter]

Figure 7. Profiles of the dimensionless relative velocity of the fluid urel in between the electrodes, urel =
(u2 − v)Υ−1, where Υ is the flow rate relative to the electrodes, Υ = (

R r2
r1

rdr)−1
R r2

r1
r(u2 − v)(r, z1)dr. Here

z1 = l− l1(t)− d
2
, t ∈ (0, T ), urel is practically independent of t. The curves correspond to the following voltages:

V = 0 Volt (dotted-circled line), 1 × 103 Volt (dashed-dotted line), 3 × 103 Volt (dashed line), 6 × 103 Volt
(dotted line) and 9× 103 Volt (solid line).
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