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The generation of heat flow and its controlled manip-
ulation presents an ever-growing endeavor for mankind.
In quest of its technological solution we could witness
substantial progress over the least decades, with first
serious efforts being achieved that can be traced back
to the early 1960s [1–5]. This underlying challenge does
not present plain sailing because phonons are by far
more difficult to control than electrons and photons.
The recent years, however, have given headway to new
advances. In particular, thermal rectifiers have been
designed theoretically [6–11] with a first experimental
realization put forward with the help of asymmetric
nanotubes [12]. Moreover, using the negative differential
thermal resistance [7], a thermal transistor has been
proposed [13], which is able to control heat flow much
like a Field Effect Transistor (FET) does for electric
currents. Even different thermal logic gates [14] have
been conceived. All this progress implies that phonons
—traditionally being regarded rather as a nuisance— can
in fact be put to work constructively in order to carry
and process information effectively. Altogether, this has
given cause for a new discipline —phononics— i.e. the
science and engineering of phonons [15].
In addressing this theme let us remind again of the

original formulation of the second Law by Rudolf Clausius

(a)E-mail: peter.hanggi@physik.uni-augsburg.de
(b)E-mail: phylibw@nus.edu.sg

in 1850 which states that heat cannot spontaneously flow
from a subsystem at lower temperature to a coupled
subsystem at higher temperature1. Thus, in order to
generate a steady heat flow against a thermal bias, or
even generate heat flow in the absence of a thermal bias,
the system necessarily must operate away from thermal
equilibrium, beyond the limiting realm of the 2nd Law. A
typical such situation that comes to mind is the Peltier
effect where a steady heat flow is generated via imposing
a stationary electric current across an isothermal junction
of two different materials.
With this work we propose via computer simulations an

intriguing new scheme that does not require the resource
of a stationary non-equilibrium bias in the form of e.g.
a stationary electric current but instead combines the
elements of an asymmetric lattice structure with a non-
biased, temporally alternating bath temperature. Dwelling
on ideas from the field of Brownian motors [17–20]
—originally devised for Brownian particle transport— we
here attempt to direct a priori energy (heat) across a
spatially extended nonlinear lattice, see fig. 1, against an
external thermal bias. This objective is thus similar in
spirit for devising machines and devices that can pump
heat on a molecular scale [21–24]. In doing so, the lattice

1The correct formulation of the second law involves quantities
at (constrained) thermal equilibrium only; in particular, no time
variable t enters the formulation of the 2nd Law [16].
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Fig. 1: (Color online) Schematic setup of a weakly coupled
Frenkel-Kontorova lattice to a Harmonic Lattice, being coupled
to two heat baths at temperatures TL(t) := TL and TR.

system is brought into contact with two heat baths,
with one bath subjected to a time-varying temperature.
Taken alone, this nonlinear lattice structure exhibits
a thermal diode effect [6,7] which can be exploited to
function as a heat ratchet device when an additional
source of non-equilibrium —here realized with a rocking
bath temperature— is present. Then, merely rocking the
temperature in one heat bath can induce dynamically
a finite bias between the two heat baths, being held at
the same time-averaged temperature. This novel non-
equilibrium ratchet feature can be utilized i) to reverse
the flux, to ii) direct heat flow from cold to hot against an
average thermal bias, or even to iii) turn a regime with
a negative differential thermal resistance (NDTR) into a
regime with positive DTR, and vice versa.
Explicitly, we study numerically a system composed of

a Frenkel-Kontorova (FK) nonlinear lattice of period a
which is weakly coupled to a Harmonic Lattice (HL), each
consisting of N/2 atoms of identical mass m. This setup
is shown in fig. 1, with the FK lattice on the left and the
Harmonic Lattice on the right. The FK-HL configuration
is governed by the Hamiltonian

H =

N
2∑
i=1

[
p2i
2m
+
kL

2
(qi− qi−1)2− VL

(2π)2
cos
2πqi
a

]

+
kint

2
(qN

2 +1
− qN

2
)2+

N∑
i=N2 +1

[
p2i
2m
+
kR

2
(qi+1− qi)2

]
.

(1)

Herein, qi = xi− ia denotes the displacement from
the equilibrium position ia for the i -th atom, a is the
lattice period, kL and VL are the spring constant and the
on-site potential of the FK lattice, kint is the coupling
strength between the FK and the Harmonic Lattice,
and kR is the spring constant of the Harmonic Lattice.
Fixed boundary conditions, yielding q0 = qN+1 = 0,
have been employed. The 1st atom and the N -th atom
are put into contact with two Langevin heat baths
possessing temperature TL(t) := TL and TR, respectively.
Gaussian white noises are used, namely, 〈ξ1/N (t)〉= 0 and
〈ξ1/N (t)ξ1/N (0)〉= 2kBηTL/Rδ(t). kB is the Boltzmann
constant and η denotes the coupling strength between
system and heat bath. The time-varying heat bath
temperature, TL(t), oscillates dichotomously at angular
frequency ω and driving strength A. The used bath

temperatures thus read explicitly

TL(t) := TL = T0(1+∆+A · sgn(sinωt)),
TR = T0(1−∆), (2)

where T0 = (TL(t)+TR)/2 is the temporally
averaged environmental reference temperature,
2∆= (TL(t)−TR)/T0 denotes the normalized tempera-
ture difference, and sgn(sinωt) provides the dichotomous,
time-dependent temperature variation. The time scale
ω−1 of the temperature manipulation of the heat bath is
assumed to vary much slower than the time scale τleq to
reach local thermal equilibrium; i.e. ω� τ−1leq . This time
scale for good thermal conductors is typically a function
of temperature; it is of the order of the time scale of the
electron-phonon relaxation time which normally decreases
with decreasing temperature. For good metals this time
scale is of the order of 0.1–1 picoseconds.
We next use dimensionless parameters by measuring

positions in units of a, momenta in units of [a(mkL)
1/2],

temperature in units of [kLa
2/kB ], spring constants in

units of kL, frequencies in units of [(kL/m)
1/2] and

energies in units of [kLa
2]. In particular, we set in

our simulations kL = 1, VL = 5, kint = 0.05, kR = 0.2. For a
typical situation, the dimensionless temperature is set
at T0 = 0.09. This yields with kLa

2/kB ∼ 103K–104K a
physical temperature of the order T0 ∼ 90K–900K. The
equations of motion are integrated by the symplectic
velocity Verlet algorithm with a small time step h= 0.005.
The system is simulated for a total time tt= 2 · 108. The
chosen optimal coupling strength of the heat bath is fixed
at η= 0.5.
The asymptotic heat flux Ji(t) is assuming the periodi-

city of the external driving period 2π/ω after the tran-
sients have died out. This fact is assured for all of our
chosen frequencies ω after a simulation time st∼O(107).
At those asymptotic long times t the heat flux equals
the noise average Ji(t) = ki〈q̇i(qi− qi−1)〉, where ki = kL
for i= 2, . . . , N/2 and ki = kR for i= (N/2)+ 2, . . . , N ,
being here evaluated in the commonly employed way,
cf. in refs. [6,7,9–11,13,25]. The static heat flux J
then follows as the cycle average over a full temporal

period: J = ω
2π

∫ 2π/ω
0

Ji(t)dt, which with ergodicity
being valid equals as well the long-time average, i.e.
J = kLq̇2(q2− q1) = kRq̇N (qN − qN−1). In fig. 2 we depict
the resulting periodic variation of the heat flux Ji(t) vs.
the externally applied temperature variation TL(t). This
nonlinear response exhibits a characteristic phase lag vs.
the perturbation TL(t) and is dynamically biased to yield
a non-zero temporal average.
With the introduction of a temporally alternating-

temperature field in eq. (2), we thus achieve a controllable
manipulation of heat flow by an externally adjustable
parameter, i.e. the driving frequency ω. The static thermal
bias ∆ has been set to zero. The only resource driving
heat across the junction thus is the non-equilibrium,
alternating-temperature field TL(t), which generates
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Fig. 2: (Color online) The numerically (106 realizations) evalu-
ated, periodically varying asymptotic local heat flux Ji(t) over
the full driving period 2π/ω= 100 is compared with the rock-
ing bath temperature TL(t), at driving strength A= 0.5 and
zero bias ∆= 0 for T0 = 0.09. The lattice length is N = 50+50.
The numerically cycle averaged, spatially homogenous heat flux
equals J =−4.92 · 10−6 (i= 5) and J =−4.93 · 10−6 (i= 10).

Fig. 3: (Color online) Time-averaged heat flux J vs. the angular
driving frequency ω for different lattice lengths N = 50+50
and N = 100+100 and T0 = 0.09. The two arrows mark the
heat flux calculated in the adiabatic limit.

positive and negative temperature variations in the first
and second half of the driving period. As a result, the
direction of heat flow will tend to reverse each half driving
period. In the adiabatic limit, i.e. ω→ 0, the alternating
temperature TL(t) can be expressed by two opposite static
thermal bias values, yielding the average heat current
approximately as the averaged heat current for two
opposite static thermal bias values, see the two horizontal
arrows depicted in fig. 3. In contrast, in the fast-driving
limit ω→∞, the left-end atom will experience a time-
averaged constant temperature. This corresponds to ther-
mal equilibrium, yielding J→ 0 when ω→∞. In fig. 3, the
numerically determined average heat current is depicted
as a function of the driving frequency ω for the driving
amplitude A= 0.5. In full agreement with our predictions,
a finite heat current J emerges in the adiabatic limit
ω→ 0, becomes diminished in the non-adiabatic limit and
essentially vanishes for large ω. At adiabatic driving
the values of J agree well with the numerical
values determined from the adiabatic approximation.

A tantalizing observation is that J does not vanish
monotonically. Remarkably, at some intermediate value
ω, the heat flow J crosses zero and subsequently reverses
its direction upon further increasing ω. Consequently, the
direction of net heat flow can be manipulated by suitably
tailoring the frequency of the temperature variations.
This interesting reversal of the heat flux can be

related to the thermal response time of the system.
The non-rocked FK lattice obeys Fourier’s law [26].
Thus, the corresponding temperature variations T (t, x)
obey the diffusion equation: ∂T/∂t= (κ/c)∂2T/∂x2,
where κ denotes the heat conductivity and c is the
specific heat. The solution follows a Gaussian wave
packet T (t, x) = 1/2

√
πκt/c exp(−x2c/4κt). The thermal

response time can now be estimated as the time span for
the energy to diffuse across the system, i.e. τ ∼ cN2/4κ.
At temperature T0 = 0.09, the FK lattice assumes the
numerical values κ∼ 0.5 and c∼ 1. Thus, the characteris-
tic frequency scale ωc of the system can be estimated as
ωc = 2π/τ . This characteristic frequency scales inversely
with the system size ∝N−2. For N = 100 we then find
ωc ∼ 10−3 and a roughly four times smaller value for
N = 200. These two estimates for ωc are in good agree-
ment with those observed numerically in fig. 3. Taking the
physical unit of frequency, i.e. ω0 = [(kL/m)

1/2]∼ 1013 s−1
into account, ωc ∼ 10−3 corresponds to a typical physical
frequency for microwaves of ∼ 1010 s−1. The theoretically
predicted red shift ∝N−2 for ωc with increasing system
size is nicely corroborated by our numerical results.
To gain additional insight into this reversal of heat flow

we investigate the local temperature variations across the
junction at different driving frequencies ω. After evolving
the system over a long total simulation time tt= 2 · 108
this local temperature of the i -th atom is evaluated
from its temporal long-time average of the kinetic energy,
i.e. Teff (i) = q̇2i . In doing so, we switch to a FK-FK
configuration because the Harmonic Lattice knowingly
is not able to build up a temperature gradient [25].
The employed right-sided FK lattice has the parameters
(kR = 0.2, VR = 1). In fig. 4(a) a similar heat current
modulation as for the FK-HL configuration is observed for
the FK-FK junction with ∆= 0 and A= 0.5. The effective
temperature profiles of four numerical runs, denoted as a,
b, c, d in fig. 4(a), are depicted in fig. 4(b) vs. the relative
site positions i/N .
In clear contrast to a non-rocking case (i.e. A= 0) with

no net temperature bias, a distinct temperature gradient
now emerges for a rocking temperature TL(t). The
temperature profile exhibits a discontinuity at the inter-
face. For the situation in (c) where the heat flow reversal J
approaches its lowest, negative value, the effective temper-
ature profile becomes rather complicated: Away from the
bending part (with a negative-valued slope) towards the
left terminal side the resulting temperature profile exhibits
an opposite thermal gradient in comparison to case (a)
—thus indicating that a current reversal occurs. This
opposite thermal gradient behavior can also be detected
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Fig. 4: (Color online) (a) Stationary heat flux J vs. driving
frequency ω for different lattice lengths N = 50+50 and
N = 100+100 at T0 = 0.09 and a driving strength A= 0.5.
(b) The effective temperature profiles of four selected points
in (a) at length N = 100+100.

upon comparing the temperature gradients of cases (b)
and (d), exhibiting both a vanishing heat flow J = 0. The
discontinuity of Teff (i) occurring at the interface reaches
its maximal value at low frequencies, cf. case (a), and
increasingly diminishes with increasing driving frequency
beyond the frequency value for the reversal, cf. case (d).
We next investigated numerically the role of the driving

strength A of the temperature modulation vs. the driving
frequency ω. The results are depicted with fig. 5. As
expected, a lower driving strength consistently yields
smaller values of the Brownian-motor–induced heat flux
J, which vanishes identically when the strength of the
source of non-equilibrium is approaching zero, i.e. A= 0.
Because the frequency scale ωc for the occurrence of the
heat flux reversal is mainly size dependent ∝N−2, we
expect a weak dependence of ωc on the driving strength
A. This result is corroborated with fig. 5 where this
characteristic frequency is practically independent of the
driving strength A.
Flux-bias characteristics. The finite ratchet value of

the heat flux J in the absence of static thermal bias
∆ now allows for directing the heat current against
a non-zero thermal bias ∆. In fig. 6, we depict the
flux-bias characteristics J-∆ at small driving frequency
ω= 1.571 · 10−5 (∼ 100MHz), which is in the range of

Fig. 5: (Color online) Stationary heat flux J vs. driving
frequency ω for different driving strengths A of the temperature
modulation for a sizeN = 50+50 at T0 = 0.09 and zero thermal
static bias ∆.

Fig. 6: (Color online) Heat flux J vs. thermal bias ∆ for
different driving amplitudes A= 0, 0.2, and 0.5. The lattice
length is N = 50+50 and T0 = 0.09. Note that the nonlinearity
in the Frenkel-Kontorva part of the junction is essential to
obtain the thermal ratchet effect. At large rocking strength
(A= 0.5) the current bias characteristics can be manipulated
to eliminate a NDTR regime at negative bias values ∆.

ultrasonic frequencies. The J-∆ curve in the absence
of time-dependent manipulation (A= 0) is presented as
a reference, obeying J(∆= 0) = 0, in agreement with
the 2nd Law. The dashed line corresponds to a driving
amplitude A= 0.5. We now detect a finite heat current J
at vanishing thermal bias ∆= 0. For negative bias within
the range ∆∈ [−0.23, 0], the direction of the heat flow
is positive. With J taken as the average over a driving
period this implies that heat flows from cold to hot.
The so-called “stall bias” of the thermal bias that yields
J = 0 is located around ∆=−0.23. Moreover, we detect
that the characteristics of NDTR becomes modified as
well by the switch-on of the alternating bath temperature
TL(t). The original working range of NDTR at A= 0 is
∆∈ [−0.6,−0.2]. At A= 0.2, this range undergoes a shift
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towards ∆∈ [−0.7,−0.3]. For A= 0.5, this very NDTR-
phenomenon effect can be dynamically eliminated all
together. This effect is thus of prominent interest for the
design of an efficient thermal transistor: It allows one to
change the range of working temperatures of a thermal
transistor by solely adjusting the strength of the driving
temperature field.
In conclusion, we have shown that heat flow across a

structured nonlinear lattice junction can be efficiently
controlled by use of a temporally alternating-temperature
field. The heat flow becomes directed and even can be
reversed by suitably selecting the driving frequency. In
clear contrast to the thermal diode effect, the presented
Brownian heat rachet physics dynamically generates
a finite heat flux at zero thermal bias ∆= 0. Thus,
we deal with a new phenomenon which, as well, is in
distinct contrast to the by now common situation of ther-
mally assisted, directed particle transport in Brownian
motors [17–20]. This dynamically induced heat flow can
be directed against a non-zero, time-averaged net thermal
bias ∆. This fact, however, does not necessarily imply
an active overall cooling of the device, cf. also fig. 4(b).
The size and the shape of NDTR can be manipulated
as well. Nonlinearity, as reflected with the FK segment,
is essential for the phenomenon: a junction composed
of two asymmetric Harmonic Lattices fails to support a
rachet heat flux. All these phenomena call for beneficial
applications in the control and management of heat
flow on the micro- and nano-scale. With a future, more
detailed work [27] we shall investigate, how the size of
the directed heat flux can be enlarged by stylizing further
the nonlinearity of the lattice structure. In particular,
we expect much larger heat currents when using a
Fermi-Pasta-Ulam chain containing both a cubic and a
quartic interaction potential.
Our setup constitutes a two-segment rectifier model [7]

and the driving frequency is in a range of � 100MHz.
The finite, directional heat flux is feasibly detected
by slowly rocking the bath temperature within the
adiabatic regime. Given the fact that rectification has
been demonstrated experimentally in asymmetrically
deposited nanotubes [12], we are confident that the
appealing heat ratchet phenomena presented herein will
invigorate experimentalists to validate our findings by
designing such thermal ratchet systems.
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