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We propose a scheme for monitoring coherent quantum dynamics with good time-resolution and low

backaction, which relies on the response of the considered quantum system to high-frequency ac driving.

An approximate analytical solution of the corresponding quantum master equation reveals that the phase

of an outgoing signal, which can directly be measured in an experiment with lock-in technique, is

proportional to the expectation value of a particular system observable. This result is corroborated by the

numerical solution of the master equation for a charge qubit realized with a Cooper-pair box, where we

focus on monitoring coherent oscillations.
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An indispensable requirement for a quantum computer
is the readout of its state after performing gate operations.
For that purpose it is sufficient to distinguish between two
possible logical states. At the same time, it is desirable to
demonstrate the coherence of time evolution explicitly. For
solid-state qubits, this has been accomplished by Rabi-type
experiments [1,2]. In general the qubit state measurement
is destructive, so that an interference pattern emerges only
after a number of experimental runs. Certainly, it would be
preferable to observe signatures of coherent dynamics al-
ready in a single run.

Both the charge and the flux degree of freedom of super-
conducting qubits can be measured by coupling the qubit to
a low-frequency ‘‘tank’’ circuit that is excited resonantly
[3,4]. In doing so one makes use of the fact that the
resonance frequency of the slow oscillator depends on
the qubit state which, in turn, influences the phase of the
oscillator response [3–5]. The drawback of this scheme,
however, is that the coherent qubit dynamics is consider-
ably faster than the driving. Thus, one can only observe the
time average of the qubit state, but not temporally resolve
its dynamics. Measuring the qubit by driving it at reso-
nance is possible as well [6]. This however induces Rabi
oscillations, making the qubit dynamics differ significantly
from the undriven case [7,8].

Here, by contrast, we propose to probe the qubit by a
weak high-frequency driving that directly acts upon the
qubit without a tank circuit being present. We find that the
resulting outgoing signal possesses sidebands which are
related to a phase shift and demonstrate that the latter is
related to a qubit observable. Validating this relation nu-
merically for a Cooper-pair box, we show that the under-
lying measurement scheme principally enables monitoring
the coherent qubit dynamics experimentally in a single run
with good time-resolution and fidelity, whereas the back-
action on the qubit, induced by the driving, stays at a
tolerable level.

Dissipative quantum circuit.—Although later on we fo-
cus on the dynamics of a superconducting charge qubit as
sketched in Fig. 1, our measurement scheme is rather

generic and can be applied to any open quantum system.
We employ the system-bath Hamiltonian [9–11]
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X
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where H0 denotes the system Hamiltonian and Q is a
system operator. The bath is modeled by LC circuits with
charges qk and conjugate momenta pk, where Ck and Lk

are effective capacitances and inductances, respectively,
and �k are the corresponding coupling constants. It is

convenient to introduce the spectral density Ið!Þ ¼
�
2

P
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2
kðCk=LkÞ1=2�ð!�!kÞ, which we assume to be

Ohmic, i.e., Ið!Þ ¼ !Z0 with an effective impedance Z0

[11–13]. By standard techniques, we obtain the Bloch-
Redfield master equation for the reduced system density
operator � in the weak-coupling limit [14],
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Here, Sð!Þ ¼ Ið!Þ cothð@!=2kBTÞ is the Fourier trans-
form of the symmetrically ordered equilibrium correlation
function 1
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FIG. 1 (color online). CPB coupled to a transmission line with
Ohmic effective impedance Z0.
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tion ~XðtÞ is a shorthand for the Heisenberg operator

Uy
0 ðtÞXU0ðtÞ, where U0 is the system propagator.

In order to relate the quantum dynamics of the central
circuit to the response via the transmission line, we employ
the input-output formalism [15] which is an established
tool in quantum optics and has also been used in quantum
circuit theory [5]. It starts from the Heisenberg equation of
motion for the environmental mode k which reads €qk þ
!2

kqk ¼ !2
kQ, where!k ¼ ðLkCkÞ�1=2 denotes the angular

frequency of mode k. Owing to its linearity, this equation
of motion can be solved formally. Inserting the obtained
solution into the Heisenberg equations of motion for the
system operators, one arrives at the so-called quantum
Langevin equation [16,17]. For an Ohmic environment,
the latter possesses the inhomogeneity �inðtÞ � Z0

_QðtÞ,
where the noise operator �in is fully determined by the
correlation functions given above.

Alternatively, one can write the quantum Langevin
equation in terms of the outgoing fluctuations [15]. The
result differs only by the sign of the dissipative term, so
that the inhomogeneity now reads �outðtÞ þ Z0

_QðtÞ. The
difference between these two equations relates the input
and the output fluctuations via

�out � �in ¼ �2Z0
_Q ¼ � 2iZ0

@
½H0; Q� ; (4)

which is a cornerstone of the input-output formalism [15]
and holds for any weakly coupled �in. We used that for
weak dissipation, _Q � i½H0; Q�=@ is essentially bath
independent.

Response to high-frequency driving.—We next probe the
system by driving it via the transmission line with an ac
signal A cosð�tÞ that also couples to the system operator
Q. Then, the Hamiltonian acquires an additional term:
H0 ! H0 þQA cosð�tÞ, and the master equation (2)
changes accordingly. For the input �in, this corresponds
to one coherently excited incoming mode such that
h�inðtÞi ¼ A cosð�tÞ, while the right-hand side (rhs) of
the input-output relation (4) remains unchanged.

Because the driving must not significantly alter the
system dynamics, we assume that the amplitude A is
sufficiently small, so that the driving can be treated pertur-
batively. This yields the ansatz �ðtÞ ¼ �0ðtÞ þ �1ðtÞ,
where �0ðtÞ is the unperturbed state. To lowest order in
A, �1 obeys _�1 ¼ L0�1 � i

@
A½Q;�0� cosð�tÞ, where L0

denotes the superoperator on the rhs of Eq. (2). This linear
inhomogeneous equation of motion can be solved formally
in terms of a convolution between the propagator of the
undriven system and the inhomogeneity. If the driving
frequency � is much larger than all relevant system fre-
quencies, one may separate time scales to obtain

�ðtÞ ¼ �0ðtÞ � i
A

@�
½Q;�0ðtÞ� sinð�tÞ ; (5)

which identifies eA=@� as the necessarily small perturba-
tion parameter. Together with the input-output relation (4),

this solution allows us to compute the response of the
system.
In an experiment it is possible to employ a lock-in

technique with the incoming signal providing the reference
oscillator. This singles out the high-frequency components
of the outgoing signal, which correspond to the second
term of the density operator (5) and read

h�outðtÞi ¼ A cosð�tÞ þ 2AZ0

@
2�

h½½H0; Q�; Q�i0 sinð�tÞ ;
(6)

where h� � �i0 ¼ tr½�0ðtÞ � � �� refers to the undriven dynam-
ics. Writing next h�outðtÞi ¼ A0 cos½�t��0

hfðtÞ�, we find

the central expression

�0
hfðtÞ ¼

2Z0

@
2�

h½½H0; Q�; Q�i0 ; (7)

which relates a small phase shift �0
hfðtÞ between the input

and the output signal to a Hermitian system observable
describing the unperturbed low-frequency system dynam-
ics. This means that the time-resolved evolution of the open
quantum system can be monitored in a single run by
continuously measuring the phase shift �0

hfðtÞ with appro-

priate experimental techniques. In this connection, Eq. (7)
represents the basis for our proposed measurement scheme.
Below we will explore its validity and limitations for a
specific system by comparing the phase of the output
h�outðtÞi with the expectation value h½½H0; Q�; Q�i0, both
computed from the numerical solution of the master equa-
tion (2) in the presence of ac driving.
Monitoring coherent qubit dynamics.—A particular case

of a quantum circuit which recently attracted much interest
is a Cooper-pair box (CPB) which is sketched in Fig. 1 and
described by the Hamiltonian

HCPB
0 ¼ 4ECðN̂ � NgÞ2 � EJ

2

X1

N¼�1
ðjN þ 1ihNj þ H:c:Þ ;

(8)

where N is the number of excess Cooper pairs in the

box, so that the charge operator reads Q ¼ 2eN̂ ¼
2e
P

NNjNihNj. The charging energy EC is determined by
various capacitances, while the scaled gate voltage Ng and

the effective Josephson energy EJ are controllable. If the
charging energy is sufficiently large and Ng � 1=2, only

the two charge states j0i � j#i and j1i � j"i matter and
form a qubit [1,4,11] described by the Hamiltonian

H
qb
0 ¼ �1

2Eel�z � 1
2EJ�x ; (9)

where the Pauli matrices �i are defined in the qubit sub-
space and Eel ¼ 4ECð1� 2NgÞ. The qubit energy splitting

reads @!qb ¼ ðE2
el þ E2

JÞ1=2. Moreover, Qqb ¼ e�z while

by virtue of relation (7) the phase of the output signal is
linked to the qubit observable �x according to
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�0
hfðtÞ ¼ � 4e2Z0EJ

@
2�

h�xðtÞi0 : (10)

This means that the high-frequency component of h _Qi,
which is manifest in the phase of the outgoing signal (4),
contains information about the low-frequency qubit dy-
namics in terms of the unperturbed h�xi0.

We now turn to the question how relation (10) allows
one to retrieve information about the coherent qubit dy-
namics in an experiment. Figure 2(a) shows the time
evolution of the expectation value h _QðtÞi for the initial
state j"i � j1i, obtained via numerical integration of the
master equation (2) with the full CPB Hamiltonian (8) in
the presence of the ac driving which in principle may
excite higher states. The driving, due to its rather small
amplitude, is barely noticeable on the scale chosen for the
main figure, but only on a refined scale for long times; see
inset of Fig. 2(a). This already insinuates that the back-

action on the dynamics is weak. In the corresponding
power spectrum of h _Qi depicted in Fig. 2(b), the driving
is nevertheless reflected in sideband peaks at the frequen-
cies � and ��!qb. In the time domain these peaks

correspond to a signal cos½�t��outðtÞ�. Moreover, non-
qubit CPB states lead to additional peaks at higher fre-
quencies, while their influence at frequencies ! & � is
minor. Experimentally, the phase �outðtÞ can be retrieved
by lock-in amplification of the output signal, which we
mimic numerically in the following way [18]: We only
consider the spectrum of �out in a window�� �� around
the driving frequency and shift it by ��. The inverse
Fourier transformation to the time domain provides
�outðtÞ which is expected to agree with �0

hfðtÞ and, accord-
ing to Eq. (10), to reflect the unperturbed time evolution of
h�xi0 with respect to the qubit. Although the condition of
high-frequency probing, � � !qb, is not strictly fulfilled

and despite the presence of higher charge states, the lock-in
amplified phase �outðtÞ and the predicted phase �0

hfðtÞ are
barely distinguishable for an appropriate choice of parame-
ters as is shown in Fig. 2(a).
In order to quantify this agreement, we introduce the

measurement fidelity F ¼ ð�out; h�xi0Þ, where ðf; gÞ ¼R
dtfg=ðR dtf2

R
dtg2Þ1=2 with time integration over the

decay duration. Thus, the ideal value F ¼ 1 is assumed if
�outðtÞ and h�xðtÞi0 are proportional to each other, i.e., if
the agreement between the measured phase and the un-
perturbed expectation value h�xi0 is perfect. Figure 3(a)
depicts the fidelity as a function of the driving frequency.

FIG. 2 (color online). Decaying qubit oscillations with initial
state j"i in a weakly probed CPB with 6 states for 	 ¼ Z0e

2=@ ¼
0:08, A ¼ 0:1EJ=e, EC ¼ 5:25EJ and Ng ¼ 0:45, so that Eel ¼
2:1EJ and !qb ¼ 2:3EJ=@. (a) Time evolution of the measured

difference signal h _Qi / h�outi � h�ini (in units of 2eEJ=@) of the
full CPB and its lock-in amplified phase�out (frequency window
�� ¼ 5EJ=@), compared to the estimated phase �0

hf / h�xi0 in
the qubit approximation. The inset resolves the underlying small
rapid oscillations with frequency � ¼ 15EJ=@ in the long-time
limit. (b) Power spectrum of h _Qi for the full CPB Hamiltonian
(solid) and for the two-level approximation (dashed).

FIG. 3 (color online). (a) Fidelity defect �F ¼ 1� F and
(b) time-averaged trace distance between the driven and the
undriven density operator of the CPB for various driving ampli-
tudes as a function of the driving frequency. All other parameters
are the same as in Fig. 2.
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As expected, whenever nonqubit CPB states are excited
resonantly, we find F � 1, indicating a significant popu-
lation of these states. Far-off such resonances, the fidelity
increases with the driving frequency �. A proper fre-
quency lies in the middle between the qubit doublet and
the next higher state. In the present case, � � 15EJ=@
appears as a good choice. Concerning the driving ampli-
tude, one has to find a compromise, because as A increases,
so does the phase contrast of the outgoing signal (6), while
the driving perturbs more and more the low-frequency
dynamics. For the frequency chosen above, the fidelity is
best in the range A ¼ 0:1–1@!qb=e. This corresponds to

eA=@� � 10�2–10�3, which justifies our perturbative
treatment.

Measurement quality and backaction.—For any quan-
tum measurement, one has to worry about backaction on
the system in terms of decoherence. In our measurement
scheme, decoherence plays a particular role, because both
the driving and the Ohmic environment couple to the CPB
via the same mechanism. This is reflected by the fact that
the predicted phase (10) is proportional to the dimension-
less dissipation strength 	 ¼ Z0e

2=@. However, 	 should
not exceed 0.1 in order to preserve a predominantly coher-
ent time evolution. This also means that our measurement
is weak, but destructive. The condition 	 & 0:1 together
with the above conditions on the driving amplitude and
frequency provides phase shifts�out of the order 1

	, which
is small but still measurable with present technologies. The
additional decoherence due to the driving, by contrast, is
not noticeable. This is in agreement with the first-order
result trð�2Þ ¼ trð�2

0Þ which follows from Eq. (5).

In order to investigate to what extent the driving affects
the quantum state of the CPB, we compute the trace
distance DðtÞ ¼ 1

2 trj�ðtÞ � �0ðtÞj [19] between the density

operators of the driven system �ðtÞ and the undriven ref-
erence �0ðtÞ. Its time average �D quantifies the perturbation
due to the driving. Figure 3(b) indicates that �D / A=�,
unless the driving is in resonance with higher levels. This
confirms the picture drawn by studying the measurement
fidelity F. For practically all parameters used in Fig. 3, we
have found that the total population of levels outside the
qubit doublet is always less than 0.1%. The only exception
occurs again in the case of resonances with nonqubit CPB
levels. Far from these resonances, the system is faithfully
described with only the qubit levels.

In our investigations, we have not considered excitations
of quasiparticles which are relevant once the driving fre-
quency becomes of the order of the gap frequency of the
superconducting material. Thus, for an aluminum CPB our
model is valid only for � & 100 GHz. Since a typical
Josephson energy is of the order of some GHz, a driving
frequency � � 20EJ=@ is still within this range while it
provides already a good measurement quality.

Conclusions.—We have proposed a method for the time-
resolved monitoring of the dynamics of a quantum system

coupled to a dissipative environment. The crucial require-
ment for this is the possibility to drive the system coher-
ently via one environmental high-frequency mode
accompanied by measuring the phase of the outgoing
signal via lock-in techniques. Analyzing the high-
frequency response, we have found that the phase of the
output signal is related to a particular system observable.
We have substantiated this relation by computing both
quantities numerically for a charge qubit implemented
with a Cooper-pair box. For decaying coherent oscilla-
tions, we have demonstrated experimental feasibility on
condition that the coupling to the environment is not too
weak and that the driving frequency exceeds the qubit
splitting and is off resonance with higher levels. Then the
measurement fidelity is rather good, while the low-
frequency qubit dynamics is almost not affected by the
driving and transitions to higher levels do not play a
relevant role. The implementation of our scheme will
enable the demonstration of quantum coherence of solid-
state qubits in single-shot experiments.
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