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1 Introduction

Random walks under area tilts mimic phase separation lines in certain low-temperature
two-dimensional lattice models of statistical mechanics, particularly in the regime of
pre-wetting. A prototypical example is the two-dimensional Ising model in a large
box with negative boundary conditions and a small positive magnetic field 4. In such
circumstances, the £-interface is pushed towards the boundary of the box and its
fluctuations above flat segments of the boundary are expected to be of order h~1/3.
Rigorous justification of the latter claim is still an open problem (but see [21] for
partial results in this direction). Instead, the papers [12,15] are devoted to a refined
analysis of effective random walk models of such interfaces. In particular, the full
scaling limits were identified in [15], for a large class of effective random walks, as
Ferrari—Spohn diffusions [10].

In this paper, we consider ensembles of n non-colliding random walks which are
subject to generalized area tilts. Precise definitions are given in Sect. 3. These ensem-
bles are intended to model non-intersecting level lines for certain low-temperature 2 +
I-dimensional interfaces (which themselves are intended to model two-dimensional
random surfaces of lattice statistical mechanics). A prototypical example is the SOS
model, see [3,4] and references therein, or even more so its version with bulk Bernoulli
fields which was introduced in [13]. In either case, low-temperature level lines have
the structure of Ising polymers whose effective random walk representation is dis-
cussed in [14] and is based on the general fluctuation theory of ballistic walks with
self-interactions as developed in [16].

In Sect. 2, we introduce and briefly discuss the class of limiting objects, which
we call Dyson Ferrari—-Spohn diffusions. The latter can be alternatively described as
Ferrari—Spohn diffusions conditioned to remain ordered, or as ergodic n-dimensional
diffusions driven by the log-derivative of the Slater determinants of the correspond-
ing Sturm—Liouville operators. The construction is well understood: We refer to [19,
Section 2] for extensive details on determinantal random point fields in general and
Fermi gas in particular, and to [7, Section 3] where such diffusions are discussed for
specific kernels in the context of random matrix theory.

Properties of Dyson Ferrari—-Spohn diffusions, in the form we need them, are for-
mulated in Theorem 1. To keep our exposition self-contained and to stress the role
played by the Karlin—-McGregor formula, we sketch the proof.

Our effective model of ordered walks under area tilts is introduced in Sect. 3, while
our main result, Theorem 2, is formulated in Sect. 3.4. In Sect. 3.6, we introduce the
rescaling notation which is employed in all the subsequent arguments. The step-by-
step structure of our arguments is explained in Sect. 3.7. The details of the proofs
are given in Sects. 4—7 and in the “Appendix”. The organization of these sections is
described in Sect. 3.8. Many of our technical estimates rely on strong approximation
techniques and on a refinement of recent results on random walks in Weyl chambers
and on cones [6,8].
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2 Sturm-Liouville operators and Dyson Ferrari—-Spohn diffusions
2.1 One particle
Consider the Sturm—Liouville operator

1 d?

L=-— —
2 dr?

q(r), (2.1)

where ¢ is a non-negative symmetric C>-potential satisfying

lim ¢(r) = oco. 2.2)

|r|—o0
We can either think of L as being defined on Ly (R.) with zero boundary conditions
at zero, or as being defined on L, (R). It is a classical fact [5] that L has a complete
orthonormal family of eigenfunctions
Lo =—€ipi 0<e;j<er<---  o0. (2.3)
The Krein—Rutman eigenfunction ¢ is positive on (0, 00), respectively on R.
In the case of the half-line, L has a closed self-adjoint extension from Cq(0, 00),

whereas in the case of R it has a closed self-adjoint extension from Cy(RR). In both
cases, the domain of the closure is given by

D) = !f =Y o 1 Y _erfl < 00}- (2.4)
K K

We proceed to discuss the half-line case only; the full-line case would be a literal
repetition.
L is a generator of a contraction semigroup T; on Lo(R4): For f =Y fiek,

T: f(r) = Z fre g (2.5)
k

This semigroup has the following probabilistic representation: For r > 0, let P’ be the
(sub-probability) path measure of the Brownian motion started at » and killed upon
hitting the origin. Then, for any f € D(L) and any ¢ > 0,

T, f(r) = B {e= loaBEId £(B(ry)). (2.6)

Clearly, T; is an integral operator with kernel /; given by

hi(r,s) =Y e o ()i (s). 2.7)
k=1
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2.2 n non-colliding particles
Let us fix n € N and define

Af={reR":0<r < <r}. (2.8)

Let L; be a copy of L acting on the i-th variable. Consider the closed self-adjoint

extension of
§n L= §n: L0 e (2.9)
i = 25 3 q\ri .

i=1 i=1

from Cy (A;’,‘) and let T:r be the corresponding contraction semigroup on L; (A,;").
In probabilistic terms, T;r can be described as follows: For an n-tuple r € A;’[, set

EE=E"QE?® - -QE™
Let B be the n-dimensional Brownian motion, and define
T =minf{t : B(t) ¢ AT} (2.10)

In other words, 7 is the minimum between the first collision time and the first time the
bottom trajectory exits from the positive semi-axis. Then,

THf(r) = B, {e™ i 4B p (g T, ). 2.11)

T, is an integral operator on L) (A;1) and, by the Karlin-McGregor formula, its kernel
Kk; 1s given by
ki (r, s) = det{h;(ri, s;)}. (2.12)

2.3 Limiting behaviour
Let

@1(r1) o2(r1) -+~ @u(r1)
@1(r2) @2(r2) -+ - @u(r2)

A(r) = det . (2.13)
Ijol(rn) w2(ry) - -+ §0n(rn)J
Note that A € Ly(A}) .
Theorem 1 Set D, = Y ";_, €. Then,
lim Pk, (r,5) = Ar) A(s). (2.14)

1—00
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Moreover, for any f € La(AF) and for anyt > 0,

T )
o Eefe M a0 F X (i) Iy, |
7= B le=Xiky aBidy,_ )

D, ;
= Z(r)El{e_Zi Jo 9B £ (B(1) ABO) s, )
Dt

- Z(DTWA)(L) 285 ). (2.15)

In its turn, S,Jr is a diffusion semigroup with transition kernel

D,t

qr(r,s) = ZTE)/Q(L $)A(s), (2.16)

which is self-adjoint on Ly(A}, A?); the generator of the corresponding ergodic
diffusion on A} is given by

1 < 92

0
==Y — +Vlog(A)(r) -V = div(A%(r)V). 2.17
; zl;aiﬁ 0g(A)(r) 3 (A Y) (2.17)
Proof Let us introduce the column vectors
@e(ry)
@e(r2)
by = . =1,...,n)

(pZ(rn)

and the volume form F(cy, ..., ¢,) = det|[cy, ..., ¢;]. Under our assumptions, (2.3),

(2.7) and (2.12) imply, asymptotically as t — oo, that

iy (r, ) (1+0(1)) = F(Zwe(sl)be, > wulsby. ... Zgoz(snm)
=1 =1 =1

= F(br1,....b) Y (=18 [ o, (s0). (2.18)
o {=1

and the first claim (2.14) follows. Above, o runs over all permutations of {1, ..., n}
and sgn(o) = £1 denotes the signature of o.
Modulo some technicalities, (2.15) follows from (2.14) and the Markov property.
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Finally, &, in (2.17) is the generator of S", since the generator of T, is the closed
self-adjoint extension of (2.9) from Cy (A,J{) and since, by direct computation,

n

192
Y (55 —a0))A@) = -D,AW. (2.19)
P 2 9r;
O
2.4 Dyson diffusions for Sturm-Liouville operators
For every n € N, the diffusion
dx(t) = dB(1) + V log(A)(x(1)) d1, (2.20)

with the generator &, described in Theorem 1, lives on A,j‘ and is reversible
with respect to A%(r)dr. In the sequel, we shall use P;F for its distribution on

C((—00, +00), A)}) and P for the restriction of this distribution to C([-T.Tl,
A,J{) Without loss of generality, let us assume that A%(r) is a probability density (on
AT"). Note that the latter has a determinantal structure:

A%(r) = det{K, (r;, 7))}, (2.21)

where the kernel K, is given by

Ka(r,$) =) @u(r)pe(s). (2.22)

=1

In particular, the level density distribution is given by
1 1 n
pn(r) = ~Kn(r,r) = — 3 @2(r). (2.23)
t=1

There are similar determinantal formulas for level spacing, gap probabilities, etc. We
note that the unpublished work [2] contains results on the universality of scaling limits
(as n — 00) in this general Sturm-Liouville context.

3 Ordered walks with area tilts
3.1 Underlying random walks and ordering of trajectories

The setup follows [15].
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Let p, be an irreducible random walk kernel on Z. The probability of a finite
trajectory X = (X1, X2, ..., Xi) is p(X) = [[; px;,,—x;. The product probability of
n finite trajectories X = X, . XM s

n
PO =[[pxH. 3.1)
=1
Assumptions on p. Assume that
Z zp; = 0 and p has finite exponential moments. 3.2)

Z€Z

In order to facilitate the notation, we shall assume in the sequel that the variance
satisfies
o= Ip. =1 (3.3)

Z€Z

This assumption simplifies formulas in our technical arguments. The main result
remains valid, after an obvious change of the normalization, for all o € (0, 00);
see Remark 2 after Theorem 2.

Sets of trajectories. Letu,v € N. As in [15], Py;"y | is used to denote the set of
trajectories X starting at u at time M, ending at v at time N and staying positive during
the time interval {M, ..., N}.

Letu,v e N'NAT and M, N € Z with M < N. Let I%I’%N’Jr be the family of n
trajectories X starting at u at time M, ending at v at time N and satisfying

0<X}<X§<...<X'; Vie{M+1,...,N—1}. (3.4)

U

- wy U LY
For N > 0, we shall use the shorthand notations PN, L =P NN+ and PN, L=
u.v
PUN 4+ . , . .
The model which we define below is a polymer measure over ordered trajectories
from 731%,%_

3.2 The model
Let {Vy}i>0 be a family of self-potentials Vj, : N — R, . For a finite trajectory

X=Xwp,..., Xn), let p(X) = ]_[fVZM_H p(X; — X;—1) be its probability for the
underlying random walk, and let us introduce the tilted weights

Wi (X) = e~ Zimwe Xip(x), (3.5)
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Givenu, v € Nand A > 0, define the partition functions and the probability distribu-
tions

1
Z;/tv”v_i_’k = E W)L(X) and Pl}t\}})_i_’)t(X) = ZT W)L(X) ][{XEPX”,Z-} (36)
XePy", N,+,A

In the case of an n-tuple X = .(Xl, ..., X") of trajectories, we consider the product
weights wy (X) = H?:l w; (X"). If S is a finite or countable set of such tuples, then
the corresponding restricted partition functions are denoted by

Z3[S81=)  wi(X). (3.7)
XeS

We shall use the shorthand notations Z;'—Vy_‘_ S, = ZA[PI%J,,%-] and 2%,%_ = Zx[ﬁjﬂv’i_]-
Finally, let us define the probability distribution P}y, ; on Py, by

1
U,V
PN,J“;\(X) = % w; (X) I{Xepﬁ'ﬂ}' (3.8)

The term Zﬁ/ ~n41 Va(X;) represents a generalized (non-linear) area below the trajec-
tory X. It reduces to (a multiple of) the usual area when V, (x) = Ax. As in [15], we
make the following set of assumptions on V:

3.3 Assumptions on V) and the scale H)

For any A > 0, the function V, on [0, c0) is continuous, monotone increasing and
satisfies
V,(0O)=0 and Iim V,(x) = o0. (3.9)
X—> 0

In particular, the relation
H?V,(Hy) =1 (3.10)

determines unambiguously the quantity H,. Furthermore, we make the assumptions
that limy, o H) = oo and that there exists a function ¢ € C2(R™1) such that

lim HVy(rHy) = q(r), (3.11)

uniformly on compact subsets of R.. Note that H,, respectively H /\2 plays the role of
the spatial, respectively temporal, scale in the invariance principle which is formulated
below in Theorem 2.

Furthermore, we shall assume that there exist Ag > 0 and a (continuous non-
decreasing) function go > 0 with lim,_, 5, go(r) = oo such that, for all A < X,

H?Vi(rHy) > qo(r) on R, (3.12)
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Finally, we assume that g grows to oo sufficiently fast; namely, for any « > 0,
o0
f e 0 dr < o0. (3.13)
0

Presumably, our main results hold without assumption (3.13). However, since it is
rather soft and since it implies the claim of the technically very convenient Lemma 2
below, we decided to keep it.

Remark I A natural class of examples of family of potentials satisfying assumptions
(3.9)—(3.13) is given by V; (x) = Ax® with & > 0. For the latter, H, = A1/ @+ gpd
q(r) = qo(r) = r“. In this way, the case of linear area tilts « = 1 corresponds to the
familiar Airy rescaling Hy, = A~/3.

3.4 The result
We set h;, = H,~ ! The paths are rescaled as follows: For ¢ € h%Z, define

1
X0 = haX e = X2y (3.14)

Then, extend x* to any ¢ € R by linear interpolation. In this way, given T > 0 and
. g T .

u, v, we can talk about the induced distribution IP’IEV’E_;_. ;. on the space of continuous

functions C([—T, T1, A}}).

Theorem 2 Let Ay be a sequence satisfying

N
lim Ay =0 d lim —— = o0. 3.15
Nl—l;noo N an Ngnoo H)%N o0 ( )

Fix any C € (0,00) and any T > 0. Then, the sequence of distributions IP’]E\}QJ;FTAN

converges weakly to the distribution ]P’,i';T of the ergodic diffusion x(-) in (2.20),
uniformly in v,, u, < CH,,.

In the sequel, we shall denote ay := N/H 2N; with this notation, the second statement
in (3.15) becomes limy _, oo ay = 00.

Remark 2 1If o # 1 in (3.3), then the assertion of Theorem 2 may be adjusted as
follows: Define H) and ¢ as in (3.10) and (3.11), and set g, (r) = g(or). Let Ay be a

sequence satisfying (3.15). Define x ; to be the Dyson diffusion (2.20) for the Sturm—

Liouville operator L, = %f—rzz — go (r). Then x_ is the weak limit of the rescaled

process

X (t) =

Xpy2

)\N_ AN
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3.5 Non-strict constraints
In the sequel, we shall focus on the strict constraints expressed in (3.4). However, a

rather straightforward modification of our arguments would imply that the conclusion
still holds when the ordering in (3.4) is non-strict, that is, when we instead require that

0<X;<X;<---<X| Vje{M,....N}. (3.16)

Namely, let PIMT,I’QN o be the family of n trajectories X starting at « at time M, ending at
v attime N and satisfying (3.16). As in the case of strict ordering, we use abbreviation

731%]'% — pLe v n.0- Define [recall (3.1)]
2t = Y e X N D py)
XePyg
and

e~ Lizi ity ViXDP(X)

Pt _

Corollary 1 Under the same assumptions, the conclusions of Theorem 2 hold for the
Jamily of measures IP’L]—tvyO A

3.6 Rescaling and the corresponding notation

It will be convenient to adjust our notations to the running scales ;. Define:
N, =mN, Af, =ATN®NY" and Z, = h}Z. (3.17)

In this way, x*(¢) in (3.14) belongs to AZA forevery t € Z,.
Fora,b,t € Z) andr,s € AI ,.» we shall write, with a slight abuse of notation,

H,r,H)s

r,s o
P;’bﬂr’k = 73’]LI/\26171L&2177+7A and similarly for 73’ ey and P ” + - (3.18)

The same conventions apply to partition functions (e.g., we shall write Zt -T— =

Z) [73 by A]) and for probability distributions (e.g., we shall write IP" T fora € 7y
andr, s, € A,M).
With the above notations, Theorem 2 can be restated as follows: Let

Iim Ay =0 and lim ay = o0. (3.19)
N—o00 N—00
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Then, the family of distributions ]P%NEJTr 5.y converges weakly to the distribution P, d
of the ergodic diffusion x (-), uniformly in r,,, s, < C.

Our proofs rely on the properties of the underlying rescaled random walks (without
area tilts). The corresponding notation for the latter follows the above convention
adopted for polymer measures: Given A > 0 and r € N}, we use f’i for the law of the
rescaled walk started at time zero at r. The restriction of f’i to the set of trajectories

which stay in AZ ;, during the interval [0, 7] is denoted by P~ When the end-point ¢

A
is clear from the context, we will sometimes use the shorthand notation Pfr , - Finally,
givens € N} and ¢ € Z;, we use

Pl =Pi( [x'()=5s) and P7L, =P, (- |x'(0) =3). (3.20)

3.7 Structure of the argument

As A | 0, the following notion of convergence is employed: Consider the spaces
£>(Ny) and £» (AI ;) with scalar products

(f, 825 =hi ) f(r)g(r) and, respectively, (f, g)ax =} D f(r)g).
reN;, LEA:’A
(3.21)
Let p; : Lo(R4) — £2(Ny) and p; , : ILZ(A,J{) — EZ(AIA) be linear contractions;
for instance, to fix the ideas, set

ppu(r) = hi /V u(s)ds

A J(r=hy)+

and

1 ri 'n
P nu(r) = h_”,/ / u($) Ly piy ds.
r J(r1—hy)+ (rn—h)+

Above, s = s v 0 for any s € R. Let us say that a sequence u; € ¢>(N,) converges
tou € Ly(R4), which we denote « = lim u;, if

li — = 0. 3.22
Alﬁ)l lup — prull2,x (3.22)

The same definition applies for sequences u; € ZQ(AI ;) and, accordingly, for the
limiting u in Ly (A;}). Note that, in both cases, if u = lim, o uy and v = lim; o v,
then

(0.¢]

lim (uy, v;)2.2 =/ u(ryv(r)dr,
A0 0
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respectively,

E%(uk, Ur)2,0 = /+ u(ryv(r)dr.

Ay

STEP 1. (Convergence of one-dimensional and product semi-groups) Recall that T, is
an integral operator whose kernel /; is defined in (2.7). [15, Proposition 3] implies
that if a sequence fj € £2(N,) converges to f € L>(R}), then, for any # > 0,

lim 3 2%, /i) = / he(r.5) f(s) ds. (3.23)
v seNy 0

in the sense of (3.22) above. In particular, for any f, g € Co(R,),

lim h;, Z Z g(MZ , f(s) =/0 fo g (r, ) f(s)drds.  (3.24)

240
rEN)L SEN)L

We claim:

Proposition 1 Assume that the sequence f; € EZ(A,J{ ,) converges fo | € CO(A,T).

Let o be a permutation of {1, ..., n}. Then, for any t > 0,
li VA he(ri, d 3.25
lim % ]"! s fus) = f]"[ ((ri. 5o, f () ds, (3.25)
SEA, !

in the sense of (3.22) above. In particular, let f, g € Co(A"). Then, for any t > 0,

lim ) Zg(r)]‘[Z,’;}f(s) / / g(r)]"[htm,sa,)f(s)drds

reA n S seA
(3.26)

STEP2. (Karlin—-McGregor formula and probabilistic estimates) In order to apply
a general Karlin—-McGregor formula we need to introduce the set of non-colliding
trajectories. More precisely, for u, v € N", let AX,,UN 4 be the set of n trajectories X
starting at 4 at time M, ending at v at time N, staying posuive during the time interval

{M, ..., N} and satisfying

X{#X, Vje(M,...,N}and € #k. (3.27)

. u,v u,v
For each N > 0 we shall use for the shorthand notations AN + =A N, N + and

AMNUJr = Al .- Furthermore, as in (3.18), we use notation A; Yy, and A7 ", for
the rescaled tra] ectories.
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Letr,s € A:’ ;- By an application of Karlin-McGregor formula (see [17, Sec-
tion 5]),

det {2,115} = D=0 OZIA L, (3.28)
g
Above, (s,)i = So; .
Recall our notation for rescaled norms: || f3 ||%’ L, =hyy, ff (r). We claim:

Theorem 3 (a) For any to > 0 and for any non-trivial permutation o % 1d,

. NS, N
lim > ZIA 1) =0, (3.29)
QEAIA

in the sense of (3.22), uniformly int > ty and in || fy.||2.» = 1.
(b) Forany ty > 0,

lim > (Zu A = ZIPE ) A6 =0, (3.30)
QEA;A

as well, also uniformly int > ty and || fy||2,). = 1.

Recall our notation fo_/\ = 7, [75:‘7’5_’1] and «;(r, s) = det{h(r;, s;)}. Proposi-
tion 1 and Theorem 3 imply:

Theorem 4 For anyt > 0 and any sequence f; € EZ(AIA) with limy o fo. = f,
1 AK?E
lim } 2055 /() = A+ ki (r, 8) f(s)ds. (3.31)

210

+ n
£EAn,}»

In particular, for any f, g € Co(A)),

mi! Y Y 0z 0= [ [ eoneoroads 6
A0 7 T T A JAY
KEAn,A QEAn.X

STEP 3. (Tightness) We claim:

Proposition 2 Fix any T > 0. Under the conditions of Theorem 2, the family
{ ;51)”\,} of probability distributions on C([—T, T, A}) is tight.
STEP4. (Mixing) Let dtv denote the total variation distance. We claim:

Theorem 5 For any C < oo, there exist ¢y, co > 0 such that, for any K > 0,

) < cre™2k, (3.33)

holds uniformly in A small, a, b € Z) witha,b > (K+T) and uniformlyinr, s, w, z €
AZA withry, sy, Wy, 2, < C.
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STEPS. (Convergence of finite-dimensional distributions) Fix T > 0. Let Ay | 0 and
let ay € Zj, satisfy limay = oo. Let f, g € Cg(Ajl') be two non-negative and
non-identically zero functions. For M € Z,, M > T, define the partition functions
(rescaled as in (3.18))

z5! = n YD ez, f(9) >0 (3.34)

rel; seA;f

and let IP";/ 15 denote the corresponding induced probability distribution on
C(-T,T], A+) By Theorem 5, under the conditions of Theorem 2,

: : r.s;T g fiT
Jim lim ary(BEL, PG ) =0, (3.35)
uniformly in r,,, s, < C.
Letnow —T <1t <fp < -+t < Tandletuy, ..., u, € Co(A}). By Theorem4,

i 25/ ([T ) )
=1
_ 8 [rnm(, rYur e [ um ™) [ rep—y, (0™, 8) f () dsdr™ - - dr
[ [ 8@ram(r,s)f(s)dsdr '

(3.36)

Above, all integrals are over A,J{. In view of (2.14) and by the definition of the semi-
group S;" in (2.15), the formulas (3.35) and (3.36) imply:

Proposition3 Fix T > 0, —-T <t < tp < ---ty, < T and let uy, ..., u, be
bounded continuous functions on A. Let Ay and ay satisfy the assumptions of The-
orem 2. Then,

r,8 k
Nh—r>nooEaN +AN(1_[ X (1) )

=/A2(£1)u1(£1) Qrz—tl(zl,zz)uz(zz)f---fqrm—t,,,_l(z""l,L’")dz’"---dzl,
(3.37)

uniformly inry, s, < C. Above, q, is the transition kernel of S;", as defined in (2.16).

STEP6. (Conclusion of the Proof) By Proposition 2, the sequence of measures

{Pﬁiim, FrySp < C} on C([-T, T],A,j’) is tight for any 7 > O fixed. By

Proposition 3, its finite-dimensional distributions converge to the finite-dimensional
distributions of the Dyson diffusion x(-) in (2.20). O
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3.8 Organization of the technical part of the paper

Section 4 is devoted to the proof of Theorem 3. Propositions 1 and 2 will be proven
in Sect. 5. The proof of Theorem 5 is by far the most technically loaded part of
the paper, and it will be done in Sects. 6 and 7. This proof relies on the probabilistic
estimates (I.1)—(I.3), which are formulated in Sect. 7.1 and are based on strong approx-
imation techniques and on invariance principles for random walks in Weyl chambers.
The derivation of (I.1)—(1.3) is relegated to the “Appendix”.

4 Proof of Theorem 3
4.1 Preliminary estimates
Let us start with three preliminary estimates. The first one is just a rough local CLT

estimate for the underlymg random walk without area tilts: Recall that whenever we
write quantities like 7 we are implicitly assuming that ¢ € Z, = hiZ and that

4 A

r,s € NA = hAN.
Lemma 1 For any ty > 0, there exists a finite constant c1(ty) such that

sup sup Z|) 1o = ci(to)hy, 4.1)

1210 r,s€N),
for all ) sufficiently small.
Proof Indeed, since V; > 0, Z;" , < ; (x*(1) =s). O
Next, following [15], let us introduce

Zi8, =20 (4.2)
seN,

Lemma 2 For any ty > 0, there exists a finite constant cy(ty) such that

suphy, Y 27, < ealto). (4.3)

1> 1
0 rEN)L

for all & sufficiently small. Furthermore,

lim h Z =0, 4.4
Qim_sup ArEZN A (4.4)
r>K)L

uniformly in A sufficiently small.

Proof Under Assumption (3.12), it is straightforward to check that there exists x =
Kk (tg) > 0O such that

sup 27, < e minlaoCr/2).r%), (4.5)
t>1

for all A small and all » € N, . Both (4.3) and (4.4) follow now from (3.13).
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Note that Lemma 2 is in general wrong without the additional Assumption (3.13).
O

The third estimate is again on the underlying random walk, or more precisely on
two independent copies (x*, y*) of this walk. Namely,

Lemma 3 For any §y € Ry and K € R, fixed,

Proof The claim follows from [20, Theorem 1] and local limit asymptotics for random
walks with exponential tails. O

4.2 Proof of Theorem 3(a)

Pick fi € £a(A),) with || fill3 , = 1. Set

w(r) =Y ZilA 1 /.6). (4.7)

+
EGAH,X

In order to prove (3.29), we need to check that, whenever o # Id,

hmhk Y wm@?’ =0, (4.8)

reA

uniformly in f with || f3 ||%, ;, = 1. By the Cauchy—Schwarz inequality and Lemma 1,

2
u(r)* = ( > LA +k]fus))

SEA;{A
<| > zi4) ( >zl A f <s>>
SEA;:_)L SEA;:_’
<a)" Y ZilATE,] (4.9)
QEA;A

If o # Id, then there exist i < j such that o; > o;. In this case,

Z ZK[A +x] XtJ,rx(ri””j) l_[ er,kfw
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where the partition functions Ztr’?_ ,, were defined in (4.2) and, for r, s € A;‘ 50 WE
define s* = (s1, 52)™ = (52, 51) and

ho = > AL (4.10)

+
s€A;

In view of Lemma 2, (4.8) would follow once we check that

hmhz Y xhm=o. (4.11)
reA;')L
Given K > 0, let us define
6. (K) = suphA > VAT (4.12)
reN,
r>K
By (4.3) of Lemma 2,
WY h0) < K) +26(K)ealto) +hy Y a0, (413)
reA7, reA7,

O<ri<rmn<K

Next, by (4.4) of Lemma 2, the term E)L(K ) — 0 as K tends to infinity, uniformly in A

small enough. Moreover, choosing § = ﬁ > 1?2 = §p, we infer from Lemma 3 that
limsup max Xtt\(ﬁ) =0, (4.14)

MO >50 0<ri<r <K

and hence the third term in (4.13) tends to zero (as A tends to 0) for any K fixed. (4.11)
follows. o

4.3 Proof of Theorem 3 (b)

Fix ty > 0. We should check that

lim sup KLY GOZIAT PR =00 (@15)
MOlglaa=lfilla=t = “T5
—= n,A

uniformly in ¢ > fy. By definition, any path x* € flfi 3\ 73’5 j‘_ ;. [of the random walk
in discrete Z) -time, rescaled as in (3.14)] has to exit A: , on its way from r to s. Let
7_and 14, T+ € 7, be, respectively, the times of the first and the last visits to {A;r ¢

Again, by definition of A the points x* () belong to

t,4,A°

(A )oy =1{W,, t WeAT )
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for some permutation o+ 7 Id, which of course depends on the particular realization
of x*. Since either

()t <t/2 or ()t —14 <t/2,

(4.15) follows by the same arguments as employed for the proof of (3.29) [although,
in case (ii), the latter should be applied to the reversed walk].

Indeed, let us fix a permutation o # Id. Consider the following modification
of (4.7): Setn = o~ and

_ Aﬁ*in
un() = max, % ZiLA, ] 16.9). (4.16)
SEA,

Forr,s € A,;" , define,

pi(r,8) = Zy[x*(0) = r, x* (1) = 5, ]

Above, {x*(0) = r, x*(1_) = s, } 1s the set of trajectories started at time zero in r
and arriving, at their first exit from A;'l' ,» to the point s, € [A;'l' ; Jo . Clearly, for any

r=0. > oars) < 1. (4.17)

Furthermore, under Assumption (3.13), there exists a constant c3 such that

Y e, ) < e, (4.18)

for all A small enough.

We can now bound from above the contribution of (i) with x*(7_) € [AI 3o to
the sum in (4.15): applying the Cauchy—Schwarz inequality and the bounds (4.17)
and (4.18),

WY g pa(r. Hus(s) < Vesllgallanluallzn
r,s

and one can then proceed as in the Proof of Theorem 3(a) to show thatlim; o [[ux 2,1 =
0, uniformly in f such that || 5 |l2.x < 1. O

5 Proof of Propositions 1 and 2
5.1 Proof of Proposition 1

Let us consider f € Co(R'}) and fi € £2;(N}). The convergence limy o fi = f is
still defined via (3.22) with

1 r 'n
praul) = 2 / f u(s) ds. (5.1)
A J1=h)+ Jn—h)+
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If uy € £(NY) converges to u € Ly(R), then, evidently, i, 2y A ][A:AE EZ(A;F,A)

converges to u 21 A€ Ly (A). Hence, (3.25) will follow if we check that

im 3 127 = L [T/ s, 52)

seN"i 1 +1 1

whenever f € Co(R”) and limy o f5 = f.
Next, we may assume without loss of generality that f;, = p;_ ,f. Hence, there

exists R > 0 such that both f and f; vanish for r ¢ [0, R]" 4 £2g. In other words,
we can restrict our attention to f € £2;, (N} N 2g) and f € Co(£2R).

The rest is a monotone class argument based on (3.23): Let H g be the family of
bounded measurable functions on §2 such that (5.2) holds. By (3.23), the family H g
contains all the products [ [7_, fi (r;) of bounded and measurable functions fi, ..., f,
on [0, R]. In particular, I, € Hg. Next, by linearity, f, g € Hpg clearly implies that
af + bg € Hpg for any a, b € R. Finally, if

0<fW<sf@<...

is a non-decreasing family of functions from Hy and if f = lim f® exists and is
bounded, then limy_, » || f — f ® |2 = 0. Since p;_, are contractions, || f5 — k(k) 2. <
Nf—f (&5 forall » > 0. On the one hand, in view of Lemma 1 and (2), an application
of the Cauchy—Schwarz inequality yields

Z (Z l_[ Z; S’Aux(i)) (h" Z l_[ Z; f,\) (Cl(to)”hﬁ Z ux(i)z)

s i=l1 r,s i=1

< (c1(to)e2(t0)) " lu3 i35, (5.3)

uniformly in ¢ > #(. In particular,

I> T2 = £26D)],, = (atew)"I1f = f@..

s =1

uniformly in # > #3. On the other hand,

||/ nht(rl,Sz f(S) f( )(S)) dS||2 < ”f f(k)”2

+zl

(5.2) follows, for instance, by a diagonal procedure.
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5.2 Proof of Proposition 2

Note that our proof of Theorem 5 below, and hence our proof of Proposition 3, does not
rely on the tightness property which we are trying to establish here. By Proposition 3

the one-dimensional projections of IP" " _{_ 5.y that is, the distributions of xMN (1) for
each fixed |¢| < T, converge.

Then, according to [1, Theorem 8.3], the family {Pﬁ;i 5.y ) 18 tightif for all positive
y and B there exist § € (0, 1) and Ny such that, uniformly int € [T, T,

Py AN< esup MV (s) — 2V (1)] = y) <éB, N > Nj. (5.4)
)

[£,143]

Zm

Since ay tends to infinity, it suffices to prove (5.4) for ¢t = 0.
Recall that T is fixed. We may assume that ay >> T. Now, the exponential mixing
bound (3.33) implies that the following holds uniformly in M > 2T

Py AN( sup [x*V (s) — x™V (0)) zy)
s€[0,6]

e M+ P ( sup MV (5) = XM (0)] = y). (5.5)
s€[0,5]

Since the potentials V} ,, in the definition of tilted measures are non-negative, the latter
probability is controlled in terms of the underlying random walk:

Pl lN( sup [x*N (s) — x*V(0)] zy)
s€[0,5]

1
< —PAN( sup [x*V (s) — x*V (0)] > y).

waer - 5€10.5]

It follows from Theorem 4 and the definition of the kernel «; that there exists ¢p =
c2(g, f) such that

g?.f —C'2M
Loy 2 € :

From these estimates and (5.5), we conclude that
P oy ( sup [x*V (s) — 2™V (0)] > y)
5€0,8]

<e M 4 €C2MPAN( sup [x*V (s) — x*V (0)| > V)-
s€[0,4]
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An application of the standard functional CLT [recall our assumption (3.3) on unit
variance] yields the inequality

lim suprN( sup [x*V(s) — x*V (0)] = y) <V
N—o0 s€]0,8]

Consequently,

; 2
lim SupPi’]\f’f_ XN( sup |)_C)»N (s) _)_C)»N )] > )/> < e~ CIM + eC2M—y7 /48
N—o0 o 5€[0,8]

2
Choosing M = SZT (and assuming that the parameters are tuned in such a way that
M > 2T), we finally obtain

. , ’T . 2
lim sup Pii,+,m( sup [x*(s) —x*V (0)] = y) < 2078,
N—o0 s€[0,8]

where ¢3 = min{%, 1}. Thus, (5.4) is proved.

6 Proof of Theorem 5
Throughout this section, we shall assume that H. f € N; this implies that Z C Z,. In

particular, the values of rescaled walks x*(¢) in discrete Zj-time are well defined for
any ¢ € Z.

6.1 Regular set A;,"’r, regular intervals and good blocks

Fix n < oo large enough and € > 0 small enough. The regular subset A, C At is
defined as (under the convention that xo = 0):

AP ={xe A} 1 x, <n and min(x; — xi_1) > €}. (6.1)
i<n

The notion of regular interval is defined relative to a given continuous A -valued
function x(-). Namely, an interval [¢, £ 4 1] is said to be regular if

x(€),x(¢+1) € AF" and  max x,(t) <2n. (6.2)
tell,l+1]

Consider now the intervals Dy = [2¢, 2(¢ + 1)], which we shall call blocks. A block
is a union of two successive unit length intervals,

Dy =126,20+ 11U 26+ 1,2(¢ + 1)] 2 D; U D
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We shall say that Dy 1s good if both DZ and D, are regular. If the notion of goodness
is defined with respect to random trajectories, namely x*(-), then we shall also use Dy
for the corresponding event.

Lemma 4 Define A:{ = A,T’r N A: 5. There exist two constants ¢y, ¢ such that
cihf <PG5 (M) =s | Do) < cahl, (6.3)

uniformly in A small and inr, s, z € A:;

We prove Lemma 4 in Sect. 7.2.

6.2 Good blocks for a couple of trajectories

Consider now a couple of independent trajectories (ik (), XA (-)) [rescaled asin (3.14)],
distributed according to

r.s uw
Pa,—l—,}» ® PZ,+,A'
Set 3M = min{a, b}. For D, C [—2M,2M], let us define

D, = {Dy is good for both x* and XA} and My = Z Ip,. (64)
—M<t<M-1

Lemma 5 There exist v > 0 and k > 0 such that
P, © Py (Mo < vM) <e™M, (6.5)

uniformly in A small, M large and ry,, sy, up, v, < C.

The proof of Lemma 5 is relegated to Sect. 7.3.

6.3 A coupling argument

Fix A small, a negative integer a < —27 and r € AIJ{/{ For K e Nandu,v € A:’)[,
define

v rou rv -
Qg () = PZ,ble+1,+,A ® PZ,§K+1,+,A(' | D%) (6.6)

where, similarly to (6.4), we define
ta = {Dzt is regular for both x* and XA}.

In this way, ©, = D, N @zr As before, the number M/ of good blocks D, for
¢ef{l,..., K — 1} is defined by

K—1
Mo = Z Io,. (6.7)
(=1
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Fig.1 Decomposition of the line into blocks. The shaded blocks represent jointly good blocks. Note that, in
this case, the couple (x* (), Z)‘(-)) must be such that all trajectories stay inside the shaded area above jointly
good blocks and cross the bold line segments in such a way that their n paths xi‘, e, x,);, resp. yi‘, e, y,);,

are e-separated. Consequently, x*(-) and X)‘(-)) can be coupled with positive probability, independently

over each such jointly good block

Let Fr = }"% be the o -algebra generated by rescaled trajectories (3.14) on [—2T, 0].
For the o-algebra generated by a couple of such trajectories ()_ck(-), yk(-)), we use
Fr x Fr.Given A € Fr, A x £2 stands for the event that x*(-) € A without further
restrictions on yk(-); £2 x A is defined similarly. Define

Y(m) = sup sup sup {@%’E(A x §2; Mo > m) — Q%(’Q(Q x A; Mgy > m)}

K>m EvEGA:’; AeFr

(6.8)
Lemma 6 There exists 6 > 0, which does not depend on A, a and r, such that
Y (m) < (1 —=8)". (6.9)
Proof The idea of the proof is sketched in Fig. 1.
Let K, u and v be as above. Define
T = max{{ < K : ®, occurs}.
For any A € Fr x Fr, consider the decomposition
K—1
QY (A Mo = m) =Y Q" (A: Mo = m: T =¢). (6.10)
(=1

In its turn, let us decompose each summand in (6.10) as

QA Moz=mit=10)= Y  Qg*(AMo=mit==t(x.y)). (6.11)

xyeh,y
where we used the shorthand notation
xoyle={x"Qe+ 1) =x: y*@e+1) =y}
Now the Markov property implies that

QL (A Mo = m | T = £ {x, y}e) = Q5 (A Mo = m — 1). (6.12)
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Therefore,
K—1 i
Qg (A Mo = m) = Q, % (A; Mo > m — 1)
=1 )_C_EAI;
xQg"({x, yle | T = 0)Qg*(z = ¢). (6.13)

This means that, for any A € Fr, and for any m, K, u, v in question, the following
holds:

@%Q(AX.Q /\/l()>m) (@%(’Q(Q x A; My Zm)
Z Ax.Q M0>m—1) @?X(.QXA;M()ZM—I)}

XQK “({x.yle | T = 0)QK"(x = 0). (6.14)
Since, evidently,

X,y

Q" (Ax 2: Mog=m—1)=Q; (2 x A; Mg >m — 1), (6.15)

all the terms with x = y in (6.14) vanish. On the other hand, each unordered pair
X # y is encountered exactly twice. Hence, again in view of (6.15), the contribution
of each unordered pair x # y to the right-hand side of (6.14) is equal to

[QUH (A X 2: Mo =m—1)—Q, (2 x A; Mg >m — 1))
QY ((x, y}e | T =€) = Q" ({y. x}e | T = 0)}. (6.16)

On the other hand, by Lemma 4,

u,v , — E
0 < — e yhe [ 2= 1) < o, (6.17)
Qx (. xbe [T =2¢)

uniformly in all the situations in question. Set § = % Then, (6.17) implies that the
expression in (6.16) is bounded above by

Y (m — D1 — &) max {Qg“({x. yhe | T = £), Qg*({y. x}e | T =€)}

<yim—1DA-){Q"(Ix. yhe | T =) + Q¢ ({y. x}e | T = ¢)}.
(6.18)

Since (@ ~ is a probability measure, substituting (6.18) into (6.14) yields the conclu-
sion (6.9) of the lemma. O
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6.4 Conclusion of the proof
We are in a position to conclude the proof of Theorem 5. Let a, b > (T + K) and

r,s,w,z € AZ , Withry, s, wy, 2, < C. Let A be an event generated by the rescaled
trajectories of (3.14) on [T, T]. Then,

Pclz:i,x(A) waJ%x(A) Pﬁi,\@’P_Jrk(][AxQ—][QxA)

Let M4

spectlvely

+IN

Consider a pair of trajectories (x*(-), y*(-)), sampled from P i L ® wa
be the number of jointly good blocks Dy with T < 2¢ < T 4+ K — 2, 1
—T—-—K <20<-T-2.

By Lemma 5, there exist v/, ¥/ > 0 such that, up to the 2e~
restrict our attention to the event

'K correction, we may

Egx =My >VKIN{M_ >VK}.
On the other hand, by Lemma 6,

P2 ®JP’wf (Tgg (Maxe — Toxa))| < (1 — 5)"K.

Our target exponential mixing bound (3.33) follows.

7 Proof of Lemmas 4 and 5
7.1 Probabilistic estimates

Our proofs of Lemmas 4 and 5 rely on strong approximation techniques and on refined
information on random walks in Weyl chambers. There are three inputs, (I.1)-(1.3),
which are stated below, but proved in the “Appendix”. In the sequel, we fix  sufficiently
large; in particular, n > C, where C is the constant which appears in Theorem 2.
Furthermore, we fix € > 0 sufficiently small.

First of all, we claim that, for any 0 < a < b < 00, there exists v = v(a, b) > 0
such that

D’ A A
P & 1) =z, max X, (s) < 2n) > vhf, (LD

uniformly int € [a, b], r,z € A:{; and A small.
Next, let
T =inf{r >0 : x ¢ An 5] (7.1)

be the first exit time of the path from AZ ;.- We then claim that, forany 0 < a < b < o0,
there exists p = p(a, b) such that the following two lower bounds hold uniformly in
t €la,bl,uc€ AI , with u;, < 7 and in A sufficiently small:
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. .
P (max xi(s) =20 [ 7> 1) = p, (12)

DU A +, A

P (0 e ALY | Jnax xi(s) <21, v > t) > p. (1.3)

7.2 Proof of Lemma 4

Since, by definition, the area-tilt of every path in Dy is uniformly bounded, it suffices
to prove the lemma for random walks without area tilts. That is, we need to show that

cihf <Py, (M (1) = z| Do) < eahl, (7.2)
. . +.r
uniformly inr, s, z € A ;.
We first note that upper bounds for f’i , (Do, x*(2) = s) and f’f—hk(gk(l) =

z, Dy, x*(2) = s) follow from the classical inequalities for concentration functions.
Indeed, by [9, Theorem 6.2], there exists a constant ¢3 such that

s 7 c3
P, () =) <P () = y) < Z55h, (7.3)
uniformly in r, y and r > 0.
Consequently,
PL (Do, 6" (2) = 9) < BL(H @) = ) = 5051 (7.4)
and

Pl (M (1) =z, Do. x*2) =) <P (1) = 2.2 (2) = 9)
=PI (1) = 9P (1) = 9)
< c3h", (7.5)

uniformly inr, s, z € A:/\r
The corresponding matching lower bounds follow from (I.1). Indeed,

P, GM (D) =z Do, x*(2) =)

=PL ") =z, max X (1) < 2P, (M) =5, max xXp(1) < 2n)
> ey, (7.6)

foranyr,z,s € A:)Lr Since the cardinality

b| = estmny, (1.7)
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we infer, by summing over z in (7.6), that
Pl (x*(2) =5, Do) = cohf. (7.8)

It remains to note that the lower bound in (7.2) follows from (7.4) and (7.6), and that
the upper bound in (7.2) follows from (7.5) and (7.8).

7.3 Proof of Lemma 5

The proof of Lemma 5 proceeds in two steps.
Consider the 5-blocks

5
D( = = Dsy_2U Dsy_1 U Dsg U Dsy 1 U Dsyyr,

where ¢ € {—|M/5],..., | M/5]} C Z.
Let us say that a 5-block DES) is pre-good (relative to a trajectory x*(-)) if both

min x*(t), min x*(t) <n. (7.9)
teDsp_» t€Dsy 2

Given a couple of trajectories x* and XA, let 5525) denote the event that DES) is pre-good
for both x* and Xk.

STEP 1. Note that the definitions are set up in such a way that Ds, is the middle section
of DES). We claim that there exists p; = p1(n, €) > 0 such that

P~ 6.4+.5(Do is good | DY is pre-good) > pi, (7.10)

uniformly inr, s € A+ ;. and A sufﬁaently small.
As aresult, for any E e{—\M/5],...,|M/5]} CZ,

= W 5O 2
P.o s OB, (Dse | D7) = pf, (7.11)

uniformly inr, s, u, v € A+ a and A small enough.

By the Markov property, this means that any jointly pre- good S-block gives rise
to a good block in its middle section with probability at least ,01, regardless of the
behavior of trajectories outside this particular pre-good 5-block.

STEP2. In this second step, we control the density of jointly pre-good 5-blocks Df)
which lie inside [—2M, 2M]. Define
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N

| NN

,,,,,,,,,,,,, 7 D_l 7 DO_’ _D/(—)i_ 7 Dl,/ 0 ":D‘Q* 7

el

Fig.2 A picture of the 5-block D(S) In the picture, this 5-block is pre-good, since the top-most path (here
n = 3) visits the shaded areas in the blocks D_» and Dy ; the corresponding random variables #{ and p are
also represented. The event Dy also occurs: the top-most path stays inside the shaded area above the block
Do =D, U D(')F and the n = 3 paths stay € apart from cach other and the bottom wall at the boundary of

Dy and D(')" (the corresponding positions of the 3 paths there are marked with dots)

We claim that there exist v©® > 0 and x® > 0 such that
: : 5 _
2L RPE (ME < vOM) < e M (7.12)

uniformly in A small, M large, a, b > 3M and ry, s,,, up,, v, < C.
Evidently, (7.11) and (7.12) imply the target bound (6.5).

7.4 Proof of (7.10)

We are going to show that

u,v

P_z Ty 44T+, 3 (Do) = pr, (7.13)

uniformly in u, v with u,,v, < n, T;, T2 € [0,2] and X sufficiently small. The
target (7.10) is an immediate consequence by the Gibbs property and conditioning on
the left-most 7_ € [—4, —2] and the right-most 7. € [4, 6] such that x,); (r2), xﬁ (t4) <
n; see Fig. 2.

The proof boils down to deriving an appropriate upper bound on the partition
function Z%’Zy_ T 44Tyt and an appropriate matching lower bound on the constrained

.. . u,v
partition function Z~ YTy ALT A+ ,[Dol.

In the sequel, 56 stands for the reversed random walk with transition probabilities
p- = p_.. Let T be the first exit time of ¥ from A+ We assume that the constants

v and p in the probabilistic estimates (I.1)—(1.3) are chosen in such a way that the
corresponding bounds hold for the reflected process as well.

STEP 1.. (An upper bound on Z%’ZQ_T] 44Ty, +..) Since we are dealing with non-negative
potentials,

u,v
2 T ATy 40

<Py g, (@>24T) max P3,("Q2) =9)Py s ,(F>2+T2)

rseA 2

<Py, (t>24+ TPy . (F>2+ Ty (7.14)
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The second inequality follows from the concentration bound (7.3).

STEP2. (A lower bound on ZZ5_. 4.7, . ;[Dol) By our assumption (3.12),

u.v
Z—2—T1,4+T2,+,A(D0)

—10ngo(2n) pit A A =
> 0o ")P—z—T1,4+T2,+,A(DO»te[_zr§%§4+T2]Xn (1) <2, 2" (44 T2) = ).
(7.15)

Above lA’f, ;. 18 the provisional notation for the restriction of the law of the rescaled

walk started at time s at v to the set of trajectories which stay inside A,‘; , during the
time interval [s, 7].

The probability on the right-hand side of (7.15) is bounded below by the following
product of three factors:

pL A A +,r
By (T = 24 T max xi(0) <20, x° Q2+ Th) € AJY)

x min P5 . (Do, x*(2) =)
+ro T
L’QEAH,A

DU ~ ~\ ~A +,r
X P2+T2’)‘(t > 2+ 1>, l‘fn%-ai-);b X, (1) <2n,x"2+ 1) € An,k)' (7.16)

On the one hand, in view of (7.8), the middle factor is bounded below by 24’ . On the
other hand, the probabili§tic bounds (1.2), (1.3) imply that the left-most factor in (7.16)
is bounded below by sz;—l (T > 2 + Ty). Similarly, the right-most factor in (7.16)

is bounded below by ,021% v ,(T > 2+ T,). Hence,

u,v

25 air Dol = c3p P (1> 24 TPy, (F>2+ Th). (7.17)

Since
u,v
u,v 221 44Ty, 42 Dol
P:Z—T1,4+T2,+,A(DO) - ﬂ»yl . ’
—2—-T1,44+T>,+,A
(7.13) directly follows from (7.14) and (7.17). O

7.5 Proof of (7.12)

We start by deriving a lower bound on partition functions, as this will allow us to
exclude sets of pathological trajectories.

Lemma 7 There exist constants ¢y = c1(n) and ¢y = ca(n, n) and a sufficiently large
value To = To(n) such that, for all T > T,

Zr, z e TPy L (M2 =), (7.18)
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uniformly in A small and in z,,, w, < n.

Proof The point is that constant ¢; does not depend on 1, only on the dimension n. The
dependence of ¢; on n is expressed in terms of the dependence of € [in the definition
of the regular set A:”;, see (6.1)] on n. We shall work with a fixed small value of € > 0
which satisfies

ne < 1. (7.19)

In the sequel, we consider 7 > 2. Let A:{; (@) = A:)Lr N{x : x, < «a}. Consider the

events

E_ = {tn%ax X (t) <2n,x(1) € A (1)},

_ . e
& = {ze[zl}l?l(,mx (1) <20, x(T = 1) € A5 (D) (7.20)

and

Er = max x*(t) <2}
T {te[1,2T—1] n () }

On the one hand, by (3.12),

Zyi, = e @I PR (£_ &r, £, xM(2T) = 2). (7.21)

+m

On the other hand,

n

) h
P’ZTH (x*(2T) = z) < 3P} k(r > 1) P} L@=>1 —. (7.22)

Above, we relied on the concentration bound (7.3).
In order to compare the probabilities appearing in (7.21) and (7.22), note that
an application of (I.1)—(I.3) (and the observation that, as in (7.7), the cardinality

AW = caen™ yields

2T+x(5—’5T’5+’x 2T)=12) > C5P1 5T > l)P x(f > 1)

x min P& max  x* (1) <2, x*2(T = 1)) =v). (7.23)
ATI) 2(T— 1)+x( re[0.2(T—1y] ™ )

However,

min Py < max - x (1) <2, X’\(Z(T—l)):v> > e Ty,
Z,QEAZ’;(I) 2(T=D).+.4 tel0,2(T—1] " = = A

(7.24)
Indeed, consider n walks xé, ¢ =1,...,n, going from uy to vy inside space-time
tubes of width € /4 centered around the space-time segments [ (i, 0), (ve, 2(T — 1)].
By construction, these walks stay in AZ ,, N{x : x, < 2}. By a coarse splitting into
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Fig. 3 The definition of the random variables B_ and B4. Note that the shaded areas are necessarily
below the path y;* and thus contribute to the area-tilt

time-blocks of lengths of order €2, we bound from below the probability of staying
within such tubes by e ~¢6(97 _ Applying the local CLT for the last step, we bound from
below the probability of ending up in z by a multiple of A%. (7.24) follows.

The bound (7.18) is a direct consequence of (7.22) and (7.21), (7.23) and (7.24). O

Let us resume the proof of (7.12). Without loss of generality, we shall assume that
a = 3M and b > a. In the sequel, the trajectory x* is sampled from Pﬁi , and XA is

sampled from IP’%_QHL Recall that ry,, s,,, u,, v, < C <.

In principle, b can be much larger than M. Let us verify that one can restrict our
attention to the case where b is of the same order as M. Define the random variables
B+ > 0 via (see Fig. 3)

—2M — B_ =max{t < —2M : y (1) <n} (7.25)

and, accordingly, 2M + B4 = min{r > 2M : y%(t) <n}.
By the Gibbs property,

w,z . A . A
< max P_55, min x ()N min x (t)>n).
: M b—’2M+b+’+’)‘<te(—2M—b_,—2M]n 1e2M 2M+b,) "

Therefore, in view of (3.12),

Pr ™I =2)

PE:%-,A(B:': =by) < o~ (b—+b1)qo(n) wma)i TN , (7.26)
nZn=1] Y At
T,+,A
where we have set T = 4M + b_ + b,.. Using the lower bound (7.18) on Z%i 5 WE
conclude that
P%:-EF,A(B:': —by) < c7(E)ecs(é)M—(b—+b+)qo(n). (7.27)
Therefore, if we choose 1 so large that
qo(n) > 2cg(e), (7.28)

then we may ignore the case b+ > M.
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Consequently, (7.12) will follow once we check that

5
Py ox @4, M < v < e, (7.29)

<

uniformly in A small, M large, by, b, € [2M,3M] and ry, s, up, v, < 1.
If we choose v® to be sufficiently small, for instance smaller than 0.2, then,
by (3.12),

Pih 4 ® Pyl s Mg < v M)
)y Py 15 @ GM) = 9Py, 1 0 B) = w)

=e | T (7.30)
Z3M,+,)»Z—h1,h2,+,)\.
Taking n and M large enough and applying (7.18), we arrive to (7.29). 0O

Acknowledgements Dmitry [offe was supported by the Israeli Science Foundation Grant 1723/14. Yvan
Velenik was partially supported by the Swiss National Science Foundation.

Appendix 1: Strong approximation techniques

In order to prove (I.1), we are going to apply strong approximation techniques from [6].
By rescaling, it is sufficient to consider the case t = 1.

In the sequel, lA’_LF denotes the restriction of the law of the n-dimensional Brownian
motion B started at r to the set Af".

Define

€
Oc(2) = IX Sy —zil = 3 foralli}.
It follows easily from [6, Lemma 17] that

PL, (x(1 —y) € Oc(z), max x)(1) <2n)
’ - oty

=PLB( ) € 0 ), max By(1) <2n) + o),

uniformly inr, z € A:; This implies that there exists a constant c(e, n, y) > 0 such
that A
PL, (M1 =) € 0c(2), max x;,(1) <2n) = c(e, . y), (7.31)
’ t<l-y

forallr, z € A:; Since O (z) is separated from the boundary of A", we may choose
v so small that the probability that the random walk x* started at Y € Oc(2) has, at

time y, the value z and leaves A"' before time y is quite small. This heuristic is made
precise in [6, Lemma 29]. In our notatlon we can state that result as follows: There
exist a > 0 and ¢; < oo such that
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~Y
PTG () =2z, m<ayxx,?(t) < 2n)

> Pr(x’(y) =z,  max.x, A1) < 2m) — ey e Ry
By a similar argument, one can show that
Py (" (v) = 2 max (1) < 2n)
%( y)=2)—cy ”/ze_““’z/”h’i-
Finally, by the standard local limit theorem,
Pra (v) =2) = c3y ™" h].
As a result, we have the bound

5
P (M) = 2 max o (1) < 20) = cahf,

uniformly in y, z € A:; Combining this bound with (7.31), we infer that

lJr/\(x (1) =z, malxx A1) < 2n) > eshl, (7.32)
- : +.1
uniformlyinr,z € A . O

Appendix 2: Invariance principles for random walks in Weyl chambers

Conditional limit theorems and conditional invariance principles for random walks
in different cones have been studied in [6] and [8]. All the results in these papers are
proved in the case when the non-rescaled walk starts at a fixed point. In this paragraph,
we give certain improvements of these results to the case when the starting point of the
non-rescaled walk may grow (but we shall consider walks in Weyl chambers only).
More precisely, we shall consider the following subsets of the Euclidean space:

— chamber of type A: {x : x] < xp < --- < x,};
— chamberof type C: {x : 0 < x1 < x2 < -+ < X, };
— chamber of type D: {x : |x1| < x3 < --- < x}.

Let uw denote the unique (up to a constant multiplier) positive harmonic function
on W:

— if W is the chamber of type A, then uw (x) = [, _;(x; — xi);
— if W is the chamber of type C, then uw (x) = [ x [, ; (sz- —x7);

— if W is the chamber of type D, then uw (x) = ]_[l-<j (sz. — xiz).
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Proposition 4 Let W be a Weyl chamber of type A, C or D. Let T be the first exit time
from W, that is,

T =inf{r > 0 : x*(1) ¢ W).
Then, asr =r, — 0,

f’i(}ﬁ(l) € -|t>1)—> n weakly,

where 1 is the probability measure on W with density proportional 1o uy (x)e ¥ 272,

Furthermore, under Pﬁ, x* converges weakly on C[0, 1] to the Brownian meander
in W started at zero.

By “Brownian meander in W”, we mean a Brownian motion conditioned on staying
in W up to time one. If the starting point lies inside W, then one has a condition of
positive probability. However, if the starting point lies on the boundary of W, then the
probability of the condition is zero and it is not at all clear how one can construct such
a process. Garbit [11] has constructed Brownian meanders started at zero for a quite
large class of cones. This class includes Weyl chambers.

Proof The main difference with [6, Theorem 3] is that we find the limit for conditional
distributions without determining the asymptotic behavior of f’i(t > 1). (Recall once
again that [6, Theorem 3] is proven under the assumption r = hja for some fixed
aeW.)

Fix some € € (0, 1/2) and define the stopping time

Ve =inf{r > 0 : x*(t) € Wy ¢},
where
Wie={xeW: dist(x,dW) > H; >}
According to [6, Lemma 14],
PL(r > H2 vy e > H2) < e (7.33)
uniformly in 7. Since we consider lattice random walks, there exists r(, such that
lA’i(t > 1) > lA’iO(t > 1).

(If W is of type A or C, then we may take ro = h; (1, 2, ..., n), while if W is of type
D, then we may take ro = h, (0, 1,...,n — 1).) According to [6, Theorem 1],

Pt > 1) ~ C1hY,
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where p is a positive constant depending on the type of W only. Consequently,
Po(t > 1) > Coh?, (7.34)
uniformly in . Combining (7.33) and (7.34), we infer that

Pi(‘[ > H;ze, Vie > HA_ZE)

Pr(z > 1)

—~0, 2,0, (7.35)

uniformly in r. Furthermore, it follows from the exponential Doob inequality that

A 2
PL( max |xt () — x*(0)] > 65) < e %M
t<H_2E - -
=

where 0, — 0 sufficiently slowly. This implies that, whenever |r| < 0,

P (max,_,, 2 [x*(1)] > 26;)
1=H, 0. (7.36)

Pi(r > 1)
It follows now from (7.35) and (7.36) that, uniformly in r,

Pi(r > 1) = (1 +o()Pi(t > 1, v < H >, max [x()] <26,)  (7.37)
<Vj,e

and

Pix*()eA t>1)
= (140 PLM (D) € AT > 1, v < H™ max [x(0] £26,) (7.38)
=Vie

for any compact A C W.
Using the Markov property at time v,  and applying [6, Lemma 20], we obtain
from (7.37) and (7.38)

Pt > 1) = (c3 + o(D) ] B Juw (" (v.6): vie < Hy 2, max |x(1)] <26, ]
1<V ¢
and

PiatM () € AT > 1) = (cs +o(D) hY / uw (2)e 1 2dz
A

XES[uw (2 (vi.e)); vae < Hfze,t@ix lx(0)] < 26,].

Thus, the proof of the first statement is completed.
To prove the functional convergence, it suffices to repeat the proof of [8, Theorem 1]
using (7.35) and (7.36) instead of the corresponding estimates therein. O
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Corollary 2 Let W be the chamber of type C. If r = r, — r* € OW, then the
sequence lsi(gk(l) € A |t > 1) converges weakly. The densities of limiting laws on
W has are uniformly bounded. Moreover, x* converges weakly on C|0, 1] towards the
Brownian meander in W started at r*.

Proof We just split the original set of random walks into a finite number of subsets
in such a way that the differences of coordinates of the starting points in every block
converge to zero and the differences of coordinates from different blocks stay bounded
away from zero. Then, the probability that different blocks do not intersect is bounded
away from zero and, consequently, the conditioning on {r > 1} is equivalent to
conditioning every block on staying in the corresponding chamber. (If | > 0, then
every block is a random block in a chamber of type A, while if ri“ = 0, then the lowest
block is a random walk in a chamber of type C and all other blocks are random walks
in chambers of type A.) O

Proof (Proof of (1.2)) Assume that there exists a sequence r(j) such that
lsi(,]\)(r?jllxxg(f) <2 | T>1)—0.

Since we are looking at starting points r with r, < n, there exists a convergent
subsequence r(jx). Let r* denote the limiting point. It follows immediately from the
usual functional CLT that the case r* € W is impossible. But, if r* € dW, then we
may use Corollary 2 to conclude that the Brownian meander in W started at r* leaves
the set {x € W : x,, < 2n} with probability one. However, this would contradict [18,
Theorem 3.2]. Thus,

inf PTA(malxx)‘(t) <2n | T > 1) > 0, (7.39)

rir<n
which implies (1.2). O
Proof (Proof of (1.3)) Fix some € > 0 and define

Wee ={x e W : |xj+1 —xi| < eforsomei > 0}.

Assume that there exists a sequence r(j) such that

Prm( (1) € Wee; A X, ) <2p|t>1)= e,

We may again assume that r(j) converges to r* and this limiting point can not lie in
W. But, if r* is on the boundary of W, then the conditions of Corollary 2 are satisfied
and the contradiction follows now from the boundedness of the density of the limiting
law and the fact that vol (W< N {x : x, < 2n}) < Cin™le.

As a consequence we have that, for all € small enough,

inf P;H( x*(1) €A+r,maxx ) <2n|t>1)>1-¢€"2 (7.40)

rirp<n
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Combining (7.39) and (7.40), we conclude that (I.3) holds for r = 1 and all € suffi-
ciently small. Using Brownian scaling, we conclude that (I.3) is valid for all # > 0.

O
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