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Entanglement resonance in driven spin chains
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We consider a spin-1/2 anisotropic XY model with time-dependent spin-spin coupling as means of creating
long-distance entanglement. We predict the emergence of significant entanglement between the first spin and
the last spin whenever the ac part of the coupling has a frequency matching the Zeeman splitting. In particular,
we find that the concurrence assumes its maximum with a vanishing dc part. Mapping the time-dependent
Hamiltonian within a rotating-wave approximation to an effective static model provides qualitative and quan-
titative understanding of this entanglement resonance. Numerical results for the duration of the entanglement
creation and its length dependence substantiate the effective static picture.
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I. INTRODUCTION

Entanglement is a key resource for many quantum infor-
mation and computation protocols, such as teleportation [1],
superdense coding [2], and cryptography [3]. The successful
storage and transfer of quantum information requires effec-
tive mechanisms to create entangled states over large dis-
tances. Since entanglement is generated mostly by local in-
teractions, it is initially short-ranged and, thus, has to be
distributed via quantum channels. Lately it has been noticed
that spin chains are promising candidates for this task [4].
Various spin-spin interactions, such as, e.g., Ising or Heisen-
berg coupling, have been considered for entanglement cre-
ation, and their static as well as their dynamical properties
have been investigated [5-9]. Spin chains thus turned out to
be efficient quantum channels for controlled entanglement
distribution.

A particular spin chain is the quantum anisotropic XY
model. Irrespective of the magnitude of the anisotropy, it can
be solved exactly with the help of a Jordan-Wigner transfor-
mation and therefore became a paradigmatic model in many-
body physics [10]. In the context of quantum information
[11], its experimental implementation with optical lattices
[12], quantum dots [13], and Josephson junctions [14] has
been proposed.

Thus far, most studies consider transfer of entanglement
rather than its generation [15] or its presence in systems with
static interactions [ 16—18]. In this paper, by contrast, we ana-
lyze a spin-1/2 XY chain with periodically time-dependent
nearest-neighbor coupling with separable initial state and
find entanglement creation between the end spins of the
chain. As it may be difficult to access individual spins in a
controlled manner, we restrict ourselves to chains with global
time-dependent spin-spin coupling. Remarkably, entangle-
ment created in that way turns out to be significantly larger
than the one in related static systems [19,20]. We gain further
insight by mapping the time-dependent spin chain to a static
model, which also provides information on the length depen-
dence and the duration of the entanglement creation.

II. SPIN CHAIN HAMILTONIAN

The anisotropic XY model in a transverse field B and with
time-dependent nearest-neighbor coupling J(#) is described
by the Hamiltonian form (we set i=1),
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where the ¢’s are the usual Pauli matrices and vy denotes the
anisotropy parameter. We focus on situations in which the
coupling strength J(¢) is smaller than the field strength B and
are interested in the spectral response of the chain when the
coupling is periodically modulated. All other parameters
have arbitrary but fixed values. We also suppose that the
spins are initially uncoupled, J(r)=0 for r<<0, and cooled
down to the fully aligned separable state,

|41 =0)) =10000- -+, (2)

which is the ground state of Hamiltonian (1) with J=0. At
t=0, we switch on a coupling consisting of a dc contribution
Jo and a sinusoidal ac part with amplitude J,

J(t>0)=J0+J1 Sil’l((l)dt). (3)

In the limit J; — 0, the coupling suddenly switches to a con-
stant value, while for J;#0, we are able to probe the
frequency-dependent response of the system. We quantify
entanglement between the two ends of the chain with the
help of the concurrence C=max{\;—\,—A3—\4,0}. The \’s
are the ordered square roots of the eigenvalues of p(a
® 0'2)p ((r ® 0'2) with p being the reduced density matrix of
the two spins [21]

III. ENTANGLEMENT RESONANCE

By direct numerical integration, we investigated the time
evolution of the concurrence between spins 1 and N for dif-
ferent driving frequencies w,, chain lengths N, and param-
eters vy, J, and J,. We determined the maximal concurrence
in the time interval [0,...,4N/max(Jy,J;)]. The results
shown in Fig. 1 reveal that at w;=2B, irrespective of the
other parameters, the concurrence assumes during that time
interval a value close to unity and is significantly larger than
for other frequencies—we term this entanglement resonance.
Height and width of the resonance peak depend on the inten-
sities J, and J, and on the chain length N (see Fig. 2). We
also notice the existence of a much smaller secondary peak at
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FIG. 1. (Color online) Maximum concurrence obtained in a time
window up to 4N/max(Jy,J;), between spins 1 and N for different
frequencies and chain lengths N with J;=0.1B, y=1, and Jy=0
(solid), 0.01B (dashed), 0.1B (dashed-dotted). The effective aniso-
tropy thus has the values y=1vyJ,/2Jy=2, 5, 0.5.

w,;=B. Contrary to the main peak, its amplitude strongly
decreases with decreasing coupling intensity and increasing
chain length. We henceforth focus on the peak at w,;=2B.

Rotating-wave approximation

Deeper understanding of the observed entanglement reso-
nance can be gained by analyzing the time-dependent Hamil-
tonian (1) within rotating-wave approximation. Since en-
tanglement properties of a system are not changed by local
unitary operations on individual subsystems, it is convenient
to transform the XY Hamiltonian to the interaction picture,
H=exp(iHyt)H exp(—iHt), with Hy=(B/2)Z;0%. By intro-
ducing the shift operators o-izé(o-x *+io”), we obtain

N

- J() _ - ;

H(r) = TE (070 + 00, + 7’62’8[0';‘7;;“
n=1

+ 76_2i3’0';0';+1]. (4)

The first two terms swap excitations of spins n and n+1,
while the last two terms pairwise create (destroy) excitations,
which here are the origin of entanglement generation. If the
driving frequency obeys the resonance condition w,;=2B
and, moreover, is much larger than both J, and J;, we can
within rotating-wave approximation (RWA) replace Hamil-
tonian (4) by its time average,

max(Cq n)
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FIG. 2. (Color online) Maximum obtained concurrence between
the end spins for w,=2B as a function of the dc interaction J, for
various chain lengths, J;=0.1B and y=1. The solid lines are ob-
tained with the full time-dependent Hamiltonian (1), while the
dashed lines mark the RWA solution.
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FIG. 3. (Color online) Entanglement dynamics for a chain of
eight spins with driving frequency w,=2B for two different effec-
tive anisotropies y=17yJ;/2Jy. As in Fig. 1, J;=0.1B, y=1. Solid
lines mark the exact numerical solution, while the dashed lines are
computed within RWA. The symbols mark the time evolution for
switching off the driving (squares) and for changing the frequency
to w=3B (circles) after the concurrence maximum is reached at
time 7,.i,4. Both results cannot be distinguished for the chosen
resolution.

N

_ ] S

Hg= 302 loro,, +Yo,0.,, +H.c.] (5)
n=1

with the effective anisotropy y=J,/2J,. This means that for
resonant driving, the time-dependent XY model (1) can be
mapped to the static XY model (5) without any Zeeman field.
In both cases, the entanglement generated between the two
end spins is maximal and controlled by the parameter % and
the chain length N. Note that J,— 0 corresponds to the infi-
nitely anisotropic limit y—oc. Figure 2 shows the concur-
rence between the end spins as a function of the anisotropy
parameter Y for resonant driving. Two important points are
worth being mentioned. First, the concurrence approaches
unity in the limit of vanishing J,, i.e., for infinite Y. In this
limit, the amount of entanglement no longer depends on J,
and 7y. Second, the agreement of the exactly evaluated con-
currence and the RWA solution is excellent, which demon-
strates that RWA is appropriate. Moreover, Fig. 3 shows that
this approximation also captures the entanglement dynamics,
besides some small oscillations stemming from neglected
rapidly oscillating terms.

IV. ENTANGLEMENT DYNAMICS FOR RESONANT
DRIVING

In order to investigate the entanglement dynamics, we
consider the exact time evolution and discuss it within RWA.
In doing so, we find that the value of the effective anisotropy
parameter y determines the qualitative behavior.

A. Strong anisotropy

For a three-spin chain in the limit y—o (J;,=0), the re-
peated action of Hamiltonian (5) on the initial state creates
the cyclic sequence [000)—|110)+|011)—|000). This im-
plies that the quantum dynamics is a coherent oscillation
between only these two states. The corresponding concur-
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rence reads C;3=|sin(y/,/ 2427)|. In particular, at certain
times, spins 1 and 3 are fully entangled, C; ;=1. The exact
time evolution (not shown) agrees very well with the RWA
prediction. The three-spin case also reveals the difference
between an open and a closed chain: for the closed chain,
which is translation invariant, the fully entangled state
|110)+]011) would be replaced by [110)+]011)+|101) which
has lower bipartite concurrence. This emphasizes that lack of
translation invariance supports the entanglement creation be-
tween the ends of the chain.

For longer chains, the situation becomes more involved
but still can be understood qualitatively. Because the Hamil-
tonian conserves parity and the initial state has zero excita-
tions, the system will remain at all times in a subspace of
states having an even number of excitations. This together
with the fact that the chain is open can be used to argue why
at resonance there is such a huge amount of entanglement.
Further, this argument also leads to the conclusion that at the
point of maximum entanglement, the reduced state of spins
in the ends of the chain is (|00)+|11))/v2 for even chains
and (|01)+]10))/\2 for odd chains, plus a mixed state con-
tribution which is smallest the highest the concurrence. A
more detailed argumentation can be read in the Appendix.

The resulting entanglement dynamics is shown in Fig. 3:
we find that the concurrence begins to grow after a given
time and reaches a maximum value at a time f,;,,. Thereaf-
ter, it decays. However, two ways of maintaining the
achieved concurrence come to mind: one can either simply
switch off the driving, i.e., J(£>>f,v) =0, or shift the driv-
ing frequency to an off-resonant value w,# 2B. The dotted
lines in Fig. 3 show that both strategies freeze the entangle-
ment as desired. This certainly requires knowledge of 7,y
which behaves very regularly and can be well estimated, as
we demonstrate below. Moreover, switching off the driving
parameters has to be much faster than the typical time scale
of the system, as we assume throughout this work. The same
applies also to the onset of the driving.

B. Moderate anisotropy

For finite anisotropy ¥ (J,# 0), the dynamics becomes
rather complex (see Fig. 3). The concurrence assumes sev-
eral local maxima until the highest one is reached. Moreover,
we find that the concurrence maximum became lower. This is
due to the presence of swapping terms, which spoil the ar-
gumentation of the Appendix. These terms basically will mix
the subsets {|00),[11)} and {|01),]10)} and thus reduce the
maximum achievable amount of concurrence.

Thus, we can conclude that the anisotropic limit y—
(Jo=0) is the optimal working point and, henceforth, restrict
our discussion to this limit.

V. SCALABILITY AND ARRIVAL TIME

Our next goal is to find the arrival time t,.,, and the
corresponding concurrence maximum as a function of the
chain length N. Direct integration of the time-dependent
Schrodinger equation was only possible for up to 12 spins.
The solution for eight spins, however, already demonstrates

PHYSICAL REVIEW A 79, 032332 (2009)

1 &
0.75 + — .
<
2
~
= 30
05 + B c i
£ 20 b
0.25 E 10
[419 B o —_ -
00
0 1 1 1 n 1
3 5 10 15 20 25

FIG. 4. (Color online) Length dependence of the first maximum
of the concurrence between ends, Cj y(1), and the corresponding
fully entangled fraction f for RWA Hamiltonian (5) with J,=0. The
inset shows the length dependence of the arrival time at which the
entanglement assumes its maximum.

that for w,;=2B, the RWA Hamiltonian (5) captures the glo-
bal behavior very well (see Fig. 3). Therefore, we can make
even further progress by mapping the RWA Hamiltonian to a
model for which an exact solution is known. For the unitary
transformation S=II,_, 5 o} which flips the spins with odd
site number, we find the duality relation

yH

7:0 = Sﬁjozos?. (6)

This means that the Hamiltonian for the infinitely anisotropic
case can be cast as a scaled isotropic Hamiltonian, while our
initial state is mapped to the Néel state: [1010---)

=&0000: - ). The Hamiltonian FIFO can be diagonalized af-
ter a Jordan-Wigner transformation [22].

Figure 4 shows that the maximum entanglement achieved
decreases with the chain length rather slowly. For very short
chains we find almost perfect entanglement, as predicted
above within RWA, while for length N=25, the concurrence
still possesses the appreciable value C;,5=0.5. A typical
figure of merit in communication protocols is the “fully en-
tangled fraction,” defined as f=max(e|p|e), where {|e)} is the
set of all maximally entangled states [23]. Quantum commu-
nication protocols are superior to their classical counterparts
whenever this fraction is higher than 2/3. In Fig. 3 it is seen
that this magnitude greatly surpasses the classical efficiency
for rather long chains.

Note that a chain of length N=7 represents a particular
case in which the concurrence equals the fully entangled
fraction. We cannot provide an intuitive explanation for this
anomalous behavior.

Already above, we mentioned the importance of knowing
the time f,.,, at which the concurrence assumes its maxi-
mum. In the strongly anisotropic limit y— o (J,=0), we can
provide a good estimate for the arrival time with the follow-
ing reason: a typical local excitation will be transported with
group velocity v,=de,/dk, where for J,=0, the eigenener-
gies €,=(yJ,/2)cos(k) are determined by the wave number
k=mm/(N+1), m=1,...,N, and form a band. Since the ini-
tial state |OOOO- -} is located in the center of the band, the
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relevant wave number is k= /2. Thus, the time scale for
traversing the chain is

N 2N
ffe=— = (7)
Ve Y

The inset of Fig. 3 shows that

1.7 t_*_ 1.7+ N

+ , 8)
W 2 Wi

Larrival =~
i.€., foyival grows linearly with the chain length. The factor
1/2 on t* reflects the fact that counterpropagating excitations
will meet already in the middle of the chain thus establishing
distant entanglement.

Recently, Wichterich and Bose [24] computed the fully
entangled fraction in spin chains with isotropic nearest-
neighbor interaction. Starting from the mixed Néel state
(1/2)[0101---)0101- - | +(1/2)|1010- - -){1010- - -|, they found
that switching on a constant interaction entangles the spins
located at the end sites. The unitary transformation (6) maps
this model to the limit ¥— o of the RWA Hamiltonian (5).
Moreover, our discussion of the entanglement dynamics
within RWA vividly explains why in their case the isotropic
model permits the creation of a remarkably high entangle-
ment.

VI. IMPLEMENTATION WITH OPTICAL LATTICES

The realization of an XY chain with anisotropy y=1 has
been proposed for experiments with cold atoms in a one-
dimensional optical lattice that in transverse direction forms
a bistable potential [12]. The ground-state doublet of each
double-well forms the “spin” degree of freedom. Then our
initial state (2) corresponds to a Mott-insulator state, which
has already been realized experimentally [25]. There the tun-
nel barriers in longitudinal direction can be up to ~22E,,
where the recoil energy E, typically lies in the kilohertz re-
gime. This is more than sufficient for suppressing longitudi-
nal tunneling, such that each double well remains occupied
with a single atom. The spin-spin interaction is given by a
Bose-Hubbard repulsion term caused by an overlap of Wan-
nier functions describing neighboring atoms. The amount of
overlap is given by the barrier height, which can be con-
trolled and modulated via the laser intensity, yielding a time
dependent J(r). Thus a high barrier effectively yields no
overlap and hence no spin-spin interaction (J=0), whereas a
low barrier can yield values J~0.1 kHz [26]. The Zeeman
field B corresponds to the tunnel splitting of the double-well
potential and is of the order 0.1E, [27], though it can be
manipulated by changing the depth of the double-well poten-
tial so that B is greater than, but of the order of J(¢). This
implies that the switching times of the Zeeman fields have to
be considerably smaller than 1 ms. Coherence times for at-
oms in such optical lattices can be much larger than the
system time scale and, thus, decoherence should not play a
major role. Moreover, the initial state |000---0) can be im-
posed by tailoring the field B to be much higher than thermal
excitation energy kzT due to the environment. Finally, the
“spin state” in the transverse double well can be probed by
fluorescence measurement of the atoms.
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VII. CONCLUSIONS

We have shown that proper ac driving can induce almost
perfect entanglement between the end spins of an anisotropic
XY chain. As a most striking feature, we found that the
driven chain bears the potential for a considerably larger en-
tanglement than the formerly studied static chains. We iden-
tified a resonance condition which leads to maximal en-
tanglement and also provide a reliable estimate for the time
after which this entanglement is reached. The latter is crucial
for freezing the entanglement once it is created. Our analysis
within a rotating-wave approximation contributed to a quali-
tative and quantitative understanding of how the entangle-
ment is built up: pairwise flipping of neighboring spins of an
open chain favors correlations between the end spins. More-
over, we found that the maximum entanglement decreases
only weakly with the chain length, while the entanglement is
built up during a time that is linearly length dependent. Thus
our protocol demonstrates good scalability which is a major
requirement for the implementation of quantum communica-
tion protocols. A natural application of our scheme is quan-
tum communication via state teleportation. This is possible
because the fully entangled fraction between the first spin
and the last spin is sufficiently large, such that a spin singlet
can be purified [23]. Let us finally emphasize that our proto-
col can be implemented with three different experimental
setups, namely, an anisotropic chain with sinusoidal driving,
an infinitely anisotropic chain with a sudden switch, and an
isotropic chain with initial Néel state. This provides a broad
choice for its application.
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APPENDIX: ENTANGLEMENT IN STRONGLY
ANISOTROPIC CHAINS

Due to the parity preserving character of the Hamiltonian
and the fact that our initial state [00- --0) has a definite parity,
the reduced density matrix of the spins at the ends of the
chain pg is of the form p,|00){00|+p,(|01){01]+[10)(10])

+p3| 1111 |+ (|00)(11]|+BJ01)(10|+H.c.). In the basis
{|00),]01),]10),|11)}, it reads
P 0 0 o
0 pp B O
Pr= . ; (A1)
0 B8 p 0
a0 0 p;
and the corresponding concurrence is
C=2max(0,|a| - p.| Bl = Vpip3)- (A2)

Because the chain is open and the Hamiltonian flips spins
pairwise at adjacent sites, we find S=0 for even chains and
a=0 for odd chains.
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For even chains, the proof of this statement is as follows:
the term |01)(10| stems from evaluating the trace over den-
sity operators of the form |0[x]1){1[y]0|, where the blocks
[x] and [y] represent the rest of the chain. Obviously, only
terms with [x]=[y] yield a nonvanishing contribution. We
demonstrate by reductio ad absurdum that it is impossible to
fulfill this condition: let us assume that states |0[x]1){1[x]O
can occur. By applying to this state Hamiltonian (5) which
for strong anisotrophy flip spins pairwise, we obtain [x]
=[y]1 for the ket and [x]=1[z] for the bra, where the blocks
[v] and [z] are yet one spin shorter and, thus, consist of an
odd number of spins. Hence [x]=1[x"]1, such that the opera-
tor becomes [01[x']11){11[x"]10|. Again, by the same rea-
soning we find the requirement [x’]=1[y’] for the ket and
[x"]=[z']1 for the bra. Therefore [x']=1[x"]1 and, thus,
|011[x"]111)(11[x']10|. Repeating this procedure, we end
up with a collection of ever smaller blocks [x],[x'],
[x"], ...,[x"] all of which possess an even number of spins.
Eventually, we remain with the operator
011+~ 1[x"]1-+-1)(11---1[x"]1---10|. From the ket we
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find the condition that [x”]=[10], while from the bra fol-
lows [x"]=[01] in order to have an even number of spins in
state 1, i.e., to conserve parity. Thus we can conclude that the
initial hypothesis [x]=[y] must be wrong. This proves that
for even chains 8=0, and so the concurrence reduces to C
=2 max(0,|a|—p,). This line of reasoning can be adapted to
the case of odd chains, for which one obtains a=0.

Yet, in order to obtain a high concurrence, we need |«
> p,, as we find in our numerical studies. The trace condition
for density matrices yields p;+p3;=1-2p,, while positivity
requires |a|=<\p,p;. Note that for pure states, |a|=\pp;.
Thus, maximizing « necessarily requires p, be small, that is,
if at any instance of time, « starts to increase, as it happens
when p, becomes smaller, the concurrence increases as well.
Clearly this can occur only at certain times, which is why we
see entanglement peaks.

At times of maximum concurrence, the resulting state
shared between spins 1 and N is then a,|00)+a,|11) for even
chains and a,|01)+a,|10) for odd chains, where we have
ignored a small mixed state contribution.
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