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Abstract. The time series analysis of magnetoencephalographic (MEG) sig-
nals is very important both for basic brain research and for medical diagnosis
and treatment. Here we discuss the crucial role of statistical memory effects
(ME) in human brain functioning with photosensitive epilepsy (PSE). We study
two independent statistical memory quantifiers that reflect the dynamical char-
acteristics of neuromagnetic brain responses on a flickering stimulus of different
colored combinations from a group of control subjects, which are contrasted
with those from a patient with PSE. We analyze the frequency dependence
of two memory measures for the neuromagnetic signals. The strong memory
and the accompanying transition to a regular and robust regime of the signals’
chaotic behavior in the separate areas are characteristic for a patient with PSE.
This particularly interesting observation most likely identifies the regions of the
protective mechanism in a human organism against occurrence of PSE.
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1. Introduction. The statistical characteristics of brain electromagnetic signals
have generated considerable interest, and many studies have been performed re-
cently in order to understand the origin and the role as well as the dynamics of
the neural activity [16, 3, 26, 12]. Studies of MEG as well as electroencephalogram
(EEG) provide unique insights into the dynamic behavior of the human brain, as
they are able to follow changes in neural activity on a millisecond time scale [11].
The physical processes of neural physiological activity can be registered with nonin-
vasive measurement techniques on the basis of EEG and MEG. These macroscopic
electrophysiological techniques permit the tracing of the time evolution of neural
population activation with millisecond temporal resolution. Neural electromagnetic
responses are handled also physical processes that relate to electric and magnetic
fields in other complex systems.

The observed neuronal behavior at the surface of the human cortex measured
by MEG or EEG is characterized by the regions of relatively random behavior of
electric and magnetic signals that change according to the state of the subject and
the position in the head. The responses to individual stimuli or affecting processes
typically require the specialized methods and models of signal processing.

Growing attention has recently been paid to the study of statistical ME in random
processes that originate from the brain signals by means of nonequilibrium statisti-
cal physics. The understanding of the crucial role of memory in chaotic dynamics of
complex systems has its roots [17] in kinetic and relaxation processes in gases [7] and
plasma [1], condensed matter physics (liquids [22], solids [15], and superconductivity
[9]), astrophysics [23], nuclear physics [8], quantum [30] and classical [6] physics, etc.
Nowadays, we can make use of a variety of statistical methods for the analysis of
ME in diverse physical systems. Typical similar schemes are Zwanzig-Mori’s kinetic
equations [29], generalized master equations and corresponding statistical quanti-
fiers [10], Lee’s recurrence relation method [2], the generalized Langevin equation
(GLE) [14], etc.

Here we show that statistical ME play an important role in the functioning of the
human brain. Particularly, it can mean that the appearance of strong ME (and re-
spectively, large memory times-scales) in the stochastic dynamics of neuromagnetic
signals can specify the pathological (or catastrophic) breaking of dynamic states of
the healthy human brain. As an example, we will show here that the occurrence of
strong ME (and respectively, large time scales of memory) in the stochastic behav-
ior of human brain neuromagnetic responses recorded by MEG is accomplished by
the generation and the existence of PSE.

Let’s remember that the correlation function represents the quantitative measure
for the compact description of the wide classes of correlation in complex systems.
The correlation function in statistical mechanics is a measure of order in the random
system. It shows the way microscopic variables at different positions are correlated.

ME in stochastic processes also reveal through correlations. ME appear at a more
detailed level of statistical description of correlation by the hierarchical manner. ME
reflect the complicated or hidden character of the creation, the propagation and the
decay of correlation. ME are produced by inherent interactions and statistical after
effects in complex systems. For statistical systems ME are induced by contracted
description of the evolution of the dynamic variables by the use of memory functions
(MF). MF describe the mutual interrelations between the rates of change of random
variables on different levels of the statistical description.
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Figure 1. Frequency power spectra µi(ω), i = 0, 1, 2 and 3 for the
healthy subject No. 7 (sensor No.10) (an R/B combination of the
light stimulus) in linear scale for the set of four time correlation
functions: a) for the initial TCF a(t); b) for the first order MF
M1(t); c) for the second order MF M2(t); d) for the third order
MF M3(t).

The role of memory has its roots in the natural sciences since 1906, when the fa-
mous Russian mathematician Markov wrote his first paper on the theory of Markov
Random Processes. The theory is based on the notion of the instant loss of memory
from the prehistory (memoryless property) of random processes. From the physical
point of view the time-scales of correlation and memory cannot be treated as arbi-
trary. Therefore one can introduce some statistical quantifiers for the quantitative
comparison of these time-scales. They are dimensionless and possess the statistical
spectra on different levels of the statistical description. As is conventional in proba-
bility theory and statistics, correlation (also so called correlation coefficient), means
the strength and direction of a linear relationship between two random variables.
In a general sense, correlation or co-relation reflects the deviation of two (or more)
variables from independence, although correlation does not imply causation. In this
broad sense there are some quantifiers that can measure degrees of correlation and
ME, suited to the nature of data.

It is necessary to remember, that from the beginning, the statistical quantifiers of
memory in time series for physiological systems that have been studied in EEG and
MEG signals, both of healthy subjects and patients (including epilepsy patients),
[27] were based on detrended-fluctuation analysis (DFA) [20].

2. Memory functions formalism for discrete time series. One of the power-
ful tools for the quantitative description of the statistical ME of random processes
in the physiological data is the use of Zwanzig-Mori’s kinetic equations and the MF
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Figure 2. Frequency power spectra µi(ω), i = 0, 1, 2 and 3 for the
healthy subject No. 7 (sensor No.10) (an R/B combination of the
light stimulus) in double log-log scale. All designations same, as
well as in Figure 1. One can notice multifractal behavior spectra
of µi(ω) for i = 0 and 2 with different behavior on the high and
superlow frequencies.

formalism. By the use of arguments from [18] one can find the chain of interrelated
finite-difference kinetic equations for the discrete time correlation function (TCF)
a(t) ≡ M0(t) = 〈δx(t)δx(0)〉/〈δx2(0)〉 of the fluctuation δx(t) = x(t) − 〈x(t)〉. Here
x(t) = (x1; x2; ...; xN ) is a random discrete-time process, i.e., xj = x(tj), tj=jτ
and τ is a discretization time-step, j = 1, 2, ...N . Then this TCF is related to MF
of the higher orders Mi(t), i = 1, 2, ... through the set of interconnected equations.
In accordance with this methodology [18] the discrete MF’-s Mi(t), i = 1, 2, ... of
ith order together with corresponding relaxation parameters quantifies the diverse
ME. The whole set of MF’-s quantifies all the singularities of the ME for complex
systems. For the discrete time series the whole set of functions Mi(t) and relaxation
parameters can be calculated directly from the experimental data [18].

The theory of discrete non-Markov stochastic processes [18] is based on the finite-
difference representation of the kinetic Zwanzig-Mori’s equations for condensed mat-
ter, which are well known in the statistical physics of nonequilibrium processes. The
theory is also widely used in analyzing complex biological and physiological systems.
Dynamic, kinetic, and relaxation parameters provided by this theory contain de-
tailed information on a wide range of parameters and properties of complex systems.

Let’s describe a discrete time series xj of variable X :

X = {x(T ), x(T + τ), x(T + 2τ), ..., x(T + τN − τ)}. (1)

Here T is the time of the beginning of time series, (N − 1)τ is the total time of
signal recording, and τ is the discretization time. The normalized initial TCF is



                               193

0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

ω [2 π / τ]

µ 0
(ω)

0 0.1 0.2 0.3 0.4
0

500

1000

1500

ω [2 π / τ]

µ 1
(ω)

0 0.1 0.2 0.3 0.4
0

200

400

600

ω [2 π / τ]

µ 2
(ω)

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

ω [2 π / τ]

µ 3
(ω)

a) b)

d)c)

Figure 3. Frequency power spectra µi(ω), i = 0, 1, 2 and 3 for the
patient with PSE (sensor No. 10) (an R/B combination of the light
stimulus) in linear scale for the set of the four first TCF: a) for the
initial TCF a(t); b) for the first order MF M1(t); c) for the second
order MF M2(t); d) for the third order MF M3(t). The sharp peak
at the same frequency ω = 0.2f.u. (1f.u. = 2π/τ) is typical for all
spectra.

convenient for a description of the dynamics of the time correlation:

a(t) =
1

(N − m)σ2

N−1−m
∑

j=0

δxjδxj+m =

=
1

(N − m)σ2

N−1−m
∑

j=0

δx(T + jτ)δx(T + (j + m)τ), (2)

t = mτ, 1 ≤ m ≤ N − 1.

TCF depending on current t = mτ can be conveniently used to analyze dynamic
properties of complex systems. TCF usage means that the developed method is
true of complex systems, when correlation function exists. The mean value 〈X〉,
fluctuations δxj , absolute (σ2), and relative (δ2) dispersion for a set of random
variables (eq. 1) can be easily found by the following:

〈X〉 =
1

N

N−1
∑

j=0

x(T + jτ),

xj = x(T + jτ), δxj = xj − 〈X〉,

σ2 =
1

N

N−1
∑

j=0

δxj , δ
2 =

σ2

〈X〉2
. (3)
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The function a(t) should satisfy the normalization condition and conditions of re-
laxation of time correlations:

limt→0 a(t) = 1, limt→∞ a(t) = 0.
On the basis of Zwanzig-Mori’s technique of projection operators, it is possible

to receive an interconnected chain of finite-difference equations of the non-Markov
type for the initial TCF a(t) and the normalized MF of the first order (and higher
orders) in the following way:

△a(t)

△t
= λ1a(t) − τΛ1

m−1
∑

j=0

M1(jτ) a(t − jτ). (4)

Here, λ1 is the eigenvalue and Λ1 is the relaxation parameter of the Liouville’s
quasioperator L̂. Function M1(jτ) is normalized MF of the first order:

λ1 = i
〈A0

k(0)L̂A0
k(0)〉

〈|A0
k(0)|2〉

, Λ1 =
〈A0

k(0)L̂12L̂21A
0
k(0)〉

〈|A0
k(0)|2〉

,

M1(jτ) =
〈A0

k(0)L̂12(1 + iτL̂22)
jA0

k(0)〉

〈A0
k(0)L̂12L̂21A

0
k(0)〉

, M1(0) = 1. (5)

Gram-Schmidt orthogonalization procedure 〈Wn,Wm〉 = δn,m〈|Wn|
2〉, where

δn,m is Kronecker’s symbol, can be used to rewrite the dynamic orthogonal variables
Wi, i= 1, 2, 3... in a more compact form:

W0 = A0
k(0), W1 = (iL̂ − λ1)W0, W2 = (iL̂ − λ2)W1 − Λ1W0, ...,

Wn = (iL̂ − λn)Wn−1 − Λn−1Wn−2 − ... . (6)

Then the eigenvalue λ1 of Liouville’s quasioperator and the relaxation parameter
Λ1 in equation (5) take the form of

λ1 = i
〈W0L̂W0〉

〈|W0|2〉
, Λ1 = i

〈W0L̂W1〉

〈|W0|2〉
.

The normalized MF of the first order in equation (5) is rewritten as:

M1(t) =
〈W1(1 + iτL̂22)

mW1〉

〈|W1(0)|2〉
.

The finite-difference kinetic equation (4) combined with equations (5)-(8) rep-
resent the generalization of Zwanzig-Mori’s kinetic theory, which is well known in
statistical physics, for complex discrete non-Hamiltonian statistical systems. Within
our method the analysis of dynamics of the statistical time series we use equation
(4) as an object for subsequent theoretical analysis. In this connection we use the
equations such as Zwanzig-Mori’s for MF of the 2nd and higher orders. We use the
algorithm, which was above described, for calculation the time dynamics a(t), M1(t)
and parameters λ1, Λ1. The dependence a(t) and M1(t) is calculated on the basis
of the experimental data independently of each other. At the same time we control
the conformity of the calculated dependence a(t), M1(t) and parameters λ1, Λ1 to
the equation (4) (the precision of the conformity is ∼ 2−5% for the cases described
here). We use the dependence a(t) and M1(t) to analyze the time dependence of
MEG’s signals. We also use these dependences to calculate the non-Markovity pa-
rameter which characterizes the strength of the statistical memory of the signals.
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The earlier study shows that this parameter contains detailed information about
the physiological state of a system.

3. Information quantifiers of statistical memory. In this paper we shall use
the spectral dependence ε1(ν) of the first point of the non-Markovian parameter:

ε1(ν) =

{

µ0(ν)

µ1(ν)

}
1

2

, (7)

which is determined by means of Fourier transformations µ0(ν), µ1(ν) of functions
a(t) and M1(t) respectively:

µ0(ν) =

∣

∣

∣

∣

∣

∣

∆t

N−1
∑

j=0

a(tj) cos(2πνtj)

∣

∣

∣

∣

∣

∣

2

, µ1(ν) =

∣

∣

∣

∣

∣

∣

∆t

N−1
∑

j=0

M1(tj) cos(2πνtj)

∣

∣

∣

∣

∣

∣

2

.

Further we shall show that the application of the frequency-dependence ε1(ν) and
the values of this parameter on zero frequency

ε1(ν = 0) = ε1(0) =

{

µ0(0)

µ1(0)

}
1

2

, (8)

allows for the introduction of quantitative estimations for various dynamic states
in a patient with PSE. In particular, we shall show that the values of parameter
ε1(0) ∼ 101 for the analyzed system are characteristic of stable physiological states
(for the patient under treatment). The appearance of pathology in a system leads
to a sharp decrease in this parameter, approximately by one order. Thus, we can
compare quantitatively various dynamic states of the studied system by considering
the change of the non-Markovity parameter.

To highlight the means of studying the role of ME in dynamics of complex systems
we will follow the reasons of [18]. The characterizing of memory is based on the
use the set of dimensionless statistical quantifiers which are capable of measuring
the strength of memory that is inherent in the complex dynamics. First similar
measure of memory is the measure εi(ω) = {µi(ω)/µi+1(ω)}1/2. Second measure is

defined as δi(ω) = |M̃ ′

i(ω)/ M̃ ′

i+1(ω)|. Here µi(ω) = |M̃i(ω)|2 is a frequency power

spectrum of the corresponding MF Mi(t), M̃ ′

i(ω) = dM̃i(ω)/dω whereas M̃i(ω) is a
Fourier transform of the MF Mi(t). Here Mi(t) = 〈Wi(t)Wi(0)〉/〈W 2

i (0)〉 is a MF
of ith order, Wi(t) is the corresponding dynamic orthogonal variable.

The aforementioned normalized MF of the ith order is defined as follows:

Mi(t) =
〈Wi(1 + iτL̂

(i)
22 )mWi〉

〈|Wi(0)|2〉
,

where the variables Wi should be found by the Gram-Schmidt orthogonalization
procedure (see, for example, equation (6)).

Discrete MF’-s Mi(t) together with corresponding relaxation parameters quantify
all diversity of the ME. The whole set of MF’-s quantifies all singularities of the
ME for complex systems. For the discrete time series the whole of set of MF’s
Mi(t) and relaxation parameters can be calculated directly from the experimental
data. The measures εi(ω) are suitable for the quantification of the memory on
a relative scale whereas the second set δi(ω) proves to be useful for quantifying
the amplification of the role of relative ME inherent to different complexity levels.
Both measures provide the statistical criteria of the comparison between relaxation
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time scales and memory time scales. In the case {ε, δ} >> 1 one observes complex
dynamics with the short-range temporal memory scales. For the limit {ε, δ} → ∞
these processes possess δ-like memory. When {ε, δ} > 1 one considers a situation
with moderate (intermediate) memory strength. And the case with both ε, δ ∼ 1
matches up typically to the more regular and robust processes with the features of
strong memory.

The characterization of memory is based on the set of dimensionless statistical
quantifiers, which determine the ME in time evolution of complex systems. The
set of parameters δi(ν) proves useful for quantifying the amplification of relative
ME occurring on different complexity levels. This measure provides the statistical
criterion for the comparison of the relaxation time-scales and memory time-scales
of the process under study. When parameter obeys δ ≫ 1, the complex system
dynamics can be described by the short-range temporal memory scale. In the
extreme case this process can be characterized by δ-like memory with parameter
δ → ∞. In the case of δ > 1 one deals with a situation of moderate memory strength,
and the case where δ ∼ 1 typically constitutes a more chaotic process possessing
strong memory features. Particularly, the informational parameter δ1 = δ1(ν = 0)
is very useful for analyzing different complex systems, including the physiological
subjects. For example, the appearance of strong memory in MEG signals in a
patient with PSE and the transition from the chaotic to robust regime allow for
detecting the cerebral cortex areas, forming the epileptic seizure at PSE.

The complex interrelation existing between the nonlinear effects and the sta-
tistical ME determines high stability in brain functioning against some negative
influences. A prompt interaction between the different brain areas averts develop-
ing of the collective neurons activity, typical for the PSE. Thus, the dynamics of
physiological systems are manifested in many spatial and temporal scales, and the
pathological states in live systems result in the changes of these spatio-temporal
structures. At present special attention is directed to the problems of distinguish-
ing and analyzing the stochastic and regular components of the experimental time
series from biological and live systems. Towards this end various methods of non-
linear physics and simulation by nonlinear oscillators, methods of fractal time series
analysis , methods of detrended fluctuation analysis are used.

It is necessary to notice, that the Fourier transform is meaningful with stationary
signals only. According to [28] we can take into account the effect of nonstationarity
by calculation of the nonstationarity function of the various orders. Our numerical
estimations have shown that nonstationarity effects appear unessential for the our
calculations.

4. Experimental data for PSE. Now we can proceed directly to the analysis of
the experimental data: MEG signals recorded in a group of nine healthy human
subjects and in a patient with (PSE) [25]. PSE is a common type of stimulus-
induced epilepsy, defined as recurrent convulsions precipitated by visual stimuli,
particularly a flickering light. The diagnosis of PSE involves finding paroxysmal
spikes on an EEG in response to intermittent light stimulation. To elucidate the
color-dependency of PS in normal subjects, brain activities subjected to uniform
chromatic flickers with whole-scalp MEG have been measured in [25]. (Further
details of the MEG experiment are found in [25]). Nine right-handed healthy adults
(two females, seven males; age range 22-27 years) participated voluntarily. Subjects
were screened for photosensitivity and personal or family history of epilepsy. The
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Figure 4. Frequency power spectra µi(ω), i = 0, 1, 2, and 3 for
the patient with PSE (sensor No. 10) (an R/B combination of the
light stimulus) for the set of the first four TCF in double log-log
scale. All designations same as well as in Figure 3. One can notice
noise behavior of µi(ω) for i = 0, 1, 2, and 3.

experimental procedures followed the Declaration of Helsinki and were approved by
the National Childrens Hospital in Japan.

All subjects gave their informed consent after the aim and potential risk of the
experiment were explained. During the recording, the subjects sat in the magneti-
cally shielded room and were instructed to observe visual stimuli passively without
moving their eyes. Stimuli were generated by two video projectors and delivered to
the viewing window in the shield room through an optical fiber bundle. Each pro-
jector continuously produced the single color stimulus. Liquid crystal shutters were
located between the optical device and the projectors. By alternatively opening
one of the shutters for 50 ms, 10 Hz (square-wave) chromatic flicker was produced
on the viewing distance of 30 cm. Three color combinations were used: red-green
(R/G), blue-green (B/G), and red-blue (R/B). CIE coordinates were x = 0.496,
y = 0.396 for red; x = 0.308, y = 0.522 for green; and x = 0.153, y = 0.122 for
blue. All color stimuli had a luminance of 1:6 cd/m2 in otherwise total darkness.
In a single trial, the stimulus was presented for 2 s and followed by an inter trial
interval of 3 s, during which no visual stimulus was displayed. In a single session,
color combination was fixed.

Neuromagnetic responses were measured with a 122-channel whole-scalp neuro-
magnetometer (Neuromag-122; Neuromag Ltd. Finland). The Neuromag-122 has
61 sensor locations, each containing two originally oriented planner gradiometers
coupled to dc-SQUID (superconducting quantum interference device) sensors. The
two sensors of each location measure two orthogonal tangential derivatives of the
brain magnetic field component perpendicular to the surface of the sensor array.
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The planner gradiometers measure the strongest magnetic signals directly above
local cortical currents. From 200 ms prior responses were analog-filtered (band-
pass frequency 0.03-100 Hz) and digitized at 0.5 kHz. Eye movements and blinks
were monitored by measuring an electro-oculogram. Trials with MEG amplitudes
> 3000fT/cm and/or electro-oculogram amplitudes > 150µV were automatically
rejected from averaging. Trials were repeated more than > 80 responses then they
were averaged for each color combination. The averaged MEG signals were digitally
lowpass-filtered at 40 Hz, and then the DC offset during the baseline (- 100 to 0
ms) was removed. At each sensor location, the magnetic waveform amplitude was
calculated as the vector sum of the orthogonal components. Peak amplitude was
normalized within each subject with respect to the subject’s maximum amplitude.
The latency range from -100 to -1100 ms was divided with 100 ms bins. Then, the
peak amplitudes were calculated by averaging all peak amplitudes within each bin.
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Figure 5. The frequency dependence in linear scale of the first
point ε1(ω) for sensor No. 10: for the healthy No. 7 (a),(b) and
for patient (c),(d) an R/B (a),(c) and an R/G (b),(d) combination
of the light stimulus. The emergence of the weak memory with
ε1(ω) >> 1 for the healthy and strong memory with ε1(ω) ∼ 1 for
the patient with PSE is evident. This testifies the remarkable role
of the memory in MEG signals at PSE.

5. Results and discussions. Typical frequency power spectra µi(ω), i = 0, 1, 2,
and 3 for healthy (subjects No. 7) at sensor No. 10 (Fig. 1, for usual scale and
Fig. 2, for double-double scale) demonstrate fractal dependence µi(ω) ∼ ω−α with
the set of low frequency bursts. Let’s remember that similar behavior is typical for
the many phenomena in live systems (see for example [18, 28]). On the contrary
the spectra µi(ω) for the patient at sensor No. 10 (Fig. 3, for usual scale and
Fig. 4, for double-double scale) show the missing of similar fractal dependence and
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the appearance of the steady peak in the all spectra on the µi(ω) on the specific
frequency ω = 0.2f.u.

Figure 5 shows the frequency dependence of the first point ε1(ω) for sensor No.
10: for the healthy No. 7 (a),(b) and for the patient (c),(d) an R/B (a),(c) and an
R/G (b),(d) combination of the light stimulus. The emergence of the weak memory
with ε1(ω) >> 1 for the healthy and strong memory with ε1(ω) ∼ 1 for the patient
with PSE is evident. This testifies to the remarkable role of memory in MEG signals
at PSE.
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Figure 6. The frequency dependence of the first points ε1(ω) for
sensors No. 10: for healthy No. 7 (a),(b) and for the patient
(c),(d) an R/B (a),(c) and an R/G (b),(d) combination of the light
stimulus) in the double log-log scale. All designations are the same
as well as in Figure 5. The drastic distinction in ME between the
healthy subjects and the patient with PSE is quite apparent.

The statistical role of the ME is more prominent out of the frequency dependence
of the first informational measure of memory (see Figs. 6 and 7). We observe
the fractal behavior of the first memory measure ε1(ω) for both (R/B and R/G)
types of the light stimulus for healthy subjects. For the patient similar fractal
behavior break-down due to the origination of the strong ME. The difference in
ME for the healthy subjects versus the patient with PSE is sharper, especially for
the zones of the low and superlow frequencies where long-range correlations are
incorporated. Incidentally three diverse zones of fractal behavior could be found in
the dependence on ε1(ω): 1st zone for 0.7 · 10−1f.u. < ω < 0.5f.u., 2nd zone for
2 · 10−2f.u. < ω < 0.7 · 10−1f.u. and 3rd zone for 0 < ω < 2 · 10−2f.u., 1 f.u. =
2π/τ, τ = 0.02s.

The second measure of memory δi(ω), i = 1, 2, and 3 describes the ME on the
largest scales: Figures 7 and 8 for the healthy subjects and Figures 9 and 10 for the
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patient with PSE. The difference in the ME for healthy subjects versus the patient
is especially surprising at the frequency ω = 0. Here this difference measures off
approximately 1000 times! A similar fact arises due to the long-range correlations
in the human brain neuronal activity. The crucial role of the strong memory in
the stochastic dynamics of the neuromagnetic responses for the patient with PSE
is particularly essential.

In drawing our conclusions about the role of the statistical memory effects we
show also the averaged data for the whole group of nine healthy subjects versus
the patient with PSE in Figures 11-14. The topographic dependence of the second
measure of memory δ1(ω = 0; n) in Figure 11 (for R/B combination of the light
stimulus) for healthy subjects (upper line, the data are averaged for the whole group
of nine healthy subjects) versus the patient with PSE (lower line) demonstrate the
striking difference in the impact of strong ME especially for the sensors with No.
5, 23, 9, 11, 14, and 23. For example, for sensor n=5 the difference acquires an
approximate valuation of 104 times!

To specify the role of the strong memory we introduce the spatial-topographic
dependence in terms of a novel information measure, the index of memory, which
is defined by:

ν(n) = δhealthy
1 (0; n)/δpatient

1 (0; n). (9)

This third measure quantifies the sharp revising of ME in the individual MEG
sensors in the patient with PSE versus the healthy group. By means of parameter
ν(n) we can try to find special zones (sensors) on the human cerebral cortex that are
responsible for the mechanism of PSE. With this purpose in Figure 12 we present
the topographic dependence of the information measure ν(n) for the healthy group
(averaged for the whole group of nine subjects) in comparison with patient with
PSE. From Figure 12 the specific role of the individual zones on the human cerebral
cortex with the sensors No. 10, 5, 23 , 40 and 53 is obvious. The sharp increase of
the crucial role of the ME in the stochastic behavior of the neuromagnetic signals is
clearly visible for sensors with these numbers. The observed points of MEG sensors
detect the areas of a protective mechanism against PSE in a the human organism: in
the frontal zone (sensor n = 10), right (n = 5) and left (n = 23) temporal zones, the
left parietal (n = 40) and the occipital (n = 53) zones. The early activity in these
sensors may reflect the protective mechanism that suppresses cortical hyperactivity
due to the chromatic flickering.

6. Conclusions. One can remark that some earlier steps toward understanding
normal and diseased human brains have already been set in other fields of science
such as neurology, clinical neurophysiology, neuroscience, and others. The numer-
ous studies applying linear and nonlinear time series analysis to EEG and MEG
in epileptic patients are discussed in detail in [25], [19], taking into account the
neurophysiological basis of epilepsy, in particular PSE. Specifically, the results of
[25] show that significant nonlinear structure is evident in the MEG signals for con-
trol subjects, whereas nonlinearity was not detected for the patient. In addition,
the couplings between distant cortical regions were found to be greater for control
subjects.

The important role of combinational chromatic sensitivity in sustained cortical
excitation was also confirmed. These prior findings lead to the hypothesis that the
healthy human brain is most likely equipped with significantly nonlinear neuronal
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Figure 7. The frequency dependence in linear scale of the first
three points of the second measure of memory δi(ω), i= 1 (a),
2 (b) and 3 (c) for the healthy No. 7 (sensor No. 10) (an R/B
combination of the light stimulus). One can note that the use of
δi(ω) amplifies the role of memory.
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Figure 8. The frequency dependence of the two first points of the
second measure of memory δi(ω), i= 1 (a), 2 (b), 3 (c) for the
healthy No. 7 (sensor No. 10) (an R/B combination of the light
stimulus) in double log-log scale. ME are weak on the first level,
and they are strong on the second and third relaxation levels.
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Figure 9. The frequency dependence in linear scale of the first
three points of the second measure of memory δi(ω), i= 1 (a),
2 (b), 3 (c) for the patient with PSE (sensor No. 10) (an R/B
combination of the light stimulus). Application of parameter δi(ω)
allows amplifying the role of statistical memory.
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Figure 10. The frequency dependence of the first three points of
the second measure of memory δi(ω), i = 1 (a), 2 (b), 3 (c) for
the patient with PSE (sensor No. 10) (an R/B combination of
the light stimulus) in double log-log scale. The statistical ME in
MEG’s signals becomes the strongest and repeatedly reinforced.
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Figure 11. The topographic dependence of the first point in the
second measure of memory δ1(ω = 0; n) on average for the whole
group of healthy subjects (upper line) vs the patient with PSE
(lower line) (for an R/B combination of the light stimulus). One
can note the singular weak ME for the healthy on average in sensors
with No. 5, 23, 14, 11, and 9.

processing, reflecting an inherent mechanism defending against hyper-excitation to
chromatic flickering stimulus, and such nonlinear mechanism is likely to be impaired
for a patient with PSE (Figs. 9, 10).

It is necessary to note that this study of chaotic behavior of the neuromag-
netic signals of a human MEG’-s with PSE and in a group of the healthy subjects
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Figure 12. The topographic dependence of the memory index
ν(n) = ν1(n; 0) for the the whole group of the healthy subjects on
average vs the patient with PSE (for an R/B combination of the
light stimulus). Strong memory in the patient with PSE vs the
healthy subjects appears clearly in sensors with No. 10, 5, 23, 40
and 53.

elucidates the role of statistical memory as an important criterion, measuring the
functioning of the human brain. Even an insignificant amplification of the ME tests
the pathological change in the brain of the patient with PSE. The pronounced sharp
increases of the ME in our set of statistical quantifiers in the neuromagnetic signals
indicate the pathological state of the patient with PSE within separate areas of the
brain. Our approach, being conveniently constructed from the set of subordinate
MF yielding the rate of change of the autocorrelation function of the measured com-
plexity dynamics, allows one to characterize the neuromagnetic signals in the human
brain in terms of statistical indicators. These so constructed statistical quantifiers
in turn measure both the role and the strength of statistical memory which the
underlying time series accommodate.

Many natural phenomena are described by distributions with a time scale-invariant
behavior [24]. The approach suggested here allows the stochastic dynamics of neu-
romagnetic signals in the human brain to be treated in a probabilistic manner and
to search for its statistical singularities. It is known that PSE is a type of reflexive
epilepsy which originates mostly in the visual cortex (both striate and extra-striate)
but with high possibility towards propagating to other cortical regions [4]. Healthy
brain possibly possess an inherent controlling (or defensive) mechanism against this
propagation of cortical excitations, the breakdown of which makes the brain vul-
nerable to trigger epileptic seizures in patients [21]. However the exact origin and
dynamical nature of this putative defensive mechanism is not fully known. Earlier
we showed [25] that brain responses against chromatic flickering in healthy subjects
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Figure 13. The frequency dependence of the memory index
ν1(ω; 5) for the the whole group of healthy subjects on average
vs the patient with PSE for sensor No. 5 (an R/B combination of
the light stimulus). In the high frequency area one can visualize a
group of high intensive bursts of the strong memory in the chaotic
dynamics of neuromagnetic responses.

represent strong nonlinear structures whereas nonlinearity is dramatically reduced
to minimal in patients.

Here we report that the patient’s brain shows significantly stronger statistical
ME than healthy brains. A complex network composed of interacting nonlinear
system with memory component is inherently stable and critically robust against
external perturbations. Quick inhibitory effect, that is essential for the prevention of
PSE, is made possible by the faster signal processing between distant brain areas.
Further, such networks are able to facilitate flexible and spontaneous transitions
between many possible configurations as opposed to being entrained or locked with
the external perturbations [5]. In short, our findings are in line with growing body of
evidence that physiological systems generate activity fluctuations on many temporal
and spatial scales and that pathological states are associated with an impairment
of this spatio-temporally complex structure.

From the physical point of view the obtained results can be used as a test to
identify the presence or absence of brain anomalies as they occur in a patient with
PSE. The set of our quantifiers is uniquely associated with the emergence of ME in
the chaotic behavior of the human cerebral cortex. The registration of the behavior
of those indicators discussed here is then of beneficial use to detect pathological state
of separate areas (sensors 5, 10, 23, 40, and 53) in the brain of the patient with
PSE. There exist also other quantifiers of a different nature, such as the Lyapunov’s
exponent, Kolmogorov-Sinai entropy, correlation dimension, etc., which are widely
used in nonlinear dynamics and related applications (see [13]).
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Figure 14. The frequency dependence of the memory index
ν1(ω; 10) for the whole group of healthy subjects on average vs
the patient with PSE for sensor No. 10 (an R/B combination
of the light stimulus). High peak at ω = 0.3f.u. with intensity
ν1(ω; 10) ∼ 7·105 exceeds zero frequency value ν1(0; 10) ∼ 1.75·104

approximately two orders. It means the next sharp amplification
of the memory is on the frequency ω = 0.3f.u.

Detailed investigations have shown that the employed memory measures are not
only convenient for analysis but also ideally suited to identify anomalous brain be-
havior. The search for yet other quantifiers, and foremost the optimization of such
measures when applied to complex, discrete time dynamics, presents a true chal-
lenge. This objective particularly holds true when attempts are made to identify and
quantify an anomalous functioning in live systems. The present work presents such
an initial step toward the understanding of fundamentals of physiological processes
in the human brain.
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