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Directed transport of an inertial particle in a washboard potential induced by delayed feedback
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We consider motion of an underdamped Brownian particle in a washboard potential that is subjected to an
unbiased time-periodic external field. While in the limiting deterministic system in dependence of the strength
and phase of the external field directed net motion can exist; for a finite temperature the net motion averages
to zero. Strikingly, with the application of an additional time-delayed feedback term directed particle motion
can be accomplished persisting up to fairly high levels of the thermal noise. In detail, there exist values of the
feedback strength and delay time for which the feedback term performs oscillations that are phase locked to the
time-periodic external field. This yields an effective biasing rocking force promoting periods of forward and
backward motion of distinct duration, and thus directed motion. In terms of phase space dynamics we dem-
onstrate that with applied feedback desymmetrization of coexisting attractors takes place leaving the ones
supporting either positive or negative velocities as the only surviving ones. Moreover, we found parameter
ranges for which in the presence of thermal noise the directed transport is enhanced compared to the noiseless

case.
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I. INTRODUCTION

Transport phenomena play a fundamental role in many
physical systems. In this context, the theme of a ratchet dy-
namics has attracted considerable interest over the past years.
This is particularly due to the fact that the ratchet effect
assists the creation of a directed flow of particles without the
presence of any bias force in the system. The ratchet dynam-
ics has been mainly applied to biological or mesoscopic sys-
tems where Brownian motion in a periodic asymmetric po-
tential together with dissipation enters in some form the
problem and the directed motion is generated from nonequi-
librium noise, see the various overviews on molecular and
Brownian motors in Refs. [1-5]. On the other hand for peri-
odic systems with maintained spatial symmetry the accom-
plishment of directed net motion necessitates that the system
is exerted to additional biasing (symmetry-reducing) im-
pacts. Our present study deals with particle transport in a
one-dimensional periodic and symmetric structure. The latter
is modeled by a washboard potential [6-13]. A symmetric
(unbiased) external force is assumed to rock the potential.
Our aim is to demonstrate that directed particle transport can
be achieved with the application of a time-delayed feedback
method in a wide temperature range. Although the delayed
feedback method was originally proposed by Pyragas [14] to
stabilize unstable states in deterministic systems meanwhile
it has been facilitated in various other contexts [15] among
them there is also the control of purely noise-induced oscil-
lations [16,17]. Recently in the context of controlling trans-
port in Brownian motors a feedback strategy has been suc-
cessfully utilized for two ratchet systems interacting through
a unidirectional delay coupling [18]. The effect of time-
delayed feedback on the rectification of thermal motion of
Brownian particles has been studied in overdamped ratchet
systems [19-23]. A recent experimental implementation us-
ing such a feedback mechanism for a flashing ratchet has
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been realized with an optical line trap: it has been observed
that the use of feedback increases the ratchet velocity up to
an order of magnitude [24], in agreement with theory.

Stabilization of chaotic motion in deterministic inertia
ratchet systems to increase the current efficiency was consid-
ered in Refs. [25,26]. Furthermore, an asymmetric ratchet
potential with included time-delayed feedback was treated in
the context of an inertial Brownian motor [27].

Our paper, dealing with time-delayed feedback induced
directed motion, is organized as follows. First we introduce
the model of an inertial Brownian particle evolving in a sym-
metric spatially periodic potential under the influence of an
additional time-delayed feedback term. Section III concerns
the underlying deterministic dynamics. In particular bifurca-
tion diagrams with and without applied time-delayed feed-
back are discussed. The impact of a heat bath of fixed tem-
perature on the particle transport features is studied in Sec.
IV. In Sec. V we summarize our results.

II. MODEL

We consider an inertia Brownian particle that is moving
along a one-dimensional periodic structure. The dynamics is
governed by the following inertial Langevin equation ex-
pressed in dimensionless form:

g+ 7q=—jl—lq]+Fsin(wt+ 0y) + &(r) + f(1). (1)

The dot denotes differentiation with respect to time. The par-
ticle evolves in a spatially periodic and symmetric potential
Ulg) =U(g + 1) == cos(2mq)/(2m), 2)

of unit period L=1 and barrier height AE=1/ and its posi-
tion and velocity are quantified by the variable ¢(r) and

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.041117

HENNIG, SCHIMANSKY-GEIER, AND HANGGI

1\\\\||\\\‘1\\\\\\\\\\\1
.

o
2% 05—
_E (b) K=0 //
0 \/
| VAN LN S N Y S o | ‘ | DU N O G A Y A | ‘ I |

0 0.6 1.2
F

FIG. 1. (Color online) (a) Bifurcation diagram as a function of
the amplitude of the external driving without time-delayed feed-
back, i.e., K=0 and remaining parameter values: w=2.25, y=0.1,
and T=0. (b) Mean velocity v,,/v as a function of the amplitude of
the external driving. For later use a dashed vertical line is drawn at
the value F=1.5.

q(t) =v(r), respectively. The particle is driven by an external,
time-dependent forcing field of amplitude F, frequency w,
and phase 6,. In addition it is subjected to a Gaussian dis-
tributed thermal white noise &(r) of vanishing mean (&(r))
=0, obeying the well-known fluctuation-dissipation relation
(&) E(t'))=2vkgTS(t—1"), with kg and T denoting the Bolt-
zmann constant and temperature, respectively. The friction
strength is measured by the parameter y. The last term in Eq.
(1) denotes a continuous time-delayed feedback term of the
form

J() =K[4(t - 7) - 4(1)] 3)

of strength K and with delay time 7. Before we embark on
the study of the Brownian particle motion it is illustrative to
consider the deterministic limiting case arising for vanishing
thermal noise, i.e., 7=0. For our study we fix the following
parameter values: y=0.1, @=2.25, and 6,=0.

III. DETERMINISTIC CASE

The dynamics of the deterministic system (7=0) exhibits
very rich and complex behavior and depending on the pa-
rameter values and initial conditions one finds periodic or
aperiodic (quasiperiodic and/or chaotic) solutions in the
long-time limit [28—33]. The character of the phase flow
evolving without feedback term (K=0) in a three-
dimensional phase space is conveniently displayed by a
Poincaré map using the period of the external force, T,
=27/ w=2m/2.25=2.791, as the stroboscopic time. The de-
terministic equation of motion was integrated numerically
and omitting a transient phase points were set in the map at
times being multiples of the period duration T,. In Fig. 1(a)
the bifurcation diagram as a function of the amplitude of the
external driving is depicted.

Particle transport is quantitatively assessed by the mean
velocity which we define as the time average of the ensemble
averaged velocity, i.e.,

PHYSICAL REVIEW E 79, 041117 (2009)

1 (7
vm=;JO dt’(v,(1')), 4)

with simulation time 7 and with the ensemble average given
by

N

00y = 2 0,0, ©

n=1

Here N denotes the number of particles constituting the en-
semble with associated random initial conditions ¢,(0) and
v,(0) that are uniformly distributed over the period of the
potential. We express v,, in terms of the ratio of the spatial
and temporal periods L/T,=v, with vy=0.358 being the
velocity for running solutions that advance by one spatial
period during one period duration of the external field.

For undercritical amplitudes of the modulation force F
=<0.6 those particles which are initially residing near the
bottom of a potential well remain trapped. Increasing F leads
to escape from the potential wells and the particle jumps
subsequently from one well to another one. The arising two
typical scenarios are the pinned and running states, respec-
tively. In the former state the motion proceeds at most over a
finite number of spatial periods whereas in the latter state
motion is directed and unrestricted in the spatial dimension.
In terms of the phase flow running asymptotic solutions cor-
respond to phase-locked periodic attractors transporting a
particle with velocity v=m/n over m spatial periods of the
potential during n period durations 7, of the external peri-
odic field. Running asymptotic solutions may also be sup-
ported by aperiodic attractors.

In the bifurcation diagram associated with the dynamics
without applied time-delayed feedback shown in Fig. 1(a)
one recognizes vertically extended stripes covered densely
with points corresponding to non-phase-locked aperiodic at-
tractors and several periodic windows as well as period-
doubling cascades to chaos. These features of the phase flow
are readily attributed to the resulting mean velocity of the net
motion [depicted in Fig. 1(b)]. The ensemble average is
taken over an ensemble of N=5000 trajectories with uni-
formly distributed initial conditions ¢(0) and v(0). For com-
putation of the long-time average the simulation time inter-
val for each trajectory is taken as 7,=5X10°=1.8X 10
X T,. We notice almost in the entire F-range vanishing mean
velocity v,,=0. The exceptions are the intervals 0.74<F
=0.80 and 1.36<F = 1.62 for which the solutions are asso-
ciated with multiple coexisting attractors lying in fairly ex-
tended periodic windows in Fig. 1(a). Focusing interest on
the latter one we note that at F=1.36 tangent bifurcations
give birth to two coexisting period-one attractors. The upper
one of them is related with positive particle velocity v=uv,,
>0 whereas on the lower one particles move with velocity
v=-0(<0. For increasing F=1.62 these attractors are de-
stroyed by way of crisis after passage through a period-
doubling route to chaos.

The oppositely running solutions attributed to the two
period-one attractors contribute to the mean velocity with
different weight with the one with positive velocity v=v,
being dominant and thus yielding the window of positive
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FIG. 2. (Color online) As in Fig. 1 but with switched-on time-
delayed feedback of strength K=0.9 and delay time 7=1.95. The
remaining parameter values read as w=2.25, y=0.1, and T=0.

mean velocity v,,. Apparently, the directed motion results
from a lowering of the dynamical symmetry caused by the
external modulation field [13,34]. That is, even though the
potential and the external modulation field are spatially and
temporarily symmetric, respectively, with the choice of a
fixed phase 6, the symmetry of the flow is reduced and a
phase-dependent net motion is found. (Note that additional
averaging over the phase 6, yields zero mean velocity.) Due
to symmetry reasons it holds that the sign of the mean
velocity is reversed upon the changes #,=0— 6,=7 and
F——F, respectively. However, there exists a phase 0< 6,
< for which symmetry between the two coexisting peri-
odic attractors supporting solutions with velocities of oppo-
site sign, v, and —v,, is restored and therefore the net motion
vanishes.

In the numerical simulation of system (1) with applied
time-delayed feedback term (3) we set f()=0 in the interval
t [0, 7), that is the system is affected by f(z) only for r= 7.
We performed extensive numerical studies to identify opti-
mal parameters of the feedback term which establish efficient
directed net motion. It turns out that this is achievable for
delay times in the range of 1.65=< 7=2.00 and for feedback
strength K= 0.8 (see also further in Fig. 6). In the following
we illustrate exemplarily the impact of time-delayed feed-
back on the transport properties for a feedback strength K
=0.9 and delay time 7=1.95=0.7T,. With such appropriate
feedback term applied the extension of the aperiodic regions
shrinks considerably and only a comparatively narrow band
of aperiodic behavior for 1 <F=<1.11 prevails in the bifur-
cation diagram illustrated in Fig. 2(a). Remarkably, for F
= 1.63 the lower period-one attractor supporting negative ve-
locities loses stability and is converted into a repellor leaving
the upper attractor of positive velocity as the only persisting
attractor. Thus the application of feedback results in a re-
shaping of the bifurcation diagram. In fact, due to the ab-
sence of the period-one attractor supporting motion with ve-
locity v =—v, only running solutions with velocity v,,=v are
then recognized in Fig. 2(b) showing the mean velocity as a
function of F. Otherwise the mean velocity raises from zero
level for overcritical F=1.1 and grows with increasing F
until F=1.63 when v=v,, is attained.

In order to gain insight into the feedback-induced mecha-
nism that leads to directed transport (occurring for F=1.63
in the period-one window in Fig. 2) we display the temporal
behavior of the feedback term f(z), given in Eq. (3), and the
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FIG. 3. (Color online) Time evolution of the feedback term f(7),
the driving force term F(z), and their sum F(z)+f(r) with K=0.9 and
delay time 7=1.95. The remaining parameter values read as F
=1.8, w=2.25, y=0.1, and T=0.

external driving term F(f)=F sin(wf) and their sum F(z)
+f(#) in Fig. 3 for driving amplitude F=1.8. Throughout the
time the feedback term f(z) performs oscillations possessing
considerable asymmetry. Most importantly, these oscillations
are entrained to the (symmetric) external driving term with a
phase shift. The sum F(¢)+f(¢), performing asymmetric os-
cillations, determines the effective rocking force exerted on
the particle. This ratching force is self-induced due to the
feedback in comparison with the externally imposed ratching
force in the form of asymmetric periodic driving fields con-
sidered in [34].

How the directed rightward particle motion is enforced by
this effective biasing rocking force is illustrated in Fig. 4.
[For the present discussion we discard the contribution from
—dU(q)/dq to the total force.] Clearly, an oscillating rocking
force leads to passages of forward and backward motion,
also called enhancement and depreciation periods. Crucially,
the feedback term is suitably entrained to the external driving
term in such a way that the period of forward motion is
longer than its backward counterpart, denoted by 7, and T,
respectively, in Fig. 4. To be precise, at the moment when the
backward motion of the particle terminates the effective
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FIG. 4. (Color online) Time evolution of the particle position
q(t) and the effective rocking force F(z)+f(¢) with K=0.9 and delay
time 7=1.95. The remaining parameter values read as F=1.8,
®=2.25, y=0.1, and T=0. Horizontal solid (dashed) lines indicate
the position of the maxima (minima) of the unbiased washboard
potential.
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rocking force has not yet reached its maximum as indicated
by the left vertical line in Fig. 4. Subsequently the particle
moves in the forward direction due to the ongoing positive
rocking force that after passing through its maximal value
declines. Nevertheless, until half of the time span Ty is
reached the particle motion is still enhanced in the forward
direction. Afterward for +>T7}/2 the effective rocking force
becomes negative and thus the momentum of the particle is
reduced steadily with increasingly negative values of F(r)
+f(¢). The end of the forward-motion period is designated by
the middle vertical line in Fig. 4. However, there remains
only comparatively little time, namely, 7, <T}, during which
backward motion is enforced, that is, when during the depre-
ciation period the effective rocking force is negative.

Consequently, the asymmetry in the enhancement and de-
preciation phases serves for a rather long period of forward
motion compared to the backward motion. Therefore the ef-
fective motion of the particle proceeds to the right. Notably,
this feature is induced by entrainment of the asymmetric
time-delayed feedback term to the symmetric external modu-
lation field if the feedback strength and delay time are suit-
ably chosen. Notice that this oscillation behavior of the time-
delayed feedback term is different from noninvasive control
methods where the delayed feedback control vanishes once a
targeted unstable periodic orbit has been stabilized
[14,15,26,27].

IV. DIRECTED THERMAL NET PARTICLE MOTION

We now study the impact of a heat bath of fixed tempera-
ture 7> 0 on the particle transport features. With the inclu-
sion of finite thermal noise transitions between the now
metastable attractors are likely and, independent of the initial
conditions, trajectories permeate the whole phase space ren-
dering the dynamics ergodic.

For the computation of the mean velocity the ensemble
average in Eq. (5) was taken over N=5000 realizations of the
thermal noise for a particle that is initially situated at the
bottom of a well of the unbiased potential. The mean veloc-
ity v,, represented without feedback term but in the presence
of thermal noise of a fairly high level of kz7T=0.1 X AE in
Fig. 5(a) is zero regardless of the value of the modulation
field strength F. This has to be distinguished from the pre-
ceding noiseless case where even for K=0 regions of nonva-
nishing net motion (cf. Fig. 1) exist due to the fact that
motion on attractors with different sign of the velocity con-
tribute with distinct weight to the asymptotic net motion. In
other words, the impact of the noise leads to symmetrization
of the basins of attraction of transporting periodic and/or
aperiodic attractors. Therefore any initial condition yields
zero asymptotic current. Interestingly, this situation changes
imposing the Langevin dynamics additionally to the time-
delayed feedback and we found parameter constellations for
which directed net motion results despite the presence of
strong noise.

As Fig. 5(a) reveals, applying feedback of strength K
=0.9 and delay time 7=1.95, the mean velocity as a function
of the external modulation field strengths exhibits a resonan-
celike structure for 1.3=F=<1.8, i.e., for values of F for
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FIG. 5. (Color online) (a) Mean velocity in dependence of the
external modulation field amplitude without and with applied time-
delayed feedback force as indicated in the plot and for thermal
energy kgT=0.1 X AE. (b) Mean velocity in dependence of the ther-
mal energy expressed in units of the barrier energy, kg7/AE, and
for fixed F=1.5 and delay time 7=1.95. The remaining parameter
values are w=2.25 and y=0.1.

which transport exists in the deterministic case. Strikingly,
with the impact of thermal noise the feedback-controlled
transport proceeds more efficient in comparison with the de-
terministic case in the fairly wide range 1.2<F=<1.7 [cf.
Figs. 2 and 5(a)]. On the other hand, for F=1.7 the directed
transport feature of the deterministic system is destroyed by
the thermal fluctuations. Furthermore, like in the determinis-
tic case, there exists a threshold value for the feedback
strength beyond which directed net motion is achieved [see
Fig. 6(a)] and the range of delay times being optimal for
running solutions is indicated by the resonancelike structure
in Fig. 6(b).

From Fig. 5(b), illustrating the mean velocity in depen-
dence of the noise strength, one infers that directed transport
is sustained up to comparatively high noise strength before it
ceases eventually to exist. On the other hand, it is seen that
without feedback term, i.e., K=0, the mean velocity averages
to zero already for low noise intensity. As the damping
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@ ° 0.5 1 15 2 (b)_n:.s 17 18 19 20 21 22 23

FIG. 6. (a) Mean velocity in dependence of the strength of the
time-delayed feedback and for fixed F=1.5 and 7=1.95. (b) Mean
velocity in dependence of the delay time and for fixed F=1.5 and
K=0.9. The remaining parameter values are w=2.25, y=0.1, and
kzT=0.1 X AE.
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FIG. 7. (Color online) Stroboscopic map of the average trajec-
tory without (K=0) and with applied feedback (K=0.9 and 7
=1.95) as indicated in the plot. The remaining parameter values
read as F=1.5, 7=1.95, and k3T=0.1 X AE. The attractor with cap-
tion v,=v>0 of the deterministic system arising with the applied
feedback is also shown. The dashed lines indicate the separatrix of
the deterministic conservative undriven system, i.e., y=F=0. We
also superimposed the projection of the orbit of the deterministic
system on the v-¢ plane (solid line in blue).

strength is concerned we found that feedback-induced di-
rected motion is maintained as long as the system remains in
the underdamped regime, that is, for y=2.5=w, with w,
=27 being the frequency of harmonic oscillations near the
bottom of a potential well.

Further insight into the origin of running solutions in the
noise case is gained from Fig. 7 showing the stroboscopic
map of the average trajectory defined as qa:EflV:lqn/ N and
va=EnNzlv,,/ N with and without presence of the time-delayed
feedback for external modulation strength F=1.5, a value for
which in the deterministic case the mean velocity remains
nearly unaffected when the feedback is applied [to ease the
eyes the vertical dashed line is drawn at the position of the
value F=1.5 in Figs. 1, 2, and 5(a)]. Without feedback, K
=0, the velocity range of the average trajectory is not only
symmetric with respect to v,=0 but remains confined within
the boundaries of the separatrix loop of the undriven, un-
damped deterministic system (y=F=0). Thus the solutions
represent pinned states. With applied feedback of strength
K=0.9 the v symmetry is broken. Moreover, the stroboscopic
plot of the average trajectory densely covers the curve ob-
tained when the periodic oscillations of the noiseless system
are projected onto the g-v plane. This implies the existence
of an attractive curve related to near-torus motion in phase
space for the noise case. The corresponding stroboscopic
map of the dominant deterministic periodic attractor with
velocity v=v, is also drawn in Fig. 7. Crucially for directed
net motion with v,,=v, arising for 7> 0 the average trajec-
tory sticks to the near-torus motion, never exploring other
parts of the phase space during the whole simulation time
interval T,=10°. The time evolution of the corresponding
average coordinate ¢, is depicted in Fig. 8. Conclusively,
despite the fact that the resulting motion in the presence of
noise and feedback evolves no longer perfectly synchronous
but still phase locked with the external periodic modulation it
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FIG. 8. (Color online) Time evolution of the average coordinate
q. (wiggled line). The dashed straight line possesses slope v
=L/T,=0.358. The bullets represent the position of the particle at
moments being multiples of the period duration of the external
modulation 7,=27/ w. The inset displays the long-time evolution of
q,- The parameter values read as F=1.5, K=0.9, 7=1.95, and kgT
=0.1 X AE.

nevertheless exhibits behavior reminiscent of that found in
the corresponding limiting deterministic system. To be pre-
cise the periodic oscillations of the deterministic dynamics
are replaced by near-torus motion in the Langevin dynamics
accomplishing phase-locked aperiodic transport in the sense
that on average during one period duration of the external
field particles move by one spatial period, i.e., v,,=v,
=L/T,.

V. SUMMARY

In conclusion, we have identified and characterized a
transport regime for underdamped Brownian particles evolv-
ing in a symmetric washboard potential under the mutual
impact of an unbiased external periodic field and time-
delayed feedback. We have studied first the deterministic
case of zero temperature. It has been shown that without
feedback in some ranges of the amplitude and certain phases
of the external modulation field windows of directed particle
current exist. This is due to the fact that attractors associated
with phase-locked oppositely running solutions contribute
with different weight to the net current. The direction of the
net current can be reversed with a suitable choice of the
phase of the external modulation field.

Interestingly with an applied time-delayed feedback in the
deterministic system there exist parameter ranges for which
the attractors supporting velocities of a definite sign lose
stability and are converted into repellors leaving the attrac-
tors of opposite velocity as the only persisting ones. Hence,
the efficiency of the net particle current is improved. There
exist values of the feedback strength and delay time for
which the feedback term performs oscillations that are phase
locked to the time-periodic external field. This yields an ef-
fective biasing rocking force, promoting periods of forward
and backward motion of distinct duration, and thus directed
motion.

On the other hand, for a finite temperature and without
time-delayed feedback the net motion averages to zero. That
is, the symmetry between the coexisting attractors supporting
negative and positive velocities is restored by the impacting
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thermal fluctuations. Strikingly, in contrast to the case with-
out feedback, with applied time-delayed feedback of appro-
priately chosen strength and delay time we find in a wide
temperature range complete desymmetrization of coexisting
attractors supporting oppositely running solutions. As a con-
sequence the particle motion proceeds exclusively in one di-
rection. Therefore the feedback-induced transport is not only
robust with respect to thermal noise but, moreover, there
exist parameter ranges for which in the presence of thermal
noise the transport is more efficient than in the corresponding
deterministic limiting case. We have identified attracting
curves in phase space which are linked with motion on a
torus with small deviations supporting transport.

PHYSICAL REVIEW E 79, 041117 (2009)

We stress the difference between the transport control
mechanism described above and the control of transport
properties in inertia ratchet systems [25-27] facilitating the
stabilization of certain targeted (unstable) periodic orbits via
time-delayed feedback as well as the features in feedback
flashing ratchets when the potential is alternatively switched
on and off in dependence of the state of the system [19-22].
In our case control of transport is achieved if the time-
delayed feedback term with appropriately chosen strength
and delay time entrains to the external time-periodic field
yielding effectively a biasing force that rocks the washboard
potential such that distinct durations of the periods of for-
ward and backward motion ensue.
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