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Based on the observation that the thermodynamic equilibrium free energy of an open quantum system

in contact with a thermal environment is the difference between the free energy of the total system and that

of the bare environment, the validity of the Crooks theorem and of the Jarzynski equality is extended to

open quantum systems. No restrictions on the nature of the environment or on the strength of the coupling

between system and environment need to be imposed. This free energy entering the Crooks theorem and

the Jarzynski equality is closely related to the Hamiltonian of mean force that generalizes the classical

statistical mechanical concept of the potential of mean force.
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Since its formulation in 1997, the classical nonequilib-
rium work relation by Jarzynski [1] (now commonly re-
ferred to as the Jarzynski equality)

he��wi ¼ e���F (1)

has continued to raise questions and concerns on its range
of validity and applicability. Here, w denotes the work
performed on a system when some parameters of this
system are changed according to a prescribed protocol.
This work is given by the difference of the energies con-
tained in the system at the end and at the beginning of the
protocol. Initially, the system is supposed to be prepared in
a thermal equilibrium state at the inverse temperature �.
The brackets h�i denote a nonequilibrium average over
many repetitions of this process, running under the same
protocol. According to the Jarzynski equality, the average
of the exponentiated negative work is independent of the
details of the protocol and solely determined by the ther-
mal equilibrium free energy difference �F between the
initial equilibrium state and a hypothetical equilibrium
state at the initial temperature and those parameter values
that are reached at the end of the protocol. In the mentioned
Letter [1], the validity of this equality was demonstrated
within a classical statistical approach for isolated systems
which initially are in the required equilibrium state at
inverse temperature � and also for classical systems that
stay in weak contact with a thermal bath during the
protocol.

Considerable effort has been devoted to the development
of the quantum version of Eq. (1), and more generally of
the Crooks fluctuation theorem [2] that underlies it; i.e.,

ptf ;t0ðþwÞ
pt0;tf ð�wÞ ¼ e�ðw��FÞ; (2)

where ptf ;t0ðwÞ denotes the probability density function

(PDF) of work performed by the parameter changes ac-
cording to a protocol running between the initial time t0
and final time tf. The PDF of work for the reversed proto-

col is denoted by pt0;tf ðwÞ. All these attempts refer to

quantum isolated or weakly coupled systems with
Hamiltonian or Markovian dynamics, respectively [3–9].
The proof of the validity of Eqs. (1) and (2) in the quantum
case with weak coupling, allowing for an otherwise general
non-Markovian dynamics of the open quantum dynamics
and arbitrary force protocols, was provided only recently in
Ref. [10].
The applicability of Eqs. (1) and (2) to the case of weak

coupling is consistent with the construction of quantum
and classical statistical mechanics which relies on that
assumption. In striking contrast, extending the methods
of statistical mechanics to cases that involve a non-
negligible system-environment interaction presents a ma-
jor challenge [11,12]. Addressing this question is by now
becoming more and more pressing, as the advancement of
technology poses us in the position to investigate experi-
mentally the thermodynamic behavior of nanosystems op-
erating in the quantum regime, whose reduced sizes make
the system-environment coupling an important issue.
A satisfactory generalization of the applicability of

Eq. (1) for the classical strong coupling regime was put
forward by Chris Jarzynski himself [13]; it should be
stressed, however, that the objective of the corresponding
quantum treatment has not been achieved yet. The key tool
used in Ref. [13] to overcome the difficulties posed by the
presence of strong coupling is the Hamiltonian of mean
force H�ð�S; tÞ, where �S denotes a point in the phase
space of the subsystem of interest. This Hamiltonian of
mean force is defined as the effective Hamiltonian that
describes the Boltzmann-Gibbs equilibrium of the mar-
ginal probability density of the subsystem of interest; it
reads

H�ð�S; tÞ ¼ HSð�S; tÞ � 1

�

� ln

R
d�B exp½��ðHBð�BÞ þHSBð�S;�BÞÞ�R

d�B expð� �HBð�BÞÞ ;

(3)

where �B denotes a point in the phase space of the bath.
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The total Hamiltonian of system plus environment is given
by

Hð�S;�B; tÞ ¼ HSð�S; tÞ þHBð�BÞ þHSBð�S;�BÞ; (4)

which is composed of the Hamiltonian of the isolated
system of interest, HSð�S; tÞ (time-dependent), the bath
Hamiltonian HBð�BÞ, and the interaction Hamiltonian
HSBð�S;�BÞ. This Hamiltonian of mean force generalizes
the concept of the potential of mean force, see Eq. (14)
below, that is commonly employed, for example, in re-
action rate theory [14] and in the study of implicit solvent
models in terms of biomolecular simulations [15].

In the context of quantum rate theory, potentials of mean
force have been determined for the reaction coordinate
from path integral expressions of the partition function of
a composed system with the reaction coordinate confined
to a ‘‘centroid’’ [14,16]. A direct application of this very
approach to obtain quantum fluctuation theorems for open
systems though is not obvious. Jarzynski, in fact, did
emphasize that his treatment is restricted to the classical
case [13]. Addressing this problem thus requires a careful
analysis of what one should consider as the system parti-
tion function from which the thermodynamics of the sys-
tem can be inferred. One could naively take for this
partition function the bare partition function of the isolated
system of interest: This procedure would, however, neglect
the prominent fact that the interaction with the bath alters
the system properties. Such a choice, therefore, is generally
physically not correct. Instead of the partition function of
the isolated system one has to choose a properly defined
partition function, which embraces the influence of the
bath on the open quantum system.

As we will show in this Letter, the introduction of a
proper partition function for an open system allows one
to prove that both the Tasaki-Crooks fluctuation theorem
and the Jarzynski equality in fact hold true for general
open quantum systems, independent of coupling strength.
Moreover, from this partition function a quantum
Hamiltonian of mean force can be inferred which takes
over the role of the Hamiltonian of mean force in classical
statistical mechanics.

The argument.—Consider the Hamiltonian operator ĤðtÞ
of a quantum system composed of the interacting system
and the bath which we write as

ĤðtÞ ¼ ĤSðtÞ þ ĤSB þ ĤB; (5)

where the system Hamiltonian ĤSðtÞ is time dependent in a
way that results from a prespecified protocol of system

parameter changes. The interaction Hamiltonian ĤSB and

the bath Hamiltonian ĤB are supposed to be independent
of time. The change of the system’s parameters can be
interpreted as a time-dependent external forcing that is able
to perform work on the system.

The total system is isolated; it therefore obeys the quan-
tum Tasaki-Crooks fluctuation theorem [3,17]:

ptf ;t0ðþwÞ
pt0;tf ð�wÞ ¼ YðtfÞ

Yðt0Þ e
�w; (6)

with YðtÞ being the total partition function, i.e.,

YðtÞ ¼ Tre��ðĤSðtÞþĤSBþĤBÞ; (7)

where Tr denotes the trace over the total system Hilbert
space, and the symbols ptf ;t0ðwÞ and pt0;tf ðwÞ denote the

probability densities of doing the work w when the proto-
col is run in the forward and backward directions, respec-
tively. It is important to note that, due to the fact that the
forces solely act on the system S, the work performed on
the open quantum system coincides with the total work w.
In order to obtain the thermodynamic partition function

of the open quantum system S staying in thermal equilib-
rium with a bath, we appeal to thermodynamic reasoning.
As pointed out in Ref. [18], the thermodynamic free energy
of the open system of interest is the difference between the
total system free energy and the bare bath free energy:

FSðtÞ ¼ FðtÞ � FB: (8)

Here t merely specifies the values of the external parame-
ters as they occur in the course of the protocol at the time t.
Using the statistical mechanical relation �F ¼ � lnZ be-
tween equilibrium free energy and the thermodynamic
partition function, one finds from Eq. (8) for the thermo-
dynamic partition function of an open quantum system the
result that is well known to those working on strong
quantum dissipation [12,18–29], namely:

ZSðtÞ ¼ Tre��ðĤSðtÞþĤSBþĤBÞ

TrBe
��ĤB

¼ YðtÞ
ZB

; (9)

where TrB is the trace over the bath Hilbert space, and ZB is

the bare bath partition function, i.e., ZB ¼ TrBe
��ĤB ,

which is independent of time. Note that the thermodynam-
ics that follows from the partition function ZSðtÞ comprises
the equilibrium properties of the open quantum system in a
consistent manner including the influence of environment
and coupling [11,12,18–21]: In particular, the thermody-
namic functions that follow from this thermodynamic par-
tition function do not violate any known thermodynamic
law.
From Eqs. (7) and (9), and the fact that ZB does not

depend on time t, the salient relation YðtfÞ=Yðt0Þ ¼
ZSðtfÞ=ZSðt0Þ follows. This quantum result assumes a

form reading just like in the classical case [13].
Therefore, Eq. (6) becomes

ptf ;t0ðþwÞ
pt0;tf ð�wÞ ¼ ZSðtfÞ

ZSðt0Þ e
�w ¼ e�ðw��FSÞ; (10)

which states that the ratio of probabilities of work in the
backward and forward protocols is dictated by the equilib-
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rium free energy difference of the open quantum system,
i.e., �FS ¼ FSðtfÞ � FSðt0Þ, with FSðtÞ given by Eq. (8).

By multiplying Eq. (10) by pt0;tf ð�wÞe��w and integrat-

ing over w in the usual way, one obtains the very form (1)
of the Jarzynski equality for open quantum systems, being
valid independently of the coupling strength and the details
of the bath. This is in complete analogy with Jarzynski’s
classical result, which, therefore, carries over to the quan-
tum case. Hence, if a classical force acts on an open
system, the average exponentiated work e��w equals the
exponentiated system equilibrium free energy difference
�Fs, both in classical and quantum regimes.

Remarks.—The system partition function ZSðtÞ, defined
in Eq. (9), is actually the partition function associated to

the quantum Hamiltonian of mean force Ĥ�ðtÞ, defined in
analogy to the classical Hamiltonian of mean force as

Ĥ �ðtÞ :¼ � 1

�
ln
TrBe

��ðĤSðtÞþĤSBþĤBÞ

TrBe
��ĤB

: (11)

In fact, the partition function ZSðtÞ can be recast as

ZSðtÞ ¼ TrSe
��Ĥ�ðtÞ; (12)

where TrS denotes the trace over the system Hilbert space.
Using Eqs. (9) and (11), it follows that

Z�1
S ðtÞe��Ĥ�ðtÞ ¼ Y�1ðtÞTrBe��ĤðtÞ; (13)

where the right-hand side coincides with the reduced den-
sity matrix of the open system in thermal equilibrium with
the heat bath. Again, t merely characterizes those parame-
ter values that occur according to the protocol at time t. It
does not indicate any dynamics. The actual time-dependent
density matrix at time t does not, in general, coincide with

e��Ĥ�ðtÞ=ZSðtÞ.
We note that the Hamiltonian of mean force Ĥ�ðtÞ

typically is a complicated operator-valued function not
only of the system’s parameters but also of the system-
bath coupling strength, the bath temperature and possibly
of other bath parameters. In the case of weak coupling the
contributions from the bath and the interaction(s) are neg-
ligible and the Hamiltonian of mean force reduces to the
bare system Hamiltonian [10].

In the classical limit, the quantum Hamiltonian of mean
force becomes the classical Hamiltonian of mean force in
Eq. (3). This classical expression can further be simplified
for a bath Hamiltonian consisting of a sum of potential,
VBðyÞ, and kinetic energy, where the latter does not depend
on bath positions, y, and for an interaction, VSBðx; yÞ that is
independent of the momenta. Then the mere integration
over the momenta yields identical factors in the numerator
and denominator of Eq. (11), which cancel each other. The
remaining term under the logarithm is then only a function
of the system positions, x. This leads to the renormalization
of the system potential VSðx; tÞ—i.e., to the potential of

mean force—, mentioned before:

V�ðx; tÞ ¼ VSðx; tÞ � 1

�

� ln

R
dy exp½��ðVBðyÞ þ VSBðx; yÞÞ�R

dy expð� �VBðyÞÞ ; (14)

whereas the kinetic energy of the system remains un-
changed by this procedure. We note that the given con-
ditions are sufficient but not necessary in order that the
potential of mean force captures the complete effect of a
bath on the equilibrium properties of the system described
by the Hamiltonian H�ð�S; tÞ. Further simplifications re-
sult, for example, for a bath consisting of a set of harmonic
oscillators which linearly couple to phase space functions
of the system. Then, classically, the Hamiltonian of mean
force coincides with the bare Hamiltonian of the system.
This is in strong contrast to the behavior of quantum
systems which couple as above, i.e., linearly, to a harmonic
heat bath. In this case, the Hamiltonian operator of mean
force deviates from the bare system Hamiltonian with
respect to the kinetic and the potential energy [20,26].
Conclusions.—Surprisingly enough, the Crooks theorem

and the Jarzynski equality are valid for open quantum
systems irrespective of the coupling strength to their ther-
mal environment and of the particular nature of their
environment. These theorems, hence, are valid for all types
of processes in which a classical or quantum system in
contact with a thermal heat bath is driven out of equilib-
rium by classical, generally time-dependent forces.
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